用户名: 密码: 验证码:
粒细胞集落刺激因子对脑缺血再灌注大鼠的治疗及其作用机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究旨在观察粒细胞集落刺激因子(G-CSF)对脑缺血再灌注损伤的治疗,并进一步研究其作用机制。首先,通过观察经G-CSF治疗脑缺血再灌注大鼠的体重变化、死亡率、梗死面积及HE染色,判定G-CSF可以减小脑梗死面积及动物死亡率,具有治疗作用。其次,应用免疫组织化学法测Bcl-2、Caspase-3、IL-1β、NF-κBp65、TUNEL法检测神经细胞凋亡。结果:NF-κBp65、IL-1β、Caspase-3三种阳性细胞和TUNEL细胞在各时间点脑缺血再灌注组增加,与假手术组相比,差异有统计学意义,粒细胞集落刺激因子治疗组,各类阳性细胞及凋亡细胞较手术组明显减少,差异有统计学意义。Bcl-2则在脑缺血再灌注组减少,应用G-CSF后上调。说明G-CSF在脑缺血再灌注后具有抗凋亡、抗炎作用,以发病24h效果最为显著。最后,通过建立脑缺血再灌注大鼠缺血皮层的差异表达蛋白质图谱,为进一步研究脑缺血再灌注的发生机制提供线索,成功建立脑缺血再灌注组和G-CSF治疗组大鼠大脑皮层蛋白质双向电泳图谱,寻找到脑缺血再灌注组与G-CSF治疗组的差异蛋白质,鉴定差异蛋白,确定G-CSF治疗脑缺血的部分靶蛋白,从蛋白质组学层面对G-CSF治疗脑缺血提供科学依据。
Cerebral vascular disease(CVB)is one of three most threaten disease to people’s lives and health. As so far, there is no effective method to cure the death of neuron. It’s important to protect the ischemic neuron and make neuron regenerate. It provide a new method to cure the cerebral infarction by studying the protective effect and mechanism of granulocyte colony-stimulating factor(G-CSF) to ischemia-reperfusion injury in rats brain. We use proteomics to research difference protein of Ischemia-reperfusion Injury in Rats Brain after curing by G-CSF, which further indicate the therapeutical effect mechanism of G-CSF.
     At first, we testify the protective effect to Ischemia-reperfusion Injury in Rats Brain. The transient middle cerebral artery occlusion models were applied and reperfused after 2 hours. G-CSF (50ug/kg/d) is injected subcutaneously on rats’backs for successive 5 days. Rats was executed and decapitated receptively after 24h,7d and 14d after reperfusion to get the brain. The results of TTC stain show that and there is cerebral infarction in both brain of ischemia-reperfusion injured rats (I/R group) and the rats cured by G-CSF (G group). There is significant difference between the I/R group and G group, which testify the therapeutic effect of G-CSF. The results of HE stain confirms the results above again.
     Secondly, immunohistochemical method and TUNEL stain are used to test Bcl-2、Caspase-3、IL-1β、NF-κBp65 and apoptosis. Results: It is hardly to see positive cells of each kind and apoptotic cells in N and S group. All kinds of positive cells and apoptotic cells are seen in I/R group, and there is significant difference between I/R and S group. All kinds of positive cells and apoptotic cells are significantly reduced in G group by contrast to I/R group.
     At last, to research difference protein of ischemia-reperfusion injury in rats brain after curing by G-CSF and to screen relative protein of neuron protective effect by proteomics technology. Result: Compared with I/R group, the S group gained 56 differential protein spots, 17 spots expressed lowly, and 39 spots high, identified 19 protein spots,found out the relative cerebral ischemic proteins. Compared with I/R group, the G group gained 15 differential protein spots,3 spots expressed lowly,and 13 spots high,identified 6 protein spots, It’s found out the relative protective proteins of G-CSF such as GFAP, endomucin and DRP-2 etc.
     Conclusion: In this experiment, it is proved that the neuron protective effect of G-CSF exists and G-CSF has a anti-apoptotic and anti-inflammatory effect to ischemia-reperfusion Injury in Rats Brain. By using proteomics, we know some proteins about cerebral ischemia , which further explore the mechanism of therapeutic effect of G-CSF .
引文
[1] Woodbury D, Schwarz EJ, Prockop DJ, et al. Adult rat and human bone marrowstromal cells differentiate into neurons[J]. J Neurosci Res 2000, 61:364-370.
    [2] Li Y, Chopp M, Chen J, et al. Intrastriatal transplantation of bone marrow nonhema- topoietic cells improves functional recovery after stroke in adult mice[J]. J Cereb Blood Flow Metab 2000, 20(9):1311-1319.
    [3] Chen JL, Li Y, Wang L, et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats[J]. Stroke 2001, 32(4):1005-1011.
    [4] Sch?bitz WR, Kollmar R, Schwaninger M, et al. Neuroprotective effect of granulocyte colony-stimulating factor after focal cerebral ischemia[J]. Stroke 2003, 34:745-751.
    [5] Orlic D, Kajstura J, Chimenti S, et al. Mobilized bone marrow cells repair the infarcted heart, improving function and survival[J]. Proc Natl Acad Sci USA 2001, 98(18): 10344- 10349.
    [6] Ghristopher P.H, Timothy O, Eisenberg D, et al. The structure of granulocyte- colony- stimulating factor and its relationship to other growth factors[J]. Biochemistry. 1993, 90: 5167-5171..
    [7] Hartung T. Immunomodulation by colony-stimulating factors[J]. Rev Physiol Biochem Pharmacol 1999, 136:1-164.
    [8] Doyle ML, Tian SS, Miller SG, et al. Selective binding and oligomerization of the murine G-CSF receptor by a low molecular weight, non-peptidyl ligand[J]. J Biol Chem 2003, 10:10-13.
    [9] Layton JE, Hall NE, Connell F, et al. Identification of ligand-binding site III on the immunoglobulin-like domain of the granulocyte colony-stimulating factor receptor[J]. J Biol Chem 2001, 276(39):36779–36787.
