用户名: 密码: 验证码:
祁连山东段西营河流域山地气候研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气候作为人类赖以生存的自然环境的一个重要组成部分,它的任何变化都会对自然生态系统以及社会经济产生不可忽视的影响。那么如何认识气候变化?如何应对气候变化及其对环境的影响?这不仅仅是科学的前沿问题,也是环境问题、经济问题、政治问题和国家安全问题。近年来的研究表明,在全球变暖背景下,我国西北地区气候正悄然发生着变化。但是,西北地区地域辽阔,区域内地形地貌复杂,生态系统多样,同时受西风带、东亚季风的共同影响,气候要素的季节变化、年际变化和日变化十分明显,气象灾害种类繁多,直接威胁到人民财产安全。由于目前该区站网空间分布不尽合理,现有气象部门站网主要以县级行政区划为基点,没有充分考虑其对天气、气候的代表性;站网空间分辨率低,对生态类型的覆盖不足:时间分辨率过低,无法分辨天气过程的特征。
     为了深刻认识区域天气气候变化的形成机理,提高流域气象灾害监测预警能力,监测全球气候变化背景下西北地区干旱气候变化的区域响应机制和规律,我们选择祁连山东段石羊河水系的支流西营河流域为代表,依托近期建设的气象观测台站,对该区山地气候进行详细的研究,初步结论如下:
     1、在西营河流域内的山地荒漠草原带、寒温性针叶林带、高寒杜鹃灌丛带三个植被区分别建立了野外自动气象观测站,结合已有的常规气象观测站,形成了较为完善的气象观测网,从而补充了该区山地气象观测站点建设的不足,为研究该区长时间序列的气候变化提供基础数据。
     2、通过对气象数据的分析发现,年降水量随海拔高度的升高而增加,且在2714m左右的寒温性针叶林植被区存在一个最大降水高度带,一年中降水主要集中于6、7、8、9月份;地面接收的太阳辐射量(7时开始接收20时结束)由于受云雾天气的影响,随海拔高度的升高有减少的趋势,且在降水量最多的地带其值最少,年分配中为5月份其值最多,一天内13时左右接受的太阳辐射量最多;气温垂直递减率冬半年小于0.65℃/100m,夏半年则大于该值,一日中14-15时气温最高,7-8时最低;由于受降水和气温等因素的影响,水汽压随海拔高度升高而降低,水汽压8月份最高,土壤水分含量三个不同的站点在5、7、9或10月份最高,相对湿度随海拔高度升高而增大,且在一年内3月和8-9月份最大;相对湿度和土壤水分含量在日内变化呈“V”字型;最大风速一年内在春季4-5月份最大,最大值可达12.35m/s,一天内风速在14-15时最大,并且风向在夜间至12时风速较小时,主要以西南风为主,白天风速较大时,主要以东北风为主,与西营河谷走向相一致。
     3、本文以地理信息系统为基本手段,同时利用多元统计回归的方法结合散点图分析了气温和降水与地理空间位置和海拔高度之间的关系,寻求较佳的回归方程以表示气温降水空间分布的结构分量特征。研究发现,在西营河流域降水不仅仅与海拔高度有关,还与坡度存在一定的关系,可能是由于在山区地形雨在降水中占有相当比例,坡度大小影响地形抬升的强度,得到全年降水总量的分布式模型关系式为:P=a+b*lnY+c*H+d*α5。对于气温,进一步考虑太阳辐射在山地的分布,对气温的传统分布式模型进行改进,获得了较好的效果,最后得到年均气温的分布式模型关系式为:T_T=T_H-|T_H|*[1-(cose-sinecosφ_n)],T_H=a+b*H+c*lnY。
     4、综合气象数据分析显示的降水的鲜明季节变化,各季最大降水高度的不同及降水的分布式模型,我们推断在西营河流域存在两个最大降水高度带,一个位于海拔高度在2700m左右的寒温性针叶林植被区,一个位于山顶冷龙岭,这也可能是山顶现代冰川发育的物质来源。
Climate is one of the most important components in the environment that human being lives, its any changes of environment may have a great impact on both the natural ecological system and the socio-economic, therefore to understand the mechanism of climate change and copeing with the climate change and its effect on the environment is not only a significant scientific issue, but also an environmental, economic, political and even national security issue. Previous researches show that climate in northwest China has been undergoing an obvious change associate with the global warming in the recent years. The northwest China is a vast territory in which there is a very complicated landforms and biodiversity, meanwhile it is controlled by westerlies and the East Asian monsoon. In Northwest China the seasonal, annual and diurnal variation of the climatic component is so distinct that there are also many different kinds of meteorological disasters that threaten the local people's life and property. But the spatial distribution of the current meteorological stations in this region are not managed compatible. Due to three main reasons: the first one is that most of current meteorological stations are based on County-level administrative divisions without considering of the representative about the weather and the climate patterns, the second reason is that number of the meteorological station which is too less to cover all the ecological system, the last one is that the low temporal resolution meteorological observation couldn't show the character of the climatic process.
     The key purpose of this thesis is trying to further investigate the forming mechanisms of the regional climate change, improve the ability of monitoring and forecasting the meteorological disaster in the drainage basin, and finally monitor the regional response mechanism and rule of the arid climate change in the Northwestern Region under the global climate change background. To achieve this objective, we choose the Xiying river basin, which is a branch of the Shiyang River drainge located at the east section of the eastern Qilian mountain as our representational reaserch area .we have got some preliminary conclusions through detailed research about the regional mountain climate:
