用户名: 密码: 验证码:
无铅无卤素FCBGA封装产品的湿气控制和纳米金刚石薄膜的热学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本项研究主要针对无铅无卤素的FCBGA(Flip Chip Ball Grid Array)封装产品在生产过程中湿气的吸取和解吸行为进行了探讨。分析了由于无铅无卤素更具挑战性的封装工艺而引起的FCBGA封装失效机理。收集了一系列无铅无卤素的FCBGA封装芯片在实际生产条件下的吸湿—解吸数据,并进行了数据分析和建立了有限元模型,计算了原材料和FCBGA芯片级的吸湿扩散系数。提出了自创的“常温低压解吸soft bake"吸湿—解吸模型和实际应用方案,这些方法可以适用实际芯片生产线上长期常温常压下湿气的吸入控制和解吸,并对于芯片内残留湿气进行了理论和数据分析。论证了芯片在常温常压下吸收的湿气在常温低压下是一个可逆的过程。另一方面,遵循“常温低压解吸soft bake"的原理,提出了实际生产中MET (manufacture exposure time)超标的解决方案,并通过实验论证了其准确性和适用实际生产工艺的可行性。这种“常温低压解吸soft bake"的概念与方法可以非常广泛地运用于无铅无卤素FCBGA封装产品以及其它对湿气敏感的电子产品的生产和研发,解决与湿气相关的质量和可靠性问题。
     由于金刚石就有极高的导热性和其它一些优良特性,所以人们一直期待着金刚石薄膜作为散热材料能在计算机硅芯片有广泛的应用。本研究采用热丝CVD法制备纳米金刚石薄膜,通过原子力显微镜(AFM),拉曼光谱(Raman)等设备对在不同温度下(600℃,620℃,640℃和660℃)沉积的纳米金刚石薄膜进行了表面形貌、峰值表征和热扩散系数的测量。发现了由于沉积温度的不同导致表面粗糙度不同,在620℃时沉积的纳米金刚石薄膜的表面粗糙度最小,其热导性能最高。证明了纳米金刚石薄膜的在导热材料领域被广泛采用的可行性。
This study focuses on the moisture absorption and desorption of Lead-Free&Halogen-Free Flip Chip Ball Grid Array (FCBGA) packages on the product manufacture line. The moisture related packaging failure mechanism induced by the challenging Lead-Free and Halogen-free process was discussed. A series of moisture absorption and desorption data were collected from FCBGA package assembly/test environment. The packaging simulation was established and the moisture diffusion rate of packaging raw material and FCBGA unit level were calculated. The results were fully matched with experimental results. Through low Relative Humidity (RH) conditions, the novel room temperature'soft desorption'solution can be applied for extending manufacture's exposure time (MET) by lowering the residual package level moisture without any heat. Fundamental moisture desorption behavior and reliability stress test for these novel methods were investigated along with typical bake process for packages exposed under manufacturing RH conditions. The reliability result proved the accuracy and executablility of manufactory line. It is believed that this'soft desorption'concept can be widely used in High Volume Manufacturing (HVM) to eliminate moisture related reliability problems on LF&HF FCBGA packages and other moisture sensitive electronic products.
     Due to the diamond's highest thermal conductivity and other excellent properties, there has been a long standing desire for integrating diamond with silicon for issues such as thermal management on microprocessors. This study focuses on the hot filament chemical vapor depostion (HFCVD) technology of the Nanocrystalline diamond (NCD) films under different temperature (600℃,620℃,640℃和660℃). The effect of deposition temperature on surface roughness of nanocrystalline diamond film was discussed. The AFM and Raman analyses proved that deposition temperature has a great effect on the surface roughness and quality of NCD films and620℃is the temperature to grow NCD films with smooth surfaces. The thermal performance of the Nanocrystalline diamond films was measured. The test result demonstrated that this nanocrystalline diamond film had smoother surface and better heat performance as the future heatsink material.
