用户名: 密码: 验证码:
肿瘤坏死因子-α在实验性自身免疫性神经炎的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肿瘤坏死因子-α(Tumor necrosis factor-α, TNF-α)是具有潜在神经损害作用的多效性细胞因子,在自身免疫性脱髓鞘疾病中起到很重要的作用。为了研究TNF-α在实验性自身免疫性神经炎(experimental autoimmune neuritis, EAN)中的作用及其机制,本研究探讨了TNF-α受体1基因敲除(TNF-αreceptor 1 deficient, TNFR1-/-)小鼠在P0蛋白106~125(P0 106~125)多肽诱发的EAN模型中施万细胞(又称雪旺细胞)的抗原呈递能力及诱导型一氧化氮合酶(inducible nitric oxide synthase, iNOS)的表达水平。实验通过检测激活的施万细胞上主要组织相容性复合物-II (Major histo-compatibility complexⅡ, MHC-Ⅱ),CD40, CD80和CD86的表达以及P0106~125多肽诱发的特异性T细胞与激活的施万细胞共培养后T细胞的增殖来反应施万细胞抗原呈递能力。除此以外,通过流式细胞术分析了iNOS在激活的施万细胞内的表达。实验结果显示TNFR1-/- EAN小鼠较野生型EAN小鼠起病延迟,且临床症状严重度弱于后者。体外实验来源于TNFR1-/-EAN小鼠坐骨神经原代培养的施万细胞上MHC-Ⅱ, CD80和iNOS表达较野生型EAN小鼠降低。与此同时,施万细胞与T细胞共培养增殖实验提示TNFR1-/-EAN小鼠特异性T细胞的增殖也低于野生型EAN小鼠。因此,我们认为,TNF-α在EAN中可能通过TNFR1上调施万细胞抗原呈递能力和iNOS的合成发挥促炎作用。
To address the role of TNF-αand its receptors in the pathogenesis of experimental autoimmune neuritis (EAN) and Guillain-Barr? syndrome (GBS), we established EAN, an animal model for GBS in human in TNF-a receptor1 (TNFR1) deficient mice.
     GBS is an immune-mediated inflammatory disease of the peripheral nervous system (PNS), involving the damage to both myelin and axons. However, the exact mechanism of GBS is still unclear and remains to be clarified. EAN shares clinical, histopathological and electrophysiological features with GBS and is therefore used as an animal model to explore the pathogenesis of GBS. Numerous inflammatory cytokines play pivotal roles in initiating, enhancing perpetuating the pathogenic events in EAN. After stimulation with inflammatory cytokines, Schwann cells can express MHC-Ⅰand MHC-Ⅱmolecules, and are able to stimulate antigen specific T cell proliferation and secrete cytokines like, TNF-α, IL-1, IL-6 and complements as well as nitrite oxide (NO). TNF-α, as a pleiotropic pro-inflammatory cytokine, has been identified as a key player in the pathogenesis of EAN and GBS. Experimental strategies blocking TNF-? processing significantly reduced disease severity in EAN. TNF-αcan mediate the induction of demyelination and/or neuronal degeneration either directly or indirectly via the production of other pro-inflammatory cytokines, but the exact role of TNF-? in EAN pathogenesis is still unclear. TNFR1 is the predominant receptor involved in a wide variety of TNF-a mediated effects, including cytotoxicity, antiviral activity, induction of nuclear factor kappa B (NF-κB), modulation of MHC-Ⅱexpression and activation of macrophages in autoimmune diseases. Blockade of TNFR1 in autoimmunity could inhibit activities of TNF-α. A gene knockout (abbreviation: KO) is a genetic technique in which an organism is engineered to carry genes that have been made inoperative. It has been used in learning about a gene that has been sequenced, but which has an unknown or incompletely known function. Researchers draw inferences from the difference between the knockout organism and normal individuals, which is the best way to study the unknown function of gene in vivo. Knockout mice are considered as the ideal animals for studying human disease. By using TNF-αR1 deficient (TNFR1-/-) mice to induce EAN by P0 protein peptide 106-125, the current study investigated the antigen-presenting capacity and cytokine production of Schwann cells in EAN. The antigen-presenting capacity of Schwann cells were assessed by the expression of MHC-Ⅱ, CD40, CD80 and CD86 on activated Schwann cells as well as the induction of T cell proliferation in co-cultures of P0 protein peptide 106-125 specific T cells with activated Schwann cells. In addition, the expression of inducible nitric oxide synthase (iNOS) was measured in activated Schwann cells by flow cytometry. In gene level or molecular level, current study addressed the role of TNF-αin the pathogenesis of EAN, thus to further clarify the pathogenesis of GBS and provide experimental and theoretical basis for clinical treatment of the patients with GBS. Compared to wild type EAN mice, the onset of disease in TNFR1-/- EAN mice were delayed and the clinical signs were reduced obviously. The onset of disease in the wild type mice ranged between days 6 and 8 p.i.. In contrast, TNFR1-/- mice experienced a later onset of EAN, i.e., at days 8 to 10 p.i., with a decreased severity of the disease. The differences in clinical scores between groups were statistically significant from day 8 p.i. and onwards (p< 0.05). In parallel, in vitro primary Schwann cell culture from sciatic nerve of EAN mice, the expression of MHC-Ⅱand CD80 on Schwann cells of TNFR1-/- mice were significantly lower compared with those of wild type mice (p < 0.05). However, only a non-significant tendency of decreasing levels of MFI of CD40 and CD86 expression was seen in Schwann cells of TNFR1-/- EAN mice compared with wild type EAN mice. The level of iNOS was significantly lower in Schwann cells stimulated with rmIFN-γand LPS in TNFR1-/-EAN mice compared with wild type EAN mice. There was a similar profile of iNOS production between TNFR1-/- mice and wild type mice on na?ve background (p<0.05). Likewise, proliferation of P0 protein peptide 106-125 specific T cells simulated by activated Schwann cells of TNFR1-/- EAN mice was lower than that of wild type EAN mice. This indicates that TNFR1 deficiency reduces the antigen-presenting capacity of the Schwann cells. On the other hand, there was no significant difference of proliferative level between T cells of TNFR1-/- EAN mice co-cultured with Schwann cells from wild-type EAN mice and T cells of wild type EAN mice co-cultured with Schwann cells from the same mice, which suggested that T cell function is not impaired in TNFR1-/- mice. The main conclusion of this study is as follows: TNFR1?