    [10] Layton JE, Hall NE. The interaction of G-CSF with its receptor[J]. Front Biosci, 2006, 1(11):3181-3189.
    [11] Schneider A, Kruger C, Steigleder T, weber D, Pitzer C, Laage R, Aronowski J, MaurerMH, Gassler N, Mier W, Hasselblatt M, Kollmar R, Sehwab S, Sommer C, Baeh A,Kuhn HG, Sch?bitz WR(2005) The hematopoietic factor G-CSF is a neuronal ligand that counteracts Programmed cell death and drives neurogenesis[J]. J Clin Invest 115: 2083-2098.
    [12] Meeuwsen S, Persoon-Deen C, Bsibsi M, Ravid R, van Noort JM. Cytokine, chemokine and growth facor gene profiling of cultured human astrocytes after exposure to proinflammatory stimuli[J]. Glia. 2003, 43:243-253.
    [13] Hasselblatt M, Jeibmann A, Riesmeier B, Mainta D, Schabitz WR, Granulocyt-colony stimulating factor(G-CSF) and G-CSF receptor expression in human ischemic stroke[J]. Acta Neuropathol. 2007, 113:45-51.
    [14] Kleinschnitz C, Schroeter M, Jander S, Stoll G. Induction of granulocyte colony-stimulating factor mRNA by focal cerebral ischemia and cortical spreading depression[J]. Brain Res. 2004, 131:73-78
    [15] Sheibani N, Grabowski EF, Sehoenfeld DA, Whalen MJ (2004) Effect of granuloeyte colony-stimulating factor on functional and histopathologic outcome aftert traumatic brain injury in mice[J]. Crit Care Med 32:2274-2278.
    [16] Six I, Gasan G, Mura E, Bordet R. Benefit effect of pharmacological mobilization of bone marrow in expeimental cerebral ischemia, Eur J Pharmacol[J]. 2003, 458:327-328.
    [17] Stumm RK, Rummel J, Junker V, Culmsee C, Pfeiffer M, Krieglstein J, HolltV, Sehulz S (2002) A dual role for the SDF-l/CXCR4 chemokine receptor system in adul brain: Isoform-selective regulation of SDF-1 expression modulates CXCR4-dependent neuronal plasticity and cerebral leukocyte recruitment after focal isehemia[J]. J Neurosci 22:5865-5878.
    [18] Yanqing Z, Yu-Min L, Jian Q, Bao-Guo X, Chuan-Zhen L. Fibronectin and neuroprotective effect of granulocyte colony-stimulating factor in forcal cerebral ischemia[J]. Brain Res. 2006, 1098:161-169.
    [19] Hirayama F, Yamaguchi M, Yano M, Yasui K, Hirie Y, Matsumoto K, Nagao N, Ikebuchi K, Azuma H, Ikeda H, Tani Y. Spontaneous and rapid reexpression offuctional CXCR4 by human steady-state peripheral blood CD34+ cells. Int J Hematol[J]. 2003, 78:48-55.
    [20] William LR, Varon S, Peterson GM, Victorin K, Fishcher W, Bjorklund A, Gage FH. Continuous infusion of nerve growth factor prevents basal forebrain neuroral death after fimbria fornix transection[J]. Proc Natl Acad Sci USA 1986, 83:9231-9235.
    [21] Komine-kobayashi M, Zhang N, Liu M, Tanaka R, Hara H, Osaka A, Mochizuki H, Mizuno Y, Urabe T. Neuroprotective effect of recombinant human granulocyte colony- stimulating factor in transient focal ischemia of mice[J]. J Cereb Blood Flow Metab. 2006, 26:402-413.
    [22] Da Silva N, Meyer-Monard S, Menot ML, et al. G-CSF activates STAT pathways in Kasumi-1 myeloid leukemic cells with the t(8;21) translocation: basis for potential therapeutic efficacy[J]. Cytokines Cell Mol Ther, 1997, 3(2):75-78.
    [23] Schabitz WR, Kollmar R, Schwaninger M, Juettler E, Bardutzky J, Sholzke MN, Sommer C, Schwab S. Neuroprotective effect of granulocyte colony-stimulating factor after focal cerebral ischemia[J]. Stroke, 2003, 34:745-751.
    [24] Dudek H, Datta SR, Frank TF, et al. Regulation of neuronal survival by the serine- threonine protein in kinase Akt[J]. Science, 1997, 275:661-665.
    [25] Huang HY, Lin SZ, Kuo JS, Chen WF, Wang MJ. G-CSF protects dopaminergic neurons from 6-OHDA induced toxicity via the ERK pathway[J]. Neurobiol Aging, 2007, 28:1258-1269.
    [26] Solarglu I, Tsubokawa T, Cahill J, Zhang JH. Anti-opoptotic effect of granulocyte- colony stimulating factor after focal cerebral ischemia in the rat[J]. Neuroscience. 2006, 143: 956-974.
    [27] Jean WC, Spellman SR, Nussbaum ES, et al. Reperfusion injury after focal cerebral ischemia: the role of inflammation and the therapeutic horizon[J]. Neurosurgery, 1998, 43:1382-1396.
    [28] Matsuo Y, Onodera H, Shiga Y,et al. Role of cell adhesion molecules in brain injury after transient middle cerebral artery occlusion in the rat[J]. Brain Res, 1994, 656: 344-352.
    [29] Gibson CL, Jones NC, Prior MJ, Bath PM, Murphy SP. G-CSF surpress edema formation and reduces interleukin-1βexpression after cerebral ischemia in mice[J]. J Neuropathol Exp Neurol. 2005, 64:763-769.
    [30] Lee ST, Chu K, Jung KH, Ko SY, Kim EH, Sinn DI, Lee YS,Lo EH,Kim M,Roh JK. Granulocyte colony-stimulating factor enhances angiogenesis after focal cerebral isehemla[J]. Brain Res,2005,1058:120-128.