     1, We have set three field automatic weather stations in the mountain desert steppe zone, the cold-temperature coniferous forest zone and the Alpine rhododendron shrub zone respectively in the Xiying river basin. Combining with the existing general weather stations, we have formed more perfect meteorological observational network compared with the previous shortage of the mountain meteorological observation stations in this area. This could offer essential date for the research of the long time series of climate change in this area.
     2.Through analyzing the meteorological data we discovered that: the annual precipitation enhances along with the increasing of the altitude, the largest precipitation belt is mainly in the cold warm coniferous forest vegetation area at about 2714m, and the precipitation mainly concentrates in June, July, August and September all the year round; The solar radiation received by the ground (start at 7:00 and finish at 20:00) has a reduced tendency as the increasing of the altitude owing to the influence of the fog weather, and the radiation reaches is minimum at the region where the precipitation gets to its maximum, the solar radiation received by the ground gets to is maximum in May all the year round, at about 13:00 all the day; The temperature vertical lapse-rate is smaller than 0.65℃/100 m in the winter, and bigger in the summer, the temperature is highest at 14;00-15:00 in one day and lowest at 7:00-8:00; Influenced by precipitation, and temperature etc, the vapor tension reduce along with the increase of the altitude, the vapor tension is highest in August, the soil moisture content is highest in May, July, September or in October; the relative humidity enhances along with the increase of the altitude, and is biggest in March and August to September in one year; The diurnal variation of the relative humidity and the content of soil moisture assumes the font "V"; The maximum wind speed is biggest in April to May in one year.
     3. By analysis of the data of monthly and annual temperature and precipitation observed by the meteorological stations in the eastern section of the Qilian Mountains with theirs elevations and geographical coordinates, the author suggested the following mathematical expressions of the geospatial change of both all-year precipitation and annual temperature in Xiying river basin:Where P represents the annual precipitation, T_ Trepresents the mean annual temperature ameliorated with topography based on the mean annual temperature simulated by conventional statistical model, T_H represents the mean annual temperature simulated by conventional statistical model, Y represents the latitudinal coordinator, H represents the elevation of meteorological station,α_5 represents the mean of the slope in a radius of five kilometers, e represents the max of the slope in a radius of one kilometer, (?)_n the max of the aspect in a radius of one kilometer. The author found the precipitation increases with the increase of the altitude and the slope, and with the decrease of the latitude. The author also found that the temperature decreases with the increase of the altitude and the latitudinal coordinator, at one time, the solar radiation received by the ground is different because of the relief, so the ameliorated temperature model is more virtual.
     4. Synthesizing the weather data analysis and the distributional model of the precipitation, we discovered that there are two biggest precipitation belts in the Xiying river basin, one locates in the cold-temperature coniferous forest vegetation areas at the altitude of about2700m, the other locates at the summit of LengLongling, we assume that the precipitation at the higher maximum belt is possibly the original vapor supply of the present ice volume at the summit.
引文
[1]李栋梁,魏丽,蔡英等.中国西北现代气候变化事实与未来趋势[J].冰川冻土,2003,25(2):135-142
    