/? mice immunized with P0 protein peptide 106-125, developed a delayed and reduced clinical disease in parallel with decreased antigen-presenting capacity and iNOS production of schwann cells, with unimpaired T cell function. TNF-αmay exert the pro-inflammatory function through a TNFR1-dependent mechanism by up-regulating the antigen-presenting capacity and iNOS expression of SCs. The main innovation of this study is as follows:
     1. In vivo, deleting TNFR1 can delay the onset of clinical signs and reduce disease severity in EAN from the study at the levels of gene and receptor, which further clarify that TNF-αexert pro-inflammatory function in EAN. 2. TNF-αmay exerts the pro-inflammatory function by up-regulating the antigen-presenting capacity and iNOS production of Schwann cells. Currently, TNF-αis a beneficial factor or destructive factor in EAN, which has been debateing. One of the reasons, the biological effects of both forms of TNF-αare mediated via its transmembrane receptors, TNFR1 and TNFR2, each of which utilizes a distinct signal pathway and exerts unique intracellular effects. The harmful and beneficial effects of TNF-αmay segregate at the level of TNFR1 and TNFR2. Besides, the differential timing, location and quantity of TNF-αexpressed and released, and the differential genetic background of the organism might also modulate to a great extent the biological function of TNF-α. The most important reason is the lack of extensive and deep-level research evidence in the gene and TNF-αreceptor levels in the EAN. Therefore, in the gene and receptor level, the current study shows TNF-αmay exert the pro-inflammatory function through a TNFR1-dependent mechanism by up-regulating the antigen-presenting capacity and iNOS expression of Schwann cells, thus to provide evidence for the pathogenesis of GBS and experimental and theoretical basis for treatment patients with GBS. But the extensive and systematic studies are still required to further demonstrate the role of TNF-αin EAN.
引文
[1] Waksman BH, Adams RD. Allergic neuritis: an experimental disease of rabbits induced by the injection of peripheral nervous tissue and adjuvants[J]. J Exp Med. 1955; 102(2):213-236.
    [2] Zhu J, Bai XF, Mix E, et al. Cytokine dichotomy in peripheral nervous system influences the outcome of experimental allergic neuritis: dynamics of mRNA expression for IL-1 beta, IL-6, IL-10, IL-12, TNF-alpha, TNF-beta, and cytolysin[J]. Clin Immunol Immunopathol. 1997; 84(1):85-94.
    [3] Gold R, Hartung HP, Toyka KV. Animal models for autoimmune demyelinating disorders of the nervous system[J]. Mol Med Today. 2000; 6(2):88-91.
    [4] Exley AR, Smith N, Winer JB. Tumour necrosis factor-alpha and other cytokines in Guillain-Barre syndrome[J]. J Neurol Neurosurg Psychiatry. 1994; 57(9):1118-1120.
    [5] Redford EJ, Smith KJ, Gregson NA, et al. A combined inhibitor of matrix metalloproteinase activity and tumour necrosis factor-alpha processing attenuates experimental autoimmune neuritis[J]. Brain. 1997; 120 ( Pt 10):1895-1905.
    [6] Hu S, Peterson PK, Chao CC. Cytokine-mediated neuronal apoptosis[J]. Neurochem Int. 1997; 30(4-5):427-431.
    [7] Ware CF, Crowe PD, Vanarsdale TL, et al. Tumor necrosis factor (TNF) receptor expression in T lymphocytes. Differential regulation of the type I TNF receptor during activation of resting and effector T cells[J]. J Immunol. 1991; 147(12):4229-4238.
    [8] Bonetti B, Valdo P, Stegagno C, et al. Tumor necrosis factor alpha and human Schwann cells: signalling and phenotype modulation without cell death[J]. J Neuropathol Exp Neurol. 2000; 59(1):74-84.
    [9] Conti G, Rostami A, Scarpini E, et al. Inducible nitric oxide synthase (iNOS) inimmune-mediated demyelination and Wallerian degeneration of the rat peripheral nervous system[J]. Exp Neurol. 2004; 187(2):350-358.
    [10] Chen G, Goeddel DV. TNF-R1 signaling: a beautiful pathway[J]. Science. 2002; 296(5573):1634-1635.
    [11] Guillain G BA, Strohl A. Sir unsynclrome de radiculonevite avec hyperalbumirose oln liquide cephalorachi dien sans reaction cellulatire:remaques sur les caracteres climiques et graphigues des reflexes tendinoux [J]. Bll soc Med Hop pais. 1916; 40:1462.
    [12] Rhodes KM, Tattersfield AE. Guillain-Barre syndrome associated with Campylobacter infection[J]. Br Med J (Clin Res Ed). 1982; 285(6336): 173-174.