    [31] Whalen MJ, Carlos TM, Wisniewski SR, Clark RS, Mellick JA, Marion DW, Kochanek PM. Effect of neutropenia and granulocyte colony stimulating factor-induced neutrophilia on blood-brain barrier permeability and brain edema after traumatic brain injury in rats[J]. Crit Care Med, 2000,28:3710-3717.
    [32] Zavala F, Abad S, Ezine S, et al. G-CSF therapy of ongoing experimental allergic encephalomyelitis via chemokine and cytokinebased immune deviation[J].J Immunol. 2002, 168(4):2011-2019.
    [33] Bao-Guo Xiao, Chuan-Zhen lu, Hanks linke. Cell biology and clinical promise of G-CSF: immunomodulation and neuroprotection[J]. J Cell Mol. 2007, 11: 1272- 1290.
    [34] Jung KH, Chu K, Lee ST, Kang L, Kin SU, Kim M, Roh JK. G-CSF protects human cerebral hybrid neurons against in vitro ischemia. Neurosci Lett. 2006[J], 394:168-173.
    [35] Kawada H, Takizawa S, Takanashi T, Morita Y, Fujita J, Fukuda K, Takagi S, Okano H, Ando K, Hotta T. Administration of hematopoietic cytokines in the subcute phase after cerebral infarction in effective for functional recovery facilitating proliferation of intrinsic neural stem/progenitor cells and transition of bone marrow-derived neuronal cells[J]. Circulation. 2006, 113:701-710.
    [36] Natori T, Sata M, Washida M, Hirata Y, Nagai R, Makuuchi M. G-CSF stimulates angiogenesis and promotes tumor growth: protenial contribution of bone marrow- derived endothelial progenitor cells. Biochem Biophys Res Commun[J]. 2002, 297: 1058-1061.
    [37] Wei D, Le X, Zheng L, Wang L, Frey JA, Gao AC, Peng Z, Huang S, Xiong HQ, Abbruzzese JL, Xie K. Stat3 activates regulates the expression of vascular endothelialgrowth factor and human pancreatic cancer angiogenesis and metastasis[J]. Oncogene. 2003, 22:319-329.
    [38] Takahama H, Minamino T, Hirata A, Ogai A, Asanuma H, Fujita M, Wakeno M, Tsukamoto O, Okada K, Komamura K, Takashima S, Shinozaki Y, Mori H, Mochizuki N, Kitakaze M. Granulocyte colony-stimulating factor mediates cardioprotection against ischemia/reperfusion injury via phosphatidylinositol-3-kinase/Akt pathway in canine hearts[J]. Cardiovasc Drugs Ther. 2006, 20:159-165.
    [39] Vojtek AB, Taylor J, DeRuiter SL, Yu JY, Figueroa C, Kwok RP, Turner DL. Akt regulates basic helix-loop-helix transcription factor-coactivator complex formation and activity during neuronal differentiation[J]. Mol Cell Biol. 2003, 23:4417-4427.
    [40] Takagi Y, Omura T, Yoshiyama M, Matsumoto R, Enomoto S, Kusuyama T, Nishiya D, Akioka K, Iwao H, Takeuchi K, Yoshikawa J. Granulocyte-colony stimulating factor augment neovascularization induced by bone marrow transplantation in rat hindlimb ischemia[J]. J Pharmacol Sci. 2005, 99:45-51.
    [41] Lee M, Aoki M, Kondo T, Kobayshi K, Olumura K, Komori K, Murohara T. Therapeutic angiogenesis with intramuscular injection of low-dose recombinant granulocyte-colony stimulating factor[J]. Arterioscier Thromb Vasc Bol.2005, 25:2535-41.
    [42] Capoccia BJ, Shepherd BM, Link DC. G-CSF and AMD 3100 mobilize monocytes into the blood that stimulates angiogenesis in vivo through a paracrine mechanism[J]. Blood. 2006, 108:2438-2445.
    [43] Minamino K, Adachi Y, Okigaki M, Ito H, Togawa Y, Fujita K, Tomita M, Suzuki Y, Zhang Y, Iwasaki M, Nakano K, Koike Y, Matsubara H, Iwasaka T, Matsumura M, Ikehara S. Macrophage colony-stimulating factor (M-CSF), as well as granulocyte colony-stimulating factor(G-CSF), accelerates neovascularization[J]. Stem Cells 2005, 23: 347-354.
    [44] Ohki Y, Heissig B, Sato Y, Aklyama H, Zhu Z, Hichlin DJ, Shimada K, Ogawa H, Daida H, Hattori K, Ohsaka A. Granulocyte Colony-stimulating factor promotes neovascularization by release vascular endothelial growth factor from neutrophils[J]. FASEB J, 2005, 49:2005-2007.
    [45] Shyu, W.C. et al. Granulocyte colony-stimulating factor for acute ischemic stroke: a randomized controlled trial[J]. CMAJ. 2006, 174:927-933.
    [46] Sprigg N, ea al. Granulocyte Colony-stimulating factor mobilizes bone marrow s tem cells in patients with subacute ischemic stroke: The Stem Cell Trial of Recovery Enhancement After Stroke(STEMS)Pilot randomized, controlled trial(ISRCTN 16784092) [J]. Stroke. 2006, 37:2979-2983.
    [47] Ong SE, Pandey A. An evaluation of the use of two-dimensional gel electrophoresis in proteomics[J]. Biomal Eng, 2001, 18:195-205.
    [48] Sironi L, Guerrini U, Tremoli E, et al. Analysis of pathological events at the onset of brain damage in stroke prone rats: a proteomics and magnetic resonance imaging approach[J]. J Neurosci Res, 2004, 78:115-122.
    [49] Tong R, Shaw J, Middleton B, et al. Validation and development of fluorescence two- dimension differential gelelectrophoresis proteomics technology[J]. Proteomics, 2001, 1(3): 377-396.