引文
1田民波,电子封装工程,北京,清华大学出版社,2003,
    2 Mukul P. Renavikar, Neha Patel, Ashay Dani, Vijay Wakharkar,et al.,Materials Technology for Environmentally Green Micro-electronic Packaging, Intel Technology Journal, Feb 2008, Vol 12(01)
    3 http://baike.baidu.com/view/816474.htm
    4 The Restriction of Hazardous Substances in Electrical and Electronic Equipment (ROHS) Directive, EU website
    5 National Electronics Manufacturing Initiative Website (www.nemi.org)
    6 V. Wakharkar et al, Microelectronic Packaging Materials Development & Integration Challenges for Lead Free, TMS Conference,2006
    7 http://baike.baidu.com/view/3034010.htm
    8 M.Datta, T. Osaka, J.W. Schultze, Microelectronic Packaging, New trends in Electrochemical Technology,2005
    9 http://baike.baidu.com/view/1298764.htm
    10 Commission of the European Communities, "Proposal for directive of the European parliament and of the council on waste electrical and electronic equipment," Tech. Rep., CEC, Jun.2000.
    11 Anderson Huang, Kuo Liang Su, Peter Liang, International Microsystems, Packaing, Assembly and Circuits Technology Conference,2009,244-246
    12 Alan Rae, Ken Gilleo,Chuck Moses, et al., Halogen Free Packaging Materials,2001 International Symposium on Advanced Packaging Materials, p.148-152
    13 Y. P. Khanna, et al, Macromolecules,282644-46 (1995)
    14 Yim, M. J., Hwang, J. S., Kwon, W. S., Jang, K. W., and Paik, K. W., "High reliable nonconductive adhesives for flip chip CSP applications," Proc.52nd Electronic Components and Technology Conf,2002, pp.1385-1389.
    15 Aschenbrenner, R., Gwiasda, J., Eldring, J., Zakel, E., and Reichl, H.. "Flip chip attachment using nonconductive adhesives and gold ball bumps," Int J Microcircuits Electron Package, Vol.18 (1995), pp.154-161,
    16 Li, C. Y., Hua, Z. K., Luo, Y. X., Cao, L. Q., Zhang, J. H., "Investigation of the moisture impact on the stacked die package," 2nd Electronics System-Integration Technology Conf, Greenwich, UK,2008, pp.1175-1178.
    17 Y. P. Khanna, et al, Macromolecules,282644-46 (1995)
    18 Y. C. Lin and X. Chen, Polymer 46 (2005) 11994-12003
    19 IPC/JEDEC J-STD-20 MSL Classifications.
    20 Lin, R., Blackshear, E., and Serisky, P., "Moisture induced package cracking in plastic encapsulated surface mount components during solder reflow process." Proc 26th Rel Phys Symp,1988, pp.83-89.
    21 Hua, Z. K., Li, C. Y., Zhang, J. H., Cao, L. Q., and Luo Y. X., "Hygro-thermal Finite Element Analysis of Green Stacked Die Package," 32nd Proc Int'l Electronics Manufacturing Tech Conf, San Jose, USA,2007, pp. 78-85.
    22 Li, C. Y., Hua, Z. K., Luo, Y. X., Cao, L. Q., Zhang, J. H., "Investigation of the moisture impact on the stacked die package," 2nd Electronics System-Integration Technology Conf, Greenwich, UK,2008, pp.1175-1178.
    23 Hagen, D., Downey, S., and Hughes, C.. "Crack-Free Moisture performance solution for 20mm x 20mm x 40mm TQFPs," Int J Microcircuits and Electron Packag, Vol.20, No.4 (1997), pp.460-464.
    24 Suraski, D., Seelig, K., "The current status of lead-free solder alloys." IEEE Trans Package Manufacture, Vol. 24, No.4 (2001), pp.244-248.
    25 Bergendahl, C.G., "Electronics goes halogen-free:international driving forces and the availability and potential of halogen-free alternatives," Electronics and the Environment,2000, pp.54-58.
    26 He, Y., Fan, X.J., "In-situ Characterization of Moisture Absorption and Desorption in a Thin BT Core Substrate." Proc.57th Electronic Components and Technology Conf,2007, pp.1375-1383.
    27 Nguyen, T. G.,"PQFP Moisture Bake Out Process Optimization." Proc Electro 98 Professional Program,1998, pp.21-35.
    28 Fan XJ, Zhang GQ, Ernst LJ. A micro-mechanics approach for polymeric material failures in microelectronic packaging. In:3rd International Conference on Thermal and Thermo-mechanical Simulation in Micro-electronis, ESIM# 2002, April, Paris France,2002,5-15
    29 Tee TY, Fan SJ, Jim TB. Modeling of whole field vapor pressure during reflow for flip chip BGA and wire-bond PBGA packages. In:1st International Workshop on Electronic Materials, and Packaging, Singapore, Sep.1999,38-45
    30 Fan XJ, Lim TB, Mechanism analysis for moisture-induced failure in IC packages. In ASME international Mechanical Engineering Congress & Exposition,11th Symposium on Mechanics of Surface Mount Technology, Nashville, Tenneess,IMECE/EPE-14, Nov,1999.