    [13]唐健,袁锦楣,郝洪君等.格林—巴利综合征与空肠弯曲菌感染关系初步探讨[J].临床神经病学杂志. 1993; 6(1):9-11.
    [14] Zhang MJ, Zhang JZ. [Campylobacteriosis and Guillain Barre syndrome][J]. Zhonghua Liu Xing Bing Xue Za Zhi. 2008; 29(6):618-621.
    [15] Yuki N, Takahashi M, Tagawa Y, et al. Association of Campylobacter jejuni serotype with antiganglioside antibody in Guillain-Barre syndrome and Fisher's syndrome[J]. Ann Neurol. 1997; 42(1):28-33.
    [16] Lastovica AJ, Goddard EA, Argent AC. Guillain-Barre syndrome in South Africa associated with Campylobacter jejuni O:41 strains[J]. J Infect Dis. 1997; 176 Suppl 2:S139-143.
    [17]李海峰,袁锦楣,沈宝铨等.格林-巴利综合征与空肠弯曲菌Penner血清型的关系[J].中华内科杂志. 1999; 38(7):455.
    [18] Blaser MJ. Epidemiologic and clinical features of Campylobacter jejuni infections[J]. J Infect Dis. 1997; 176 Suppl 2:S103-105.
    [19] Zhu J, Pelidou SH, Deretzi G, et al. P0 glycoprotein peptides 56-71 and 180-199 dose-dependently induce acute and chronic experimental autoimmune neuritis in Lewis rats associated with epitope spreading[J]. J Neuroimmunol. 2001; 114(1-2):99-106.
    [20] Zou LP, Ma DH, Levi M, et al. Antigen-specific immunosuppression: nasaltolerance to P0 protein peptides for the prevention and treatment of experimental autoimmune neuritis in Lewis rats[J]. J Neuroimmunol. 1999; 94(1-2):109-121.
    [21] Miletic H, Utermohlen O, Wedekind C, et al. P0(106-125) is a neuritogenic epitope of the peripheral myelin protein P0 and induces autoimmune neuritis in C57BL/6 mice[J]. J Neuropathol Exp Neurol. 2005; 64(1):66-73.
    [22]祝捷.实验性自身免疫性神经炎发病机制[J].医学研究杂志. 2006; (12):55-56.
    [23] Complex carbohydrates. Part F[J]. Methods Enzymol. 1989; 179:1-581.
    [24] Svennerholm L, Fredman P. Antibody detection in Guillain-Barre syndrome[J]. Ann Neurol. 1990; 27 Suppl:S36-40.
    [25] Yu RK, Ariga T, Kohriyama T, et al. Autoimmune mechanisms in peripheral neuropathies[J]. Ann Neurol. 1990; 27 Suppl:S30-35.
    [26] Chiba A, Kusunoki S, Shimizu T, et al. Serum IgG antibody to ganglioside GQ1b is a possible marker of Miller Fisher syndrome[J]. Ann Neurol. 1992; 31(6):677-679.
    [27] Latov N. Neuropathy and anti-GM1 antibodies[J]. Ann Neurol. 1990; 27 Suppl:S41-43.
    [28] Hughes RA, Kadlubowski M, Gray IA, et al. Immune responses in experimental allergic neuritis[J]. J Neurol Neurosurg Psychiatry. 1981; 44(7):565-569.
    [29] Nomura K, Hamaguchi K, Ohno R, et al. Cell-mediated immunity to bovine P2 protein and neuritogenic synthetic peptide in experimental allergic neuritis[J]. J Neuroimmunol. 1987; 15(1):25-35.
    [30] Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages[J]. Nat Immunol. 2005; 6(11):1123-1132.
    [31] Dong C. TH17 cells in development: an updated view of their molecular identity and genetic programming[J]. Nat Rev Immunol. 2008; 8(5):337-348.
    [32] O'Garra A, Stockinger B, Veldhoen M. Differentiation of human T(H)-17 cellsdoes require TGF-beta![J]. Nat Immunol. 2008; 9(6):588-590.
    [33] Veldhoen M, Hocking RJ, Atkins CJ, et al. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells[J]. Immunity. 2006; 24(2):179-189.
    [34] Aggarwal S, Ghilardi N, Xie MH, et al. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17[J]. J Biol Chem. 2003; 278(3):1910-1914.
    [35] Liu X, Leung S, Wang C, et al. Crucial role of interleukin-7 in T helper type 17 survival and expansion in autoimmune disease[J]. Nat Med. 16(2):191-197.
    [36] Commodaro AG, Peron JP, Lopes CT, et al. FTY720 treatment inhibits experimental autoimmune uveitis in mice[J]. Invest Ophthalmol Vis Sci. 2009.
    [37] Tindall RS. Humoral factors in inflammatory disorders of the central and peripheral nervous system[J]. J Neuroimmunol. 1988; 20(2-3):283-296.
    [38] Schmidt B, Stoll G, Hartung HP, et al. Macrophages but not Schwann cells express Ia antigen in experimental autoimmune neuritis[J]. Ann Neurol. 1990; 28(1):70-77.
    [39] Lilje O. The processing and presentation of endogenous and exogenous antigen by Schwann cells in vitro[J]. Cell Mol Life Sci. 2002; 59(12):2191-2198.
    [40]金涛,祝捷.雪旺氏细胞凋亡在TNFRⅠ-/-鼠实验性自身免疫性神经炎发病机制中的作用[J].吉林大学学报(医学版). 2007; (02):279-282.
    [41] Skundric DS, Lisak RP, Rouhi M, et al. Schwann cell-specific regulation of IL-1 and IL-1Ra during EAN: possible relevance for immune regulation at paranodal regions[J]. J Neuroimmunol. 2001; 116(1):74-82.