    [50]钱小红.蛋白质组与生物质谱技术[J].质谱学报, 1998, 19(3):48.
    [51] GorgA, Obermaier C, Boguth G, et a.l The current state of two-dimensional electrophoresis with immobilized pH gradients[J]. Electrophoresis, 2000, 21:1037- 1053.
    [52] Gauss C, Kallum M, Lowe M, et al. Analysis of the mouse proteome(I) Brain proteins: separation by two-dimensional electrophoresis and identification by mass spectrometry and genetic variation[J]. Electrophoresis, 1999, 20:575-600.
    [53] Fountoulakis M, Schuller E, Hardmeier R, et al. Rat brain proteins: two-dimensional protein database and variations in the expression level[J]. Electrophoresis, 1999, 20: 3572-3579.
    [54] Langen H, Berndt P, Roder D, et al. Two-dimensional map of human brain proteins. Electrophoresis[J], 1999, 20(4-5): 907-916.
    [55]江湧,李小兵,方永奇.脑蛋白质组学研究进展[J].中华检验医学杂志, 2006, 29(2): 182-183.
    [56] Castegna A, Thongboonkerd V, Klein JB, et al. Proteomic identification of nitratedproteins in Alzheimer's disease brain[J]. Neurochem, 2003, 85:1394-1401.
    [57] Zhou D, NovielloC, DA' mbrosioC, et al. Growth factor receptor-bound protein 2 interaction with the tyrosine-phosphorylated tail of amyloid beta precursor protein ismediated by its Src homology 2 domain[J]. Biol Chem, 2004, 279:25374-25380.
    [58] Sergeant N, Bombois S, Ghestem A, et al. Truncated beta-amyloid peptide species in pre-clinical Alzheimer's disease as new targets for the vaccination approach. Neurochem[J], 2003, 85:1581-1591.
    [59] Basso M, Giraudo S, Corpillo D, et al. Proteome analysis of human substantia nigra in Parkinson’s. Proteomics[J], 2004, 4:3943-3952.
    [60] Pierson J, Norris JL, Aerni HR, et al.Molecular profiling of experimental Parkinson’s disease:direct analysis of peptides and proteins on brain tissue sections by MALDI mass spectrometry[J]. J Proteome Res, 2004, 3:289-295.
    [61] DeIullis A, Grigoletto J, Recchia A, et al. A proteomic approach in the study of an animal model of Parkinson’s disease[J]. Clin Chim Acta, 2005, 357:202-209.
    [62] Holtz WA, Turetzky JM, O’Malley KL. Microarray expression profiling identifies early signaling transcripts associated with 6-OHDA-induced dopaminergic cel1 death. Antioxid Redox signal[J], 2005, 7:639-648.
    [63] Fukada K, Zhang FJ, AlexisVien, et al. Mitochondrial proteomic analysis of a cell linemodel of familial amyotrophic lateral sclerosis[J]. Mol Cell Proteomics, 2004, 3(12): 1211-1223.
    [64] Jenkins LW, Peters GW, Dixton CE, et al. Conventional and functional Proteomics using large two-dimensional gel electrophoresis 24 hours after controlled cortical impact in postnatal day 17 rats. J Neurotrauma[J]. 2002, 19(6):715-740.
    [65] Ribom D, Westman Brinkmalm A,Smits A,et al. Elevated levels of alpha2- Heremans- Schmid glycoprotein in CSF of patients with low-grade gliomas. Tumour Biol[J]. 2003, 24(2):94-99.
    [66] Krapfenbauer K, Berger M, Lubec G, et al. Changes in the brain protein levels following administration of kainic acid. Electrophoresis[J], 2001, 22(10):2086-2091.
    [67] Junker H, Spate K, Suofu Y, et al. Proteomic identification of the involvement of themitochondrial rieske protein in epilepsy. Epilepsia, 2005, 46(3):339-343.
    [68] Janardhan V, Qureshi A I, Mechanism of ischemia brain injury[J]. Curr Cardiol Rep. 2004, 6(2):117-123.
    [69] Chen A, Liao WP, Lu Q, et al. Upregulation of dihydropyrimidinase-related protein 2, pectrin alpha II chain, heat shock cognate protein 70 pseudogene 1 and tropomodulin 2 after focal cerebral ischemia in rats-a proteomics approach[J]. Neurochem Int, 2007, 50 (7-8):1078-1086.
    [70] Dhodda VK, Sailor KA, Bowen KK, et al. Putative endogenous mediators of preconditioning-induced ischemic tolerance in rat brain identified by genomic and proteomic analysis[J]. Neurochemistry, 2004, 89(1):73-89.
    [71] Chung, Myung-Ah, Lee JE, et al. Alteration of collap sin response mediator protein-2 expression in focal ischemic rat brain[J]. NeuroReport, 2005,16(15):1647-1653.
    [72] Junker H, Suofu Y, Venz S, et al. Proteomic identification of an upregulated isoform of annexin A3 in the rat brain following reversible cerebral ischemia[J]. Glia, 2007, 55(16): 1630-1637.
    [73]朱立华,蔡光先.补阳还五汤促脑缺血后早期内源性神经再生的蛋白质组研究[J].湖南中医杂志, 2008, 24(4):103-105.
    [74]温景荣,赵晓峰,王舒,等.“醒脑开窍”针刺法对局灶性脑缺血大鼠海马蛋白质组学影响的研究[J].天津中医药, 2007, 24(6):447–451.
    [75] Koizumi J, Yoshida Y, Nakazawa T, et al. Experimental studies of ischemia brain edema.l: A new expreimental model of cerebral embolism infarcts in the ischemia area[J]. J Stroke, 1986, 8(1):7-8.
    [76] Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniotomy in the rats. Stroke[J], 1989, 20(1):84-91.
    [77] Burgess A, Metcalf D. Characterization of a serum factor stimulating the differentiation of myelomonocytic leukemia cells[J]. Int J Cancer, 1980, 26(5):647-651.