    [2]谢金南,周嘉陵.西北地区中、东部降水趋势的初步研究[J].高原气象,2001,20(4):362-367
    
    [3]宋连春,张存杰.20世纪西北地区降水量变化特征[J].冰川冻土,2003,25(2):143-148
    
    [4]刘海潮,施雅风,王宗太等.中国冰川资源及其分布特征——中国冰川目录编制完成[J]。冰川冻土,2000,22(2):106-112
    
    [5]刘海潮,谢自楚,刘时银等.西北干旱区冰川水资源及其变化.见:康尔泗,程国栋,董曾川主编.中国西北干旱区冰雪水资源与出山径流.北京:科学出版社,2002,14-72
    
    [6]张国威,吴素芬,王志杰.西北气候环境转型信号在新疆河川径流变化中的反映[J].冰川冻土,2003,25(2):183-187
    
    [7]冯建英,李栋梁.甘肃省河西内陆河流量长期变化特征[J].气候与环境研究,2001,6(4):478-484
    
    [8]李栋梁,冯建英,陈雷等.黑河流量和祁连山气候的年代际变化[J]。高原气象,2003,22(2):104-110
    
    [9]蓝永超,丁永建,沈永平等.河西内陆河流域出山径流对气候转型的响应[J].冰川冻土,2003,25(2):188-192
    
    [10]燕华云,贾绍凤.近50年来青海省水文要素变化特征分析[J].冰川冻土,2003,25(2):193-198
    
    [11]李宇安,谭芫,姜逢清等.20世纪下半叶开都河与博斯腾湖的水文特征[J].冰川冻土,2003,25(2):215-218
    
    [12]王前进,巴音察汗,马道典等.艾比湖水面近50a变化成因分析[J].冰川冻土,2003,25(2):224-228
    
    [13]吴素芬,何文勤,胡汝骥等.近年来新疆盆地平原区域湖泊变化原因分析[J].干旱区地理,2001,24(2):123-129
    
    [14]王亚俊,吴素芬.新疆吐鲁番盆地艾丁湖的环境变化[J].冰川冻土,2003,25(2):229-231
    
    [15]马明国,角援梅,程国栋.利用NOAA-CHAIN监测近10a来中国西北土地覆盖的变化[J].冰川冻士,2002,24(1):68-72
    
    [16]马明国,董立新,王雪梅.过去21a中国西北植被覆盖动态监测与模拟[J].冰川冻土,2003,25(2):232-236
    
    [17]罗格平,陈嘻,胡汝骥.基于AVHRR/NOVA影像的天山北坡近10a植被变化[J].冰川冻土,2003,25(2):237-242
    
    [18]李栋梁,钟海玲,魏丽等.中国北方沙尘暴的气候特征及对春季高原地面感热的响应[J].高原气象,2003,22(4):337-345
    
    [19]钱正安,宋敏红,李万元.近50年来中国北方沙尘暴的分布及其变化趋势分析[J].中国沙漠,2002,22(2):106-111
    
    [20]施雅风,沈永平,李栋梁等.中国西北气候由暖干向暖湿转型的特征和趋势探讨[J].第四纪研究,2003,23(2):152-164
    
    [21]施雅风.中国西北气候由暖干向暖湿转型问题评估[M].北京:气象出版社,2003
    
    [22]邓振镛,王鹤龄,王润元等.气候变化对祁连山北坡农林牧业结构的影响与对策研究[J].中国沙漠,2008,28(2):1-7
    
    [23]张凯,韩永翔,张勃等.基于水资源和气候系统影响下的黑河流域生态环境变迁研究[J].干旱地区农业研究,2006,24(2):159-164
    
    [24]王宝鉴,张强,张杰.对民勤绿洲生态退化问题的探讨[J].干旱气象,2004,22(4):87-92
    
    [25]王宝鉴,张强.甘肃气候和生态环境对全球变暖的相应特征[J].地球科学进展,2005,20(特刊):119-124
    
    [26]李吉均,方小敏,潘保田等.新生代晚期青藏高原强烈隆起及其对周边环境的影响[J].第四纪研究,2001,21(5):381-390
    