    [42] Matsuda M, Tsukada N, Miyagi K, et al. Increased interleukin-1 production by peripheral blood mononuclear cells in patients with multiple sclerosis[J]. J Neurol Sci. 1991; 102(1):100-104.
    [43]Yoshii F, Shinohara Y. Impaired interleukin-2 response of mononuclear cells in Guillain-Barre syndrome[J]. Eur J Neurol. 2000; 7(3):303-307.
    [44]方树友刘,卢宏,等.吉兰-巴雷综合征患者血清IFN-γ及IL-4水平的研究[J][J].中国神经精神疾病杂志. 2001; 27(5):387.
    [45] Karpus WJ, Gould KE, Swanborg RH. CD4+ suppressor cells of autoimmune encephalomyelitis respond to T cell receptor-associated determinants on effector cells by interleukin-4 secretion[J]. Eur J Immunol. 1992; 22(7):1757-1763.
    [46] Racke MK, Bonomo A, Scott DE, et al. Cytokine-induced immune deviation as a therapy for inflammatory autoimmune disease[J]. J Exp Med. 1994; 180(5):1961-1966.
    [47] Yun W, Hua-bing W, Wei-zhi W. A study of associated cell-mediated immune mechanisms in experimental autoimmune neuritis rats[J]. J Neuroimmunol. 2007; 185(1-2):87-94.
    [48] Romagnani S. Biology of human TH1 and TH2 cells[J]. J Clin Immunol. 1995; 15(3):121-129.
    [49] Zhu J, Bai XF, Mix E, et al. Experimental allergic neuritis: cytolysin mRNA expression is upregulated in lymph node cells during convalescence[J]. J Neuroimmunol. 1997; 78(1-2):108-116.
    [50] Bai XF, Zhu J, Zhang GX, et al. IL-10 suppresses experimental autoimmune neuritis and down-regulates TH1-type immune responses[J]. Clin Immunol Immunopathol. 1997; 83(2):117-126.
    [51]刘洪波,方树友,王左生等.吉兰-巴雷综合征患者血清和脑脊液中白细胞介素10和12的变化[J].中国神经科杂志. 2001; 34(1):60-61.
    [52] Issazadeh S, Lorentzen JC, Mustafa MI, et al. Cytokines in relapsing experimental autoimmune encephalomyelitis in DA rats: persistent mRNA expression of proinflammatory cytokines and absent expression of interleukin-10 and transforming growth factor-beta[J]. J Neuroimmunol. 1996; 69(1-2):103-115.
    [53] Hartung HP, Pollard JD, Harvey GK, et al. Immunopathogenesis and treatment of the Guillain-Barre syndrome--Part II[J]. Muscle Nerve. 1995; 18(2):154-164.
    [54] Hartung HP, Pollard JD, Harvey GK, et al. Immunopathogenesis and treatment of the Guillain-Barre syndrome--Part I[J]. Muscle Nerve. 1995; 18(2):137-153.
    [55] Myhr KM, Vagnes KS, Maroy TH, et al. Interleukin-10 promoter polymorphisms in patients with Guillain-Barre syndrome[J]. J Neuroimmunol. 2003; 139(1-2):81-83.
    [56] Bao L, Lindgren JU, van der Meide P, et al. The critical role of IL-12p40 in initiating, enhancing, and perpetuating pathogenic events in murine experimental autoimmune neuritis[J]. Brain Pathol. 2002; 12(4):420-429.
    [57] Deng H, Yang X, Jin T, et al. The role of IL-12 and TNF-alpha in AIDP and AMAN[J]. Eur J Neurol. 2008; 15(10):1100-1105.
    [58] Pelidou SH, Zou LP, Deretzi G, et al. Intranasal administration of recombinant mouse interleukin-12 increases inflammation and demyelination in chronic experimental autoimmune neuritis in Lewis rats[J]. Scand J Immunol. 2000; 51(1):29-35.
    [59]王倩刘,陈浩,等.人白细胞介素18cDNA编码区存在基因变异[J].中国免疫学杂志,. 2001; 17:24-26.
    [60] Jander S, Stoll G. Interleukin-18 is induced in acute inflammatory demyelinating polyneuropathy[J]. J Neuroimmunol. 2001; 114(1-2):253-258.
    [61] Makowska A, Pritchard J, Sanvito L, et al. Immune responses to myelin proteins in Guillain-Barre syndrome[J]. J Neurol Neurosurg Psychiatry. 2008; 79(6):664-671.
    [62] Zhu W, Mix E, Nennesmo I, et al. Anti-cytokine autoantibodies in experimental autoimmune neuritis in Lewis rats[J]. Exp Neurol. 2004; 190(2):486-494.
    [63] Fujioka T, Jimi T, Hilliard BA, et al. The expression of cytokine mRNA in the cauda equina of Lewis rats with experimental allergic neuritis[J]. J Neuroimmunol. 1998; 84(2):223-229.
    [64] Zhu Y, Ljunggren HG, Mix E, et al. Suppression of autoimmune neuritis in IFN-gamma receptor-deficient mice[J]. Exp Neurol. 2001; 169(2):472-478.
    [65] Press R, Deretzi G, Zou LP, et al. IL-10 and IFN-gamma in Guillain-Barre syndrome. Network Members of the Swedish Epidemiological Study Group[J]. J Neuroimmunol. 2001; 112(1-2):129-138.