    [78] Ghristopher P.H, Timothy O, Eisenberg D, et al. The structure of granulocyte- colony- stimulating factor and its relationship to other growth factors[J]. Biochemistry. 1993, 90: 5167-5171.
    [79] Shintani S, Murohara T, Tkeda H, et al. Mobilization endothelial progenitor cells in patients with acute myocardial infarction[J]. Circulation, 2001, 103:2776-2779.
    [80] Orlic D, Kajstura J, Chimenti S, et al. Mobilized bone marrow cells repair the infarcted heart, improving function and survival[J]. Proc Natl Acad Sci USA 2001, 98(18): 10344- 10349.
    [81] Zavala F, Abad S, Ezine S, et al. G-CSF therapy of ongoing experimental allergic encephalomyelitis via chemokine and cytokinebased immune deviation[J].J Immunol. 2002, 168(4):2011-2019.
    [82] Kleinschnitz C, Schroeter M, Jander S, et al. Induction of granulocyte colony stimulating factor by focal cerebral ischemia and cortical spreading depression[J]. Brain Res, 2004, 131(1-2):73-78.
    [83] Schabitz WR, Kollmar R, Schwaninger M, Juettler E, Bardutzky J, Sholzke MN, Sommer C, Schwab S. Neuroprotective effect of granulocyte colony-stimulating factor after focal cerebral ischemia[J]. Stroke. 2003, 34:745-751.
    [84] Gibson CL, Bath PM, Murphy SP. G-CSF reduces infarct volume and improves functional outcome after transient focal cerebral ischemia in mice[J]. Cereb Blood Flow Metab, 2005, 25(4):431-439.
    [85] Shyu, W.C. et al. Granulocyte colony-stimulating factor for acute ischemic stroke: a randomized controlled trial[J]. CMAJ. 2006, 174:927-933.
    [86] Mackenzie ET, Mcculloch J, Harper AM. Influence of endogenous no repinephrine on cerebral blood flow and metabolism[J]. Am J Physiol, 1976, 231(2):483-488.
    [87] Savitz SI, Rosenbaum DM. Apoptosis in neurological disease. Neurosurgery[J]. 1998, 42:555-572.
    [88] Legos JJ, Whitmore RG, Erhardt JA, et a1. Quantitative changes in interleukin in proteins following focal stroke in the rat[J]. Neurosci Lett, 2000, 282(3):189-192.
    [89] Shringarpure R, Grune T, Mehlhase J, et a1. Ubiquitin conjugation is not required for the degradation of oxidized proteins by proteasome[J]. J Biol Chem, 2003,278(1):311-318.
    [90] Alnita D, Nita V, Spulber S. Oxidative damage following cerebral ischemia depends on reperfusion-a biochemical study in rat[J]. J Cell Mol Med, 2001, 5(2):163-170.
    [91]蔡紫峰,杨卓.脑缺血损伤的研究进展[J].继续教育医学, 2004, 18(4):53-55.
    [92] Wennersten A, Holmin S, MathiesenT.Charaeterization of Bax and Bcl-2 in appotosis after experimental traumatic brain injury in the rat[J]. Acta Neuropathol. 2003, 105(3):281-288.
    [93] Oltvai ZN, Milliman CI, Kovsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed all cell death. Cell[J]. 1993, 73:609-619.
    [94] Shimizu S, Nagayama T, Jin KL, et al.Bcl-2 antisense treatment prevents induction of tolerance to focal ischemia in the rat brain[J]. J Cere Blood Flow Metab. 2001, 21(3): 233-243.
    [95] Ferrerl I, Friguls B, Dalfo E, et al. Caspase-dependent and caspase-independent signaling of apoptosis in the penumbra following middle cerebral artery occlusion in the adult rat[J]. Neuropathol Appl Neurobiol. 2003, 29(5):472-481.
    [96] Zhao H, Yenari MA, Cheng D, et al. Bcl-2 overexpression protects against neuron loss within the ischemic margin following experimental stroke and inhibits cytochrome c translocation and caspase-3 activity. J Neuroehem[J]. 2003, 85(4):1026-1036.
    [97] Liu D, Lu C, Wan R, et al. Activation of mitochondrial ATP-dependent potassium channels protects neurons against ischemia-induced death by a mechanism involving suppression of Bax translocation and cytochrome c release[J]. J Cereb Blood Flow Metab. 2002, 22(4):431-443.
    [98] Hockenbery DM, Oltvai ZN, Yin XM, et al. Bcl-2 functions Pathway to Prevent apoptosis[J]. Cell. 1993, 75(2):241-251.
    [99] Benjelloun N, Joly LM, Palmier B, et al. Apoptotic mitochondrial pathway in neurons and astrocytes after neonatal hypoxia-ischaemia in the rat brain[J]. Neuropathol Appl Neurobiol. 2003, 29(4):350-360.
    [100] Cao G, Pei W, Lan J, et al. caspase-activated Dnase/DNA fragmentation factor 40 mediates apoptotic DNA fragmention in transient cerebral isehamia and in neuronal cultures[J]. Neurosci. 2001, 21:4678-4690.
    [101] Le DA, Wu Y, Huang Z, et al. Caspase activation and neuroprotection in caspase-3- deficient mice after in vivo cerebral ischemia and in vitro oxygen glucosedeprivation[J]. Proc Natl Aead Sci USA. 2002, 99(23):15188-193.
    [102] Love S, Barber R, Wilcock GK. Neuronal death in brain infarcts in man. NeuroPathol Appl Neurobiol[J]. 2000, 26:55-66.
    [103] Love S, Barber R, Srinivasan A, et al. Activation of caspase-3 in permanent and transient brain ischaemia in man[J]. Neuro Report. 2000, 11:2495-2499.