    31 Fan XJ, Modeling of vapor pressure during reflow for electronic packages, In, Zhang GQ. Etal ed. Benefiting from Thermal and Mechanical Simulation in Micro-Electronics, ESIME2000, Kluwer Academic, Boston, MA, 2000,75-92
    32 Galloway J E, Miles B M, Moisture absorption and desorption predictions for plastic ball grid array packages. IEEE Components, packaging and Manufacturing Technology,1997,20(3); 274-279
    33 Chen X, Zhao SF, Zhai L. Moisture absorption and diffusion characterization of molding compound. ASME Journal of Electronic Packaging,2005,127:460-465
    34别俊龙,孙学伟,贾松良,吸收湿气对微电子塑料封装影响的研究进展,力学进展,Feb 2007,Vol 37,No.1,35-47.
    35 Ferguson, T., and Qu, J., "Moisture absorption analysis of interfacial fracture test specimens composed of no-flow underfill materials," J Electron Packaging, Vol.125 (2003), pp.24-30.
    36 Ferguson, T., and Qu, J., "Effect of moisture on the interfacial adhesion of the under fill/solder mask interface," J Electron Packaging, Vol.124 (2002), pp.106-110.
    37 Ardebili H, Wong# H, Pecht M, Hygroscopic swelling and sorption characteristics of epoxy molding compounds used in electronic packaging. IEEE Components and Packaging Technologies,2003,26 (1): 206-214
    38 Michael, G. P., "Moisture sensitivity characterization of build-up ball grid array substrates," IEEE Trans Ad Packag, Vol.22, No.3 (1999), pp.515-523.
    39 Soles, C., Chang, F., Gidley, D., and Yee, A.. "Contributions of the nano void structure to the kinetics of moisture transport in epoxy resins." J Polym Sci Polym Phys, Vol.38 (2000), pp.776-791.
    40 Soles, C., and Yee, A.. "A discussion of the molecular mechanisms of moisture transport in epoxy resins." J Polym Sci Polym Phys, Vol.38 (2000), pp.792-802.
    41 G.A. Jeffrey, An introduction to hydrogen bonding, Oxford University Press 1997.
    42 G. P. Michael,"Moisture sensitivity characterization of build-up ball grid array substrates," IEEE Trans. Adv. Packag., Vol.22, No.3, pp.515-523,1999.
    43 Stellrecht, E., Han, B., and Pecht, M., "Characterization of hygroscopic swelling behavior of mold compounds and plastic packages," IEEE Trans Comp Package Manufacture Technology, Vol.27, No.3 (2004), pp.499-506.