    [66] Radhakrishnan VV, Sumi MG, Reuben S, et al. Circulating tumour necrosis factor alpha & soluble TNF receptors in patients with Guillain-Barre syndrome[J]. Indian J Med Res. 2003; 117:216-220.
    [67] Weishaupt A, Bruck W, Hartung T, et al. Schwann cell apoptosis in experimental autoimmune neuritis of the Lewis rat and the functional role of tumor necrosis factor-alpha[J]. Neurosci Lett. 2001; 306(1-2):77-80.
    [68] Dahle C, Kvarnstrom M, Ekerfelt C, et al. Elevated number of cells secreting transforming growth factor beta in Guillain-Barre syndrome[J]. Apmis. 2003; 111(12):1095-1104.
    [69]张茂俊,张建中.空肠弯曲菌病与格林-巴利综合征[J].中华流行病学杂志. 2008; 29(6):618-621.
    [70] Hughes RA, Rees JH. Clinical and epidemiologic features of Guillain-Barre syndrome[J]. J Infect Dis. 1997; 176 Suppl 2:S92-98.
    [71] Lu MO, Duan RS, Quezada HC, et al. Aggravation of experimental autoimmune neuritis in TNF-alpha receptor 1 deficient mice[J]. J Neuroimmunol. 2007; 186(1-2):19-26.
    [72] Kiefer R, Kieseier BC, Stoll G, et al. The role of macrophages in immune-mediated damage to the peripheral nervous system[J]. Prog Neurobiol. 2001; 64(2):109-127.
    [73] Maurer M, Toyka KV, Gold R. Cellular immunity in inflammatory autoimmune neuropathies[J]. Rev Neurol (Paris). 2002; 158(12 Pt 2):S7-15.
    [74] Lilje O. The processing and presentation of endogenous and exogenous antigen by Schwann cells in vitro[J]. Cell Mol Life Sci. 2002; 59(12):2191-2198.
    [75] Creange A, Sharshar T, Raphael JC, et al. [Cellular aspect of neuroinflammation in Guillain-Barre syndrome: a key to a new therapeutic option?][J]. Rev Neurol (Paris). 2002; 158(1):15-27.
    [76] Maurer M, Gold R. Animal models of immune-mediated neuropathies[J]. Curr Opin Neurol. 2002; 15(5):617-622.
    [77] Ben-Nun A, Wekerle H, Cohen IR. The rapid isolation of clonable antigen-specific T lymphocyte lines capable of mediating autoimmuneencephalomyelitis[J]. Eur J Immunol. 1981; 11(3):195-199.
    [78] Muller U, Jongeneel CV, Nedospasov SA, et al. Tumour necrosis factor and lymphotoxin genes map close to H-2D in the mouse major histocompatibility complex[J]. Nature. 1987; 325(6101):265-267.
    [79] Nedwin GE, Naylor SL, Sakaguchi AY, et al. Human lymphotoxin and tumor necrosis factor genes: structure, homology and chromosomal localization[J]. Nucleic Acids Res. 1985; 13(17):6361-6373.
    [80] Pachman LM, Fedczyna TO, Lechman TS, et al. Juvenile dermatomyositis: the association of the TNF alpha-308A allele and disease chronicity[J]. Curr Rheumatol Rep. 2001; 3(5):379-386.
    [81] Skoff AM, Lisak RP, Bealmear B, et al. TNF-alpha and TGF-beta act synergistically to kill Schwann cells[J]. J Neurosci Res. 1998; 53(6):747-756.
    [82] Newton RC, Solomon KA, Covington MB, et al. Biology of TACE inhibition[J]. Ann Rheum Dis. 2001; 60 Suppl 3:iii25-32.
    [83] Tracey D, Klareskog L, Sasso EH, et al. Tumor necrosis factor antagonist mechanisms of action: a comprehensive review[J]. Pharmacol Ther. 2008; 117(2):244-279.
    [84] Kast RE, Altschuler EL. Proposal for using small molecule tumor necrosis factor-alpha lowering agents, possibly bupropion, in aplastic anemia[J]. Med Hypotheses. 2005; 65(2):374-376.
    [85] Eissner G, Kolch W, Scheurich P. Ligands working as receptors: reverse signaling by members of the TNF superfamily enhance the plasticity of the immune system[J]. Cytokine Growth Factor Rev. 2004; 15(5):353-366.
    [86] Lugering A, Schmidt M, Lugering N, et al. Infliximab induces apoptosis in monocytes from patients with chronic active Crohn's disease by using a caspase-dependent pathway[J]. Gastroenterology. 2001; 121(5):1145-1157.
    [87] van Deventer SJ. Anti-tumour necrosis factor therapy in Crohn's disease: where are we now?[J]. Gut. 2002; 51(3):362-363.
    [88] Kollias G, Kontoyiannis D. Role of TNF/TNFR in autoimmunity: specific TNF receptor blockade may be advantageous to anti-TNF treatments[J]. CytokineGrowth Factor Rev. 2002; 13(4-5):315-321.
    [89] MacEwan DJ. TNF receptor subtype signalling: differences and cellular consequences[J]. Cell Signal. 2002; 14(6):477-492.
    [90] Bonetti B VP, Stegagno C, et al. Tumor necrosis factor alpha and human Schwann cells: signalling and phenotype modulation without cell death.[J]. J Neuropathol Exp Neurol. 2001; 59((1)):74-84.
    [91] Conti G RA, Scarpini E, et al. Inducible nitric oxide synthase (iNOS) in immune-mediated demyelination and Wallerian degeneration of the rat peripheral nervous system. [J]. Exp Neurol. 2004; 187(2):350-358.