    [104] Schneider A, Kruger C, Steigleder T, weber D, Pitzer C, Laage R, Aronowski J, Maurer MH, Gassler N, Mier W, Hasselblatt M, Kollmar R, Sehwab S, Sommer C, Baeh A, Kuhn HG, Sch?bitz WR (2005) The hematopoietic factor G-CSF is a neuronal ligand that counteracts Programmed cell death and drives neurogenesis[J]. J Clin Invest2005, 115:2083-2098.
    [105] Sheibani N, Grabowski EF, Sehoenfeld DA, Whalen MJ (2004) Effect of granuloeyte colony-stimulating factor on functional and histopathologic outcome aftert traumatic brain injury in mice[J]. Crit Care Med 32:2274-2278.
    [106] Komine-kobayashi M, Zhang N, Liu M, Tanaka R, Hara H, Osaka A, Mochizuki H, Mizuno Y, Urabe T. Neuroprotective effect of recombinant human granulocyte colony- stimulating factor in transient focal ischemia of mice[J]. J Cereb Blood Flow Metab. 2006, 26:402-413.
    [107] Harada M, Qin Y, Minamino T, Zou Y, Toko H, Ohtsuka H, Kunieda T, Zhu W, Hasagawa H, Kunisada K, Nagai T, Nakaya H, Yamauchi-Takihara K, Komuro I. G-CSF prevents cardiac remodeling after myocardial infarction by activating the JAK- Stat pathway in cardiomyocytes[J]. Nat Med. 2005, 11:305-311.
    [108] Da Silva N, Meyer-Monard S, Menot ML, et al. G-CSF activates STAT pathways in Kasumi-1 myeloid leukemic cells with the t(8;21) translocation: basis for potential therapeutic efficacy[J]. Cytokines Cell Mol Ther, 1997, 3(2):75-78.
    [109] Pugazhenthi S, Nseterova A, Sable C, Heidenreich KA, Boxer LM, Heasley LE’Reusch JE. Akt/protein kinase B up-regulates Bcl-2 expression through cAMP-reponse element-binding protein[J]. J Biol Chem. 2000, 275:10761-10766.
    [110] Fujio Y, Guo K, Mano T, Mitsuuchi Y, Testa JR, Walsh K. Cell cycle withdrawal promotes myogenic induction of Akt, a positive modulator of myocyte survival[J]. MolCell Biol. 1999, 19:5073-5082.
    [111] Liu L, Cavanaugh JE, Wang Y, Sakagami H, Mao Z, Xia Z. ERK5 activation of MEF2-mediated gene expression plays a critical role in BDNF-promoted survival of development but not mature cortical neurons[J]. Proc Natl Acad Sci U.S.A. 2003, 100: 8532-8537.
    [112] Watson FL, Heerssen HM, Bhattacharyya A, Klease L, Lin MZ, Segal RA. Neurotrophins use the ERK5 pathways to mediate a retrograde survival response. Nat Neurosci[J]. 2001, 4:981-988.
    [113] Yamasaki Y, Matsuura N, Shozuhara H, et al. Interleukin-1 as a pathogenetic mediator of ischemic brain damage in rats. Stroke[J]. 1995, 26(4):676-680.
    [114]廖维靖译, Frank wiegand, UL rich, Dirnag1.脑缺血损伤的病理生理机制-损伤级联反应[J].国外医学·脑血管疾病分册, 1998, 6(4):197-202.
    [115] Timothy M, Carlos, John M, et al. Leukocyte-Endothelial Adhesion Molecules[J]. Blood. 1994, 84(7):2068-2101.
    [116] Touzani O, Boutin H, Chuquet J, et al. Potential mechanisms of interleukin-1 involvement in cerebral ischaemia. J Neuroimmunol[J]. 1999, 100(1-2):203-215.
    [117] Hossmann KA. Cerebral ischemia: Models, methods and outcomes[J]. Neurophar- macology. 2008, 55(3):257-270.
    [118] Stuoemer RP, Rothwell NT. Exacerbation of ischemic brain damage by localized striatal injection of interleukin-1βin the rat[J]. J Cereb Blood Flow Metab. 1998, 18(8): 833-839.
    [119] Stuoemer RP, Rothwell NT. Ortical protection by local sized striatal injection of IL-1following cerebral ischemia in the rat[J]. J Cereb Blood Flow Metab, 1997, 17(6): 597-604.
    [120] Touzani O, Boutin H, Chuquet J, et al. Potential mechanisms of interleukin-1 involvement in cerebral ischemia. J Neuroimmunol[J], 1999, 100(1-2):203-215.
    [121] Jander S, Schroeter M, Stoll G. Role of NMDA receptor signaling in the regulation of inflammatory gene expression after focal brain ischemia[J]. J Neuroimmunol, 2000, l109(2):181-187.
    [122] Gibson CL, Jones NC, Prior MJ, Bath PM, Murphy SP. G-CSF surpress edema formation and reduces interleukin-1βexpression after cerebral ischemia in mice. J Neuropathol Exp Neurol[J]. 2005, 64:763-769.
    [123] Lee ST, Chu K, Jung KH, Ko SY, Kim EH, Sinn DI, Lee YS, Lo EH, Kim M, Roh JK. Granulocyte colony-stimulating factor enhances angiogenesis after focal cerebral isehemla. Brain Res 2005[J], 1058:120-128.
    [124] Singh H, Sen R, Baltimore D, et al. A nuclear factor that binds to a conserved sequence motif in transcriptional control elements of immunoglobulin genes[J]. Nature. 1986, 319:154-158.
    [125] Shen W, Zhang C, Zhang G. Nuclear factor-κB activation is mediated by NMDA and non-NMDA receptor and L-type voltage-gated Ca2+ channel following severe global ischemia in rat hippocampus[J]. Brain Res. 2002, 933:23-30.
    [126] Salminen A, Liu PK, Hsu CY. Alteration of transcription factor binding activities in the ischemic rat brain[J]. Biochem Biophys Res Commun. 1995, 212(3):939-944.