    44 Strumillo, C., and Kudra, T., Drying:Principles, Applications and Design (New York,1986), pp.448.
    45 Intel Pack Procedure for FCBGA1/3/5/7/9,188-0101
    Zhang Qiang, Sun Dongli, Wu Gaohui. Recent Achievements in Research for Electronic Packaging Substrate Materials [J]. MATERIAL SCIENCE & TECHNOLOGY,2000,8(4):66-72
    E.Kohn, P.Gluche, M.Adamschik. Diamond MEMS - A New Emerging Technology [J]. Diamond and Related Materials,1999,8:934-940
    48 Gu Changzhi, Jin Zengsun, Lu Xianyi, et al. Effect of Grain Size and Orientation on Thermal Conductivity for Diamond Films[J]. China Academic Journal,26(3-4):327-334
    49 Gu Changzhi, Jin Zengsun, Lu Xianyi, et al. The Effect of Thickness and Back Surface of Diamond Film on Thermal Conductivity [J]. Chinese Journal of High Pressure Physics,1997,11(1):61-65
    50 Kenneth E.Goodson, Katsuo Kurabayashi, R.Fabian W.Pease. Improved Heat Sinking for Laser-Diode Arrays Using Microchannels in CVD Diamond [J]. IEEE TRANSACTIONS ON COMPONENTS, PACKAGING, AND MANUFACTURING TECHNOLOGY-PART B,1997,20(1):104-109
    51 W G Eversde,.U.S Patent 3 030 188.1962
    52 B V Spitsyn, L L Bovilov, et al. J Cryst Growth.1981,52:219
    53 S Marsumoto, Y Sato, et al.J Mater Sci.1982,17:3106
    34 X S Sum, N K Woo, et al. Diamond relat Mater. In press
    55 S Yugo, T Kami, et al. Appl Phys Lett.1991,58:1036
    56K Mitsude, Y Kojima, et al. J Mater Sci,1987,22:1557
    57 B R Stoner, J T Glass, Appl Phys Lett.1992,60:698
    58张志明,张伟东,沈荷生,等.金刚石薄膜热沉在大电流稳压集成电路中的应用[J].半导体技术,1997,2(1):41-44
    59潘存海,杜素梅,李桓,等.CVD金刚石膜热沉表面金属化[J].材料热处理学报,2003,24(1):59-65
    60顾长志,金曾孙,吕宪义,等.使用金刚石膜热沉的半导体激光器特性研究[J].半导体学报,1997,18(11):840-843
    61 http://www.sp3diamondtech.com/prod_dos.asp
    62 S J Harris, L R Martin, J Mater Res.1990,5,2313
    Xia Yiben, Sekiguchi Takashi, Zhang Wenjun, et al. Surfaces of undoped and boron doped polycrystalline diamond films influenced by negative DC bias voltage [J]. Diamond Relat. Mater.,2000,9 (9-10):1636-1639
    64 R.S. Sussmann, J.R. Brandon, G.A. Scarsbrook, et al. Properties of bulk polycrystalline CVD diamond [J]. Diamond Relat. Mater.,1994,3(4-6):303-312
    S.T. Lee, Z. D. Lin, X. Jiang. CVD diamond films:nucleation and growth [J].Materials Science and Engineering.,1999,25:123-154
    T Lin, P K. Loh, S T A Wee, et al. High Resolution Transmission Electron Microscopy Study of the Initial Growth of Diamond on Silicon [J]. Diamond & Related Materials,2000,9:1703-1707
    67D M Grune. Nanocrystalline Diamond Films [J]. Review Material Science,1999,29:211-259
    C D Zuiker, A R Krauss, D M Grune, et al. Physical and Tribological Properties of Diamond Films Grown in Argoncarbon Plasmas [J]. Thin Solid Films,1996,270:154-159
    69 K J Roe, J Kolodzey, C P Swann, et al. The electrical and optical properties of thin film diamond implanted with silicon [J]. Appl. Surf. Scie,2001,175(15):468-473
    B R Huang and W Z Ke, Surface properties on both sides of the isolated diamond film [J]. Materials Science and Engineering,1999, B64:187-191
    W L Wade, J R Mammone, R J Binder. Surface properties of commercial polymer films following various gas plasma treatments [J]. J Appl Polym Sci 1991,43:1589-1591
    P Hollmam, Wanstrand, et al. FrictionProperties of Smooth Nanocrystalline Diamond Coatings [J]. Diamond & Related Materials,1998,10:1471-1477
    Z Sun, J K Shi, et al. UV Raman Characteristics of Nanocrystalline Diamond Films with Different Grain Size [J]. Diamond & Related Materials,2000,9:1979-1983
    74唐璧玉,靳九成,颜永红等.CVD金刚石薄膜的成核机理研究[J].功能材料,1998,29(1):48-49
    75M. Yoshikawa, G. Katagiri, H. Ishida and A. Ishitani:Appl. Phys. Lett.55 (1989), p.2608.
    76 R. J. Nemanich, J. T. Glass and G. Lucovsky:J. Vac. Sci. Technol. A 6 (1988), p.1783.
    Soo Hyung Sco, Tae Hoon Lee, Jin Seok Park. Roughness Control of Polycrystalline Diamond Films Grown by Bias-enhanced Microwave Plasma-assisted CVD [J]. DIAMOND AND RELATED MATERIALS,2003,12:1670-1674
    78 Huang Yuansheng, Qiu Wanqi, Luo Chengping. Effect of CH4 Concentration on Surface Roughness of CVD Diamond Films [J]. Metal Heat Processing,2004,29(6):15-18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700