    [92] Vandenabeele P, Declercq W, Vanhaesebroeck B, et al. Both TNF receptors are required for TNF-mediated induction of apoptosis in PC60 cells[J]. J Immunol. 1995; 154(6):2904-2913.
    [93] Ledgerwood EC, Pober JS, Bradley JR. Recent advances in the molecular basis of TNF signal transduction[J]. Lab Invest. 1999; 79(9):1041-1050.
    [94] Wajant H, Pfizenmaier K, Scheurich P. Tumor necrosis factor signaling[J]. Cell Death Differ. 2003; 10(1):45-65.
    [95] Papa S, Zazzeroni F, Pham CG, et al. Linking JNK signaling to NF-kappaB: a key to survival[J]. J cell sci. 2004; 117(Pt 22):5197-5208.
    [96] Grell M, Zimmermann G, Gottfried E, et al. Induction of cell death by tumour necrosis factor (TNF) receptor 2, CD40 and CD30: a role for TNF-R1 activation by endogenous membrane-anchored TNF[J]. Embo J. 1999; 18(11):3034-3043.
    [97] Grell M, Douni E, Wajant H, et al. The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor[J]. Cell. 1995; 83(5):793-802.
    [98] Mukai Y, Shibata H, Nakamura T, et al. Structure-function relationship of tumor necrosis factor (TNF) and its receptor interaction based on 3D structural analysis of a fully active TNFR1-selective TNF mutant[J]. J Mol Biol. 2009; 385(4):1221-1229.
    [99] Kollias G, Douni E, Kassiotis G, et al. On the role of tumor necrosis factor andreceptors in models of multiorgan failure, rheumatoid arthritis, multiple sclerosis and inflammatory bowel disease[J]. Immunol Rev. 1999; 169:175-194.
    [100]Radhakrishnan VV, Sumi MG, Reuben S, et al. Serum tumour necrosis factor-alpha and soluble tumour necrosis factor receptors levels in patients with Guillain-Barre syndrome[J]. Acta Neurol Scand. 2004; 109(1):71-74.
    [101]Creange A, Belec L, Clair B, et al. Circulating tumor necrosis factor (TNF)-alpha and soluble TNF-alpha receptors in patients with Guillain-Barre syndrome[J]. J Neuroimmunol. 1996; 68(1-2):95-99.
    [102]Hartung HP, Reiners K, Schmidt B, et al. Serum interleukin-2 concentrations in Guillain-Barre syndrome and chronic idiopathic demyelinating polyradiculoneuropathy: comparison with other neurological diseases of presumed immunopathogenesis[J]. Ann Neurol. 1991; 30(1):48-53.
    [103]Sharief MK, McLean B, Thompson EJ. Elevated serum levels of tumor necrosis factor-alpha in Guillain-Barre syndrome[J]. Ann Neurol. 1993; 33(6):591-596. [104Redford EJ, Hall SM, Smith KJ. Vascular changes and demyelination induced by the intraneural injection of tumour necrosis factor[J]. Brain. 1995; 118 ( Pt 4):869-878.
    [105]Campana WM, Li X, Shubayev VI, et al. Erythropoietin reduces Schwann cell TNF-alpha, Wallerian degeneration and pain-related behaviors after peripheral nerve injury[J]. Eur J Neurosci. 2006; 23(3):617-626.
    [106] Zelenka M, Schafers M, Sommer C. Intraneural injection of interleukin-1beta and tumor necrosis factor-alpha into rat sciatic nerve at physiological doses induces signs of neuropathic pain[J]. Pain. 2005; 116(3):257-263.
    [107]Korn T, Toyka K, Hartung HP, et al. Suppression of experimental autoimmune neuritis by leflunomide[J]. Brain. 2001; 124(Pt 9):1791-1802.
    [108]Zhu J, Bai XF, Hedlund G, et al. Linomide suppresses experimental autoimmune neuritis in Lewis rats by inhibiting myelin antigen-reactive T and B cell responses[J]. Clin Exp Immunol. 1999; 115(1):56-63.
    [109]Vassalli P. The pathophysiology of tumor necrosis factors[J]. Annu Rev Immunol. 1992; 10:411-452.
    [110]Philip R, Epstein LB. Tumour necrosis factor as immunomodulator and mediator of monocyte cytotoxicity induced by itself, gamma-interferon and interleukin-1[J]. Nature. 1986; 323(6083):86-89.
    [111]Gonzalez-Quevedo A, Carriera RF, O'Farrill ZL, et al. An appraisal of blood-cerebrospinal fluid barrier dysfunction during the course of Guillain Barre syndrome[J]. Neurol India. 2009; 57(3):288-294.
    [112]Shubayev VI, Angert M, Dolkas J, et al. TNFalpha-induced MMP-9 promotes macrophage recruitment into injured peripheral nerve[J]. Mol Cell Neurosci. 2006; 31(3):407-415.
    [113] Cheng C, Qin Y, Shao X, et al. Induction of TNF-alpha by LPS in Schwann cell is regulated by MAPK activation signals[J]. Cell Mol Neurobiol. 2007; 27(7):909-921.
    [114]Farias AS, de la Hoz C, Castro FR, et al. Nitric oxide and TNFalpha effects in experimental autoimmune encephalomyelitis demyelination[J]. Neuroimmunomodulation. 2007; 14(1):32-38.
    [115]Hartung HP, Jung S, Stoll G, et al. Inflammatory mediators in demyelinating disorders of the CNS and PNS[J]. J Neuroimmunol. 1992; 40(2-3):197-210.
    [116]Iadecola C, Zhang F, Casey R, et al. Inducible nitric oxide synthase gene expression in vascular cells after transient focal cerebral ischemia[J]. Stroke. 1996; 27(8):1373-1380.