    [127] Sharp ER, Lu A, Tang Y, et al. Multiple molecular penumbras after focal cerebral ischemia[J]. J Cereb Blood Flow Metab. 2000, 2:101l-1032.
    [128] Stephenson D, Yin T, Smalstig EB, et al. Transcription factor nuclear factor-kappa B is activated in neurons after focal cerebral ischemia[J]. Cereb Blood FlowMetab, 2000, 20(3):592-603.
    [129] Williams AJ, Hale SL, Moffett JR, et al. Delayed treatment with MLN51 9 reduces infarction and associated neurologic deficit caused by focal ischemic brain injury in rats via anti-inflammatory mechanisms involving nuclear factor-kappa B activation, gliosis, and leukocyte infiltration[J]. Cereb Blood FlowMetab, 2003, 23(1):75-87.
    [130] Wang YH, Wang WY, Chang CC, et a1. Taxifolin ameliorates cerebral ischemia- reperfusion injury in rats through its anti-oxidative effect and modulation of NF-kappa B activation. Biomed Sci[J], 2006, 13(1):127-141.
    [131] Clemens JA, Stephenson DT, Dixon EP, et al. Global cerebral ischemia activates nuclear factor-kappa B prior to evidence of DNA fragmentation[J]. Brain Res Mol. 1997, 48(2):187-196.
    [132] Kruger NJ. The Bradford method for protein quanititation[J]. Methods Mol Biol, 1994, 32:9-15.
    [133] Tirschwell DL, Longstrech WT, Rauch ME, et al. Cerebral fluid creatine kinase BB isoenzyme activity and Neurologic prognosis after cardic arrest[J]. Neurology.1997, 48(2):352-357.
    [134] Ruzak-Skocir B, Cerebrospinal fluid enzyme and CK isoenymes in the out conne prognosis of cerebrovascular disease[J]. Neurol Croat. 1991, 40(4):247-257.
    [135] Haldre SJ, Kaasik AE, Piirsoo AO. Cerebral creatine kinase isoenzyme in the cerebrospinal fluid: importance of its measuring for prognosis of the disease outcome in cerebral ischemic disorders[J]. Cells. 1991, 91(7): 60-63.
    [136] R.H. Andres, A.D. Ducray, U. Schlattner, T. Wallimann and H.R. Widmer, Functions and effects of creatine in the central nervous system[J], Brain Res. Bull. 2008, 76: 329–343.
    [137] C.M. Comim, G.T. Rezin, G. Scaini, P.B. Di-Pietro, M.R. Cardoso, F.C. Petronilho, C. Ritter, E.L. Streck, J. Quevedo and F. Dal-Pizzol, Mitochondrial respiratory chain and creatine kinase activities in rat brain after sepsis induced by cecal ligation and perforation[J], Mitochondrion. 2008, 8:313–318.
    [138] P.B. Di-Pietro, M.L. Dias, G. Scaini, M. Burigo, L. Constantino, R.A. Machado, F. Dal-Pizzol and E.L. Streck, Inhibition of brain creatine kinase activity after renal ischemia is attenuated by N-acetylcysteine and deferoxamine administration[J], Neurosci. Lett. 2008, 434:139–143.
    [139] Opdenvelde W, Stam FC.Some cerebral proteins and enzyme systems in Alzheimer’S presenile and senile dementia[J]. J Am Geriatr Soc. 1976l, 24:12-16.
    [140] Howard JS, 3rd. Cocaine, Neuroleptics, and tardive dyskinesia as paleocortical escape[J]. Integr Physiol Behav Sci. 1996, 31:306-314.
    [141]王镜岩,朱圣庚,徐长法.《生物化学》下册,第三版[M].北京:高等教育出版社, 2002.
    [142] Hosomi N, Tsuda YI, chihara SI, et al. Duration threshold of induced hypertension on cerebral blood flow, energy metabolism,and edema after transient forebrain ischemiain gerbils[J]. J Cereb Blood Flow Metab. 1996, 16(6):1224-1229.
    [143] Zini R, Morin C, Bertelli A, et al. Effects of resveratrol on the rat brain respiratory chain[J]. Durg Epx Clin Res. 1999, 25(2-3):87-97.
    [144] Peter Lipton. Ischemic Cell Death in Brain Neurons[J]. Physiological Reviews. 1999, 79(4): 1431-1535.
    [145] Baltimone F, Fiskum G, Baltimore ST. Mitochondrial initiation of necrotic and apoptotic cell death neuroprotection through enhancement of aerobic energy metabolism the intrinsic mitochondrial pathway of apop tosis references[J]. J Neurosurg Anesthesiol, 2004, 16(2):108-110.
    [146] Castegna A, Aksenov M, Thongboonkerd V, et al. Proteomic identification of oxidative modified proteins in Alzheimer’s disease brain.Part II: dihydropyfimidinase- related protein 2, alpha-enolase and heat shock cognate 71[J]. J Neurochem 2002, 82(6): 524-532.
    [147] Royds JA, Timperley WR, Taylor CB. Levels of enolase nolase and other enzymes in the cerebrospine fluid as indices of pathological chang[J]. J Neurosurg Psychiatry. 1981, 44: 1129-1134.
    [148] Komatsuda A, Wakui H, Oyama Y, et al. Overexpression of the human 72 kDa heat shock protein in renal tubular ceils confers resisitance against oxidative injury and sisplatin toxicity, Nephrol Dial Transplant[J], 1999, 14:1385-1390.
    [149] Beere HM, green DR. Stress management-heat shock protein-70 and the regulation of apoptosis[J]. Trends Cell Biol. 2001, 11:6-10.
    [150] Wang YH, Knowlton AA, Li FH, et al. Hsp72 expression enhances survival in adenosine triphosphate-depleted renal epithelial cells[J]. Cell Stress Chaperones. 2002, 7: 137-145.
    [151] Ravagnan LS, Gurbuxani SA, Susin C, et al. Heat-shock protein 70 antagonizes apoptosis-inducing factor[J]. Nat Cell Biol, 2001, 3:839-843.