    [27]钟祥浩.20年来我国山地研究回顾与新世纪展望[J].山地学报,2002,20(6):646-659
    
    [28]张一平,葛在伟,刘玉洪等.岷江上游雨季南北坡小气候特征比较[J].山地学报,2002,20(6):680-686
    
    [29]张一平,张昭辉,何云玲.岷江上游气候立体分布特征[J].山地学报,2004,22(2):179-183
    
    [30]张一平,段泽心,窦军霞.岷江上游干暖河谷与元江干热河谷的气候特征比较研究[J].长江流域资源与环境,2005,14(1):76-82
    
    [31]张一平,何云玲,钟水新等.岷江上游山地森林生态气候效应[J].山地学报,2005,23(3):300-307
    
    [32]袁玉江,何清,喻树龙.天山山区近40a年降水变化特征与南、北疆的比较[J].气象科学,??2004,24(2):220-226
    
    [33]袁玉江,何清,穆桂金.天山山区近40a夏季降水变化及与南北疆的比较[J].冰川冻土,2003,25(3):331-335
    
    [34]吴纯渊,袁玉江.天山山区近40a冬季降水变化特征与南、北疆的比较[J].干旱区资源与环境,2005,19(2):87-90
    
    [35]袁玉江,魏文寿,何清.天山山区近40年冬季温度变化特征[J].气象,31(5):12-16
    
    [36]袁玉江,魏文寿,穆桂金.天山山区近40a秋季气候变化特征与南、北疆的比较[J].地理科学,2004,24(6):674-679
    
    [37]袁玉江,何清,魏文寿等.天山山区与南、北疆近40a来的年温度变化特征的比较研究[J].中国沙漠,2003,23(5):521-526
    
    [38]袁玉江,谢国辉,魏文寿等.天山山区与南北疆夏季温度变化对比分析[J].气象科技,2005,33(2):152-155
    
    [39]袁玉江,穆桂金.新疆天山山区近40年春季气候变化特征与平原区的比较[J].干旱区地理,2004,27(1):35-40
    
    [40]喻树龙,袁玉江,金海龙等.用树木年轮重建天山北坡中西部7-8月379a的降水量[J].冰川冻土,2005,27(3):404-410
    
    [41]韩添丁,叶柏生,焦克勤.天山天格尔山南北坡气温变化特征研究[J].冰川冻土,2002,24(5):567-570
    
    [42]韩添丁,丁永建,叶柏生等.天山天格尔山南北坡降水特征研究[J].冰川冻土,2004,26(6):761-766
    
    [43]邹捍,周立波,马舒坡等.珠穆朗玛峰北坡局地环流日变化的观测研究[J].高原气象,2007,26(6):1123-1140
    
    [44]白建辉,邹捍,李爱国等.珠穆朗玛峰北坡山谷太阳辐射和大气的特征与分析[J].2007,26(6):1162-1172
    
    [45]张美根,马舒坡,许丽人等.珠峰北坡绒布河谷局地环流的模拟分析[J].高原气象,2007,26(6):1146-1150
    
    [46]冯健武,刘辉志,邹捍等.珠峰绒布河谷近地面层气象要素及湍流通量变化[J].高原气象,2007,26(6):1244-1253
    
    [47]谢爱红,任贾文,秦翔等.2005年5~7月珠穆朗玛峰北坡海拔6523m气象要素特征[J].冰川冻土,2006,28(6):909-917
    
    [48]蒋友严,任贾文,秦翔等.珠穆朗玛峰北坡海拔6523m辐射平衡观测结果分析[J].冰川冻土,2007,29(4):589-594
    
    [49]孙方林,马耀明.珠穆朗玛峰北坡地区河谷局地环流特征观测分析[J].高原气象,2007,26(6):1187-1190
    
    [50]王峰,朱彤,徐柏青等.珠穆朗玛峰东绒布冰川新降雪中有机氯农药[J].中国科学D辑:地球科学2007,37(5):670-675
    