    [117]Pociot F, Briant L, Jongeneel CV, et al. Association of tumor necrosis factor (TNF) and class II major histocompatibility complex alleles with the secretion of TNF-alpha and TNF-beta by human mononuclear cells: a possible link to insulin-dependent diabetes mellitus[J]. Eur J Immunol. 1993; 23(1):224-231.
    [118]Weissensteiner T, Lanchbury JS. TNFB polymorphisms characterize three lineages of TNF region microsatellite haplotypes[J]. Immunogenetics. 1997; 47(1):6-16.
    [119]Wilson AG, Symons JA, McDowell TL, et al. Effects of a polymorphism in thehuman tumor necrosis factor alpha promoter on transcriptional activation[J]. Proc Natl Acad Sci U S A. 1997; 94(7):3195-3199.
    [120]Bouwmeester T, Bauch A, Ruffner H, et al. A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway[J]. Nat Cell Biol. 2004; 6(2):97-105.
    [121]Micheau O, Tschopp J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes[J]. Cell. 2003; 114(2):181-190.
    [122]Kumpfel T, Hohlfeld R. Multiple sclerosis. TNFRSF1A, TRAPS and multiple sclerosis[J]. Nat Rev Neurol. 2009; 5(10):528-529.
    [123]De Jager PL, Jia X, Wang J, et al. Meta-analysis of genome scans and replication identify CD6, IRF8 and TNFRSF1A as new multiple sclerosis susceptibility loci[J]. Nat Genet. 2009; 41(7):776-782.
    [124]Baker E, Chen LZ, Smith CA, et al. Chromosomal location of the human tumor necrosis factor receptor genes[J]. Cytogenet Cell Genet. 1991; 57(2-3):117-118.
    [125]Zhu J, Zou L, Zhu S, et al. Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) blockade enhances incidence and severity of experimental autoimmune neuritis in resistant mice[J]. J Neuroimmunol. 2001; 115(1-2): 111-117.
    [126]Chaudhary PM, Eby MT, Jasmin A, et al. Activation of the NF-kappaB pathway by caspase 8 and its homologs[J]. Oncogene. 2000; 19(39): 4451- 4460.
    [127]Hsu H, Shu HB, Pan MG, et al. TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways[J]. Cell. 1996; 84(2):299-308.
    [128]Jiang Y, Woronicz JD, Liu W, et al. Prevention of constitutive TNF receptor 1 signaling by silencer of death domains[J]. Science. 1999; 283(5401):543-546.
    [129]Miki K, Eddy EM. Tumor necrosis factor receptor 1 is an ATPase regulated by silencer of death domain[J]. Mol Cell Biol. 2002; 22(8):2536-2543.
    [130]Cope AP, Liblau RS, Yang XD, et al. Chronic tumor necrosis factor alters Tcell responses by attenuating T cell receptor signaling[J]. J Exp Med. 1997; 185(9):1573-1584.
    [131]Herbein G, Mahlknecht U, Batliwalla F, et al. Apoptosis of CD8+ T cells is mediated by macrophages through interaction of HIV gp120 with chemokine receptor CXCR4[J]. Nature. 1998; 395(6698):189-194.
    [132]Speiser DE, Sebzda E, Ohteki T, et al. Tumor necrosis factor receptor p55 mediates deletion of peripheral cytotoxic T lymphocytes in vivo[J]. Eur J Immunol. 1996; 26(12):3055-3060.
    [133]Zheng L, Fisher G, Miller RE, et al. Induction of apoptosis in mature T cells by tumour necrosis factor[J]. Nature. 1995; 377(6547):348-351.
    [134]Bachwich PR, Chensue SW, Larrick JW, et al. Tumor necrosis factor stimulates interleukin-1 and prostaglandin E2 production in resting macrophages[J]. Biochem Biophys Res Commun. 1986; 136(1):94-101.
    [135]Lindholm D, Heumann R, Meyer M, et al. Interleukin-1 regulates synthesis of nerve growth factor in non-neuronal cells of rat sciatic nerve[J]. Nature. 1987; 330(6149):658-659.
    [136]van Oosten BW, Barkhof F, Truyen L, et al. Increased MRI activity and immune activation in two multiple sclerosis patients treated with the monoclonal anti-tumor necrosis factor antibody cA2[J]. Neurology. 1996; 47(6):1531-1534.
    [137]George A, Buehl A, Sommer C. Tumor necrosis factor receptor 1 and 2 proteins are differentially regulated during Wallerian degeneration of mouse sciatic nerve[J]. Exp Neurol. 2005; 192(1):163-166.
    [138]Kollias G. TNF pathophysiology in murine models of chronic inflammation and autoimmunity[J]. Semin Arthritis Rheum. 2005; 34(5 Suppl1):3-6.
    [139]Idriss HT, Naismith JH. TNF alpha and the TNF receptor superfamily: structure-function relationship(s)[J]. Microsc Res Tech. 2000; 50(3):184-195.
    [140]MacEwan DJ. TNF receptor subtype signalling: differences and cellular consequences[J]. Cell Signal. 2002; 14(6):477-492.
    [141]Kurz M, Pischel H, Hartung HP, et al. Tumor necrosis factor-alpha-convertingenzyme is expressed in the inflamed peripheral nervous system[J]. J Peripher Nerv Syst. 2005; 10(3):311-318.
    [142] Moss ML, Sklair-Tavron L, Nudelman R. Drug insight: tumor necrosis factor-converting enzyme as a pharmaceutical target for rheumatoid arthritis[J]. Nat Clin Pract Rheumatol. 2008; 4(6):300-309.