    [152] Xanthoudakis S, Veila JP, Sayegh MH. Chronic allograft dysfunction:mechanisms and new approaches to therapy[J]. Semin Nephrol, 2000, 20:26-47.
    [153]张芳,刘红芝,等.大鼠缺血性脑损伤后HSP72保护神经元的作用及机制探讨[J].山东医药, 2009, 49(2):31-33.
    [154] Yaffe MB. How do 14-3-3 proteins work? -Gatekeeper phosphorylation and the molecular anvil hypothesis[J]. FEBS Letters. 2002, 18(3):53-57.
    [155] Kleppe R, Toska K, Haavik J. Interaction of phosphorylated tyrosine hydroxylase with 14-3-3 proteins: evidence for a phosphosefine 40-dependent association[J]. J Neurochem 2001, 77(4):1097-1107.
    [156] Astrom M, Olsson T, Asplund K. Different linkage of depression to hypercortisolism early versus late after stroke[J]. A 3-year longitudinal study. Stroke. 1993, 24(1):52-57.
    [157] Johansson A, Ahren B, Nasman B, Carlstrom K, Olsson T. Cortical axis abnormalities early after stroke-relationships to cytokines and leptin[J]. J Intern Med. 2000,24(2): 179-187.
    [158] Castegna A, Aksenov M, Thongboonkerd V, et al. Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain.Part: dihydropyrimid- inase-related protein2, alpha-enolose and heat shock cognate 71[J]. Neurochem.2002: 82(6):1524-1532.
    [159] Johnston WN, Sim CD, Hofmann JP, et al. Disease-specific alterations in fronta cortex brain proteins in schizophrenia, bipolar disorder, and major depressive disorder. The Stanley Neuropathology Consortium. Mol Psychiatry[J]. 2000, 5(2):142-149.
    [160]鞠躬主编.神经生物学[M].人民卫生出版社,北京. 2004:68-90.
    [161] D’Adamo P, Welzl H, Papadimitriou S. Deletion of the mental retardation gene Gdi 1 impairs assoeiative memory and alters social behavior in mice[J]. Hum Mol Genet. 2002, 11(21):2567-2580.
    [162]易龙,张乾勇,糜漫天. Rho家族蛋白在肿瘤侵袭转移中作用[J].中国公共卫生, 2007, 23(4):492-493.
    [163] Somlyo AP, Somlyo AV. Ca2+ ensitivity of smooth muscle and nonmuscle myosin lI: Modulated by G proteins, kinases, and myosin phosphatase[J]. Physiol Rev, 2003,83: 1325-1358.
    [164] Ming XF, Viswambharan H, Barandier C, et a1. RhoGTPase/Rho kinase negatively regulates endothelial nitric oxide synthase phosphorylation through the inhibition ofProtein kinase B/Akt in human endothelial cells[J]. Mol Cell Biol, 2002, 22:8467-8477.
    [165] Luguo Sun, Lanying Liu, Xiang-Jiao Yang and Zhenguo Wu. Akt binds prohibitin 2 and relieves its repression of MyoD and muscle differentiation[J]. Cell Science. 2004, 117:3021-3029.
    [166] Vessal M, et al. Prohibitin attenuates insulin-stimulated glucose and fatty acid oxidation in adipose tissue by inhibition of pyruvate carboxylase[J]. FEBS Journal. 2006, 273:568-576.
    [167] Nijtmans LG, Artal SM, Grivell LA, et al. The mitochondrial PHB complex: roles in mitochondrial respiratory complex assembly ageing and degenerative disease[J]. Cell Mol Life Sci. 2002, 59:143-155.
    [168] Fusaro G, Dasgup ta P, Rastogi S, et al. Pmhibitin induces the transcriptional activity of p53 and is exported from the nucleus upon apoptotic signaling[J]. J Biol Chem, 2003, 278(48): 47853-47861.
    [169] Gamble SC, OdontladisM, Waxman J. Androgens target Prohibitin to regulate proliferation of prostate cancer cells[J]. Oncogene. 2004, 23(17):2996-3004.
    [170] Liu C. Shao ZM, Zhang, Beatty P, Sartippour M, Lane T. Human endomucin is an endothelial marker. Biochemal and Biophysical Research Communication[J]. 2001, 288: 123-131.
    [171] Boyd-Kimball H, Fai Poona, Bert C, et al. Proteomic identification of proteins specifically oxidized in Caenorhabditis elegans expressing human Aβ(1-42): Implications for Alzheimer’s disease[J]. Neurobiology of Aging. 2006, 27(9):1239-1249.
    [172]韦娜. Rho GT Pase对细胞骨架及信号通路的多重影响[J].国外医学·分子生物学分册, 2002, 24:229-232.
    [173] Tsuji T, Shiozaki A, Kohno R, et al. Proteomic profiling and neurodegeneration in Alzheimer’s disease[J]. Neurochem Res, 2002, 27(10):1245-1253.
    [174] Day JR, Laping NJ, Lampert-Etchells, et al. Conadal steroids regulates the expression of glial fibrillary acidic protein in the adult male rat hippocampus[J]. Neuroscience, 1993, 55(2):435-438.
    [175] Malhotra S, Sknitka T, Elabrink J. Reactive as trocytes[J]. A review.Cytobios, 1990, 61(1):133-139.
    [176] Westenbrock RE, Bausch SB, Lin RC, et al. Upregulation of L-type Ca2+ channels in reactive astrocytes after brain injury, hypomyelination and ischemia[J]. J Neurosci, 1998, 18(7):2321-2334.
    [177]陈松林,张成,等.粒细胞集落刺激因子治疗大鼠缺血性再灌注损伤[J].第一军医大学学报, 2005, 25(5):503-507.
    [178] Bussolino WR, Ziche M, Wang JM, et al. In vivo activation of endothelial cells by colony-stimulating factors[J]. J Clin Invest, 1991, 87(3):985-995

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700