    [51]郑成洋,方精云.福建黄冈山东南坡气温的垂直变化[J].气象学报,2004,62(2):251-255
    
    [52]高登义.中国山地环境气象学[M].郑州:河南科学技术出版社,2005
    
    [53]D. W. Burbank, A. E. Blythe, J. Putkonen, et al. Decoupling of erosion and precipitation in the Himalayas [J]. Nature, 2003 426(11):652-655
    
    [54]Emmanuel J. Gabet, Beth A. Pratt - Sitaula, Douglas W, Burbank. Climatic controls on hillslope angle and relief in the Himalayas[J]. Geology,2004,32(7):629-632
    
    [55]Bodo Bookhagen, Douglas W. Burbank. Topography, relief, and TRMM-derived rainfall variations along the Himalaya[J]. Geophysical Research letters, 2006,33:1-5
    
    [56]罗杰G.巴里著,安顺清等译.山地天气和气候..北京:气象出版社,1988
    
    [57]翁笃鸣,罗哲贤.山区地形气候[M].北京:气象出版社,1990
    
    [58]朱求安,张万昌,赵登忠.基于PRISM和泰森多边形的地形要素日降水量空间差值研究[J].地理科学,2005,25(2):233-238
    
    [59]李新,程国栋,卢玲.青藏高原气温分布的空间插值方法比较[J].高原气象,2003,22(6):565-573
    
    [60]史舟,王人潮,吴宏海.基于GIS的山区年均温分布模拟与制图[J].山地研究,1997,15(4):264-268
    
    [61]P. V. Bolstad, L. Swift etc.. Measured and Predicted Air Temperatures at Basin to Regional Scales in the Southern Appalachian Mountains. Agricultural and Forest Meteorology, 91,1998,161-176.
    
    [62] K. Koike, S. Matsuda and B. Gu. Evaluation of Interpolation Accuracy of Neural Kriging with Application to Temperature-Distribution Analysis. Mathematical Geology, 33,2001,421-447.
    
    [63]欧阳宗继,赵新平,赵有中等.山区局部气候小格网研究方法[J].农业工程学报,1996,12(3):144-148
    
    [64]路云阁,李双成,蔡运龙.近40年气候变化及其空间分异的多尺度研究——以内蒙古自治区为例[J].地理科学,2004,24(4):432-438
    
    [65]Randan Huth, Jan Kysel Y,Martin Dubiovsky,etc. Simulation of surface air temperature by GCMs, Statistical Downscanling and Weather Generator.Higher - Order Statistical moments[J]。Stud. Geophy Geod,2003,47:203-216
    
    [66]Oleg A. Anisimov patterns of near-surface temperature using empirical data[J]. Climatic Change 2001,50:297-315
    
    [67]赵云升,杜嘉,宋开山等.基于卫星遥感的夏季长春市城区热场分析[J].地理科学,2006,26(1): 70-74
    
    [68]覃志豪,Amon Kamieli等.用陆地卫星TM6数据演算地表温度的单窗算法[J].地理学报,2001,56(4):456-466
    
    [69] Jose A S,Juan C J, Leonardo P. Land surface temperature retrieval from LANDSAT TM 5[J]. R S Environ,2004,90(4): 437-440
    
    [70]张洪亮,倪绍祥,邓自旺等.基于DEM的山区气温空间模型方法[J].山地学报,2002,20(3):360-364
    
    [71]杨昕,汤国安,王春等.基于DEM的山区气温地形修正模型——以陕西省耀县为例[J].地理科学,2007,27(4):525-530
    
    [72]黄雪樵.地理信息系统下的坡面太阳辐射计算[J].地理研究,1992,11:80-85
    
    [73]傅抱璞.不同地形下辐射收支各分量的差异与变化[J].大气科学,1998,22:178-190
    
    [74]孙汉群,傅抱璞.坡面天文辐射总量的椭圆积分模式[J].地理学报,1996,51:559-566
    
    [75]于强,傅抱璞,彭乃志等.辐射日总量的最热坡度解析模式及其全球分布规律[J].地理学报,1994,49(6):526-532
    
    [76]DOZIER J , FREW J . Rapid calculation of terrain parameters for radiation modeling from digital elevation data [J ]. IEEE Transac2 tion on Geoscience and Remote Sensing ,1990 ,28 (5): 963-969
    
    [77]李新,程国栋,陈贤章等.任意条件下太阳辐射模型的改进[J].科学通报,1999,5:993-998.
    
    [78]李新,陈贤章,增群柱.利用数字高程模型计算复杂地形下的短波辐射平衡[J].冰川冻土,1996,18(增):344-353
    
    [79]杨昕,汤国安,王雷.基于DEM的山地总辐射模型及实现[J].地理与地理信息科学,2004,??20(5): 41-44
    
    [80]林之光.地形降水气候学[M].北京:科学出版社,1995
    
    [81] V Lakshmi Introduction. In: V. Lakshmi, J. Albertson and J. Schaake. Land surface hydrology, Meteorology, and Climate: Observations and Modeling[R].AGU,2000, 1-4
    
    [82]张杰,李栋梁.祁连山及黑河流域降水量的分布特征分析[J].高原气象,2004,23(1):81-88
    
    [83]陈贺,李原园等.地形因素对降水分布影响的研究[J].水土保持研究,2007,14(1):119-122
    
    [84]高惠芸,杨青等.新疆阿克苏河流域降水的时空分布[J].干旱区研究,2008,25(1):70-74
    
    [85]舒守娟,王元等.中国区域地理、地形因子对降水分布影响的估算和分析[J].地球物理学报,2007,50(6):1703-1712
    
    [86]李栋梁,刘德祥.甘肃气象[M].北京:气象出版社,2000,65-75
    
    [87]M.F.Hutchinson, Thin plate spline interpolation of mean rainfall: getting the temporalstatistics correct. In GIS and Environmental modeling: Progress and Research Issues(edited byM.F.Goodchild et al.),by GISworld, Inc, 1996,85-90
    
    [88]C.Daly, R.P.Neilson, et al. A statistical topographic model for mapping climatologicalprecipitation over mountainous terrain. J. of Applied Meteorology, 1994,33:140-158
    
    [89]S.W.Running, P.E.Thornton, Generating daily surface of temperature and precipitation overcomplex topography. In GIS and Environmental modeling: Progress and Research Issues(editedby M.F.Goodchild, et al.),by GIS Worldjnc, 1996,93-98
    
    [90]I. K. Tsanis and M. A. Gad. A GIS Precipitation Method for Analysis of StormKinematics.Environment Modelling & Software, 16,2001,273-281
    
    [91]B. Sevruk and M.Nevenic.The Geography and Topography Effects on the Areal Pattern ofPrecipitation in a Amall Prealpline Basin. Wat. Sci. Tech.,37,1998,163-170
    
    [92]U. Germann and J. Joss. Spatial Continuity of Alpine Precipitation. Phys.Chem.Earth(B),25,2000,903-908
    
    [93] G. Wotling,Ch. Bouvier and J. Danloux etc. Regionalization of Extreme PrecipitationDistribution Using the Principal Components of the Topographical Environment.Journal ofHydrology,233,2000,86-101
    
    [94]杨树峰.祁连山北缘——冲断带构造特征及含油气远景[M].北京:科学出版社.2007
    
    [95]陈兵,赵振才,祝意青.祁连山——海原断裂带跨断层形变近期异常特征研究及机理初探[J].内陆地震,1998,12(3):222-227
    
    [96]何文贵,刘百篪,袁道阳等.冷龙岭活动断裂的滑动速率研究[J].西北地震学报,2000,22(1):90-97
    
    [97]黄生长,李长安.黄水河流域不对称地貌与青藏高原-祁连山隆升[J].江西地质,1998,12(4):251-256
    
    [98]陈昌毓.祁连山区水资源及其对河西走廊生态环境的影响[J].自然资源学报,1995,10(2):104-114
    
    [99]吴征镒.论中国植物区系的分区问题[J].云南植物研究,1979,1:1-21
    
    [100]杨国靖,肖笃宁,赵成章.基于GIS的祁连山森林景观格局分析[J].干旱区研究,2004,21(1):27-32
    
    [101]韩涛.用TM资料对祁连山部分地区进行针叶林/灌木林分类研究[J].遥感技术与应用,2002,17(6):317-321
    
    [102]吴征镒.中国植被[M].北京:科学出版社,1980
    
    [103]黄大粲.甘肃植被[M].兰州:甘肃科学技术出版社,1997
    
    [104]罗梅建.甘肃土壤[M].北京:农业出版社,1993:118-119
    
    [105]M. F. Hutchinson and John C. Gallant. Digital Elevation Models and Representation of Terrain Shape. In: John P. Wilson and John C. Gallant. TERRAIN ANALYST: Principles and Applications. John Wiley & Sons, Inc. ,2000, 29-50
    
    [106]邹松兵,基于GIS的甘肃中部地区气温降水分布模式研究,硕士论文,2002
    
    [107]林之光.地形降水气候学[M].北京:科学出版社,1995
    
    [108]张杰,韩永翔,万信等.祁连山区降水资源网格场的模拟与分析[J].干旱地区农业研究,2002,20(2):108-119
    
    [109]汤国安,杨昕.ArcGIS地理信息系统空间分析试验教程[M].北京:科学出版社,2007
    
    [110]冯学智,数理统计方法[M],中国科学院兰州冰川冻土研究所,1982
    
    [111]刘勇,祁连山中东部地区山地气候与林带模型研究,博士论文,2002
    
    [112]傅抱璞.山地气候[M].北京:科学出版,1983
    
    [113]阎育华,赖洪年.利用降水平均递增率求山地最大降水高度[J].地理研究,1987,6(1):62-67
    
    [114]汤懋苍.祁连山区降水的地理分布特征[J].地理学报,1985,40(4):322-332
    
    [115]李吉均等.西藏冰川[M].北京:科学出版社,1985
    
    [116]傅抱璞.地形和海拔高度对降水的影响[J].地理学报,1992,47(4):302-314
    
    [117]李岩瑛,张强,马元仓等.祁连山地区降水强度与年降水量和海拔高度之间的关系[A].见:张强编.中国西北云水资源开发利用研究[C].北京:气象出版社,2007:42-55
    
    [118]张强,张杰,孙国武等.祁连山区空中水汽分布特征研究[J].气象学报,2007,65(4):633-643
    
    [119]刘勇,邹松兵.祁连山地区高分辨率气温降水量分布模型[J].兰州大学学报(自然科学版),2006,42(1):7-12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700