    [143]Newton RC, Solomon KA, Covington MB, et al. Biology of TACE inhibition[J]. Ann Rheum Dis. 2001; 60 Suppl 3:iii25-32.
    [144]Essayan DM, Huang SK, Kagey-Sobotka A, et al. Differential efficacy of lymphocyte- and monocyte-selective pretreatment with a type 4 phosphodiesterase inhibitor on antigen-driven proliferation and cytokine gene expression[J]. J Allergy Clin Immunol. 1997; 99(1 Pt 1):28-37.
    [145]Souness JE, Griffin M, Maslen C, et al. Evidence that cyclic AMP phosphodiesterase inhibitors suppress TNF alpha generation from human monocytes by interacting with a 'low-affinity' phosphodiesterase 4 conformer[J]. Br J Pharmacol. 1996; 118(3):649-658.
    [146]Ohnishi A, Yamamoto T, Her Q, et al. [The effect of brain-derived neurotrophic factor on regeneration of nerve fibers after crush injury--morphometric evaluation][J]. J UOEH. 1996; 18(4):261-271.
    [147]Abbas N, Zou LP, Pelidou SH, et al. Protective effect of Rolipram in experimental autoimmune neuritis: protection is associated with down-regulation of IFN-gamma and inflammatory chemokines as well as up-regulation of IL-4 in peripheral nervous system[J]. Autoimmunity. 2000; 32(2):93-99.
    [148]Constantinescu CS, Hilliard B, Lavi E, et al. Suppression of experimental autoimmune neuritis by phosphodiesterase inhibitor pentoxifylline[J]. J Neurol Sci. 1996; 143(1-2):14-18.
    [149]Cross AH, Girard TJ, Giacoletto KS, et al. Long-term inhibition of murine experimental autoimmune encephalomyelitis using CTLA-4-Fc supports a key role for CD28 costimulation[J]. J Clin Invest. 1995; 95(6):2783-2789.
    [150]Kumari M, Cover PO, Poyser RH, et al. Stimulation of thehypothalamo-pituitary-adrenal axis in the rat by three selective type-4 phosphodiesterase inhibitors: in vitro and in vivo studies[J]. Br J Pharmacol. 1997; 121(3):459-468.
    [151]Pettipher ER, Labasi JM, Salter ED, et al. Regulation of tumour necrosis factor production by adrenal hormones in vivo: insights into the antiinflammatory activity of rolipram[J]. Br J Pharmacol. 1996; 117(7):1530-1534.
    [152]Matsuki S, Iuchi Y, Ikeda Y, et al. Suppression of cytochrome c release and apoptosis in testes with heat stress by minocycline[J]. Biochem Biophys Res Commun. 2003; 312(3):843-849.
    [153]Zhu S, Stavrovskaya IG, Drozda M, et al. Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice[J]. Nature. 2002; 417(6884):74-78.
    [154]Makonkawkeyoon S, Limson-Pobre RN, Moreira AL, et al. Thalidomide inhibits the replication of human immunodeficiency virus type 1[J]. Proc Natl Acad Sci U S A. 1993; 90(13):5974-5978.
    [155]Melchert M, List A. The thalidomide saga[J]. Int J Biochem Cell Biol. 2007; 39(7-8):1489-1499.
    [156]Kontoyiannis D, Kotlyarov A, Carballo E, et al. Interleukin-10 targets p38 MAPK to modulate ARE-dependent TNF mRNA translation and limit intestinal pathology[J]. Embo J. 2001; 20(14):3760-3770.
    [157]Kontoyiannis D, Pasparakis M, Pizarro TT, et al. Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: implications for joint and gut-associated immunopathologies[J]. Immunity. 1999; 10(3):387-398.
    [158]Loetscher H, Steinmetz M, Lesslauer W. Tumor necrosis factor: receptors and inhibitors[J]. Cancer Cells. 1991; 3(6):221-226.
    [159]Aderka D, Engelmann H, Maor Y, et al. Stabilization of the bioactivity of tumor necrosis factor by its soluble receptors[J]. J Exp Med. 1992; 175(2):323-329.
    [160]Sharief MK, Ingram DA, Swash M, et al. I.v. immunoglobulin reducescirculating proinflammatory cytokines in Guillain-Barre syndrome[J]. Neurology. 1999; 52(9):1833-1838.
    [161]Ruiz de Souza V, Carreno MP, Kaveri SV, et al. Selective induction of interleukin-1 receptor antagonist and interleukin-8 in human monocytes by normal polyspecific IgG (intravenous immunoglobulin)[J]. Eur J Immunol. 1995; 25(5):1267-1273.
    [162]Taylor JM, Pollard JD. Soluble TNFR1 inhibits the development of experimental autoimmune neuritis by modulating blood-nerve-barrier permeability and inflammation[J]. J Neuroimmunol. 2007; 183(1-2):118-124.
    [163]Bao L, Lindgren JU, Zhu Y, et al. Exogenous soluble tumor necrosis factor receptor type I ameliorates murine experimental autoimmune neuritis[J]. Neurobiol Dis. 2003; 12(1):73-81.
    [164]Jackson JM. TNF- alpha inhibitors[J]. Dermatol Ther. 2007; 20(4):251-264.
    [165]Mease PJ, Goffe BS, Metz J, et al. Etanercept in the treatment of psoriatic arthritis and psoriasis: a randomised trial[J]. Lancet. 2000; 356(9227):385-390.
    [166]Mease PJ, Kivitz AJ, Burch FX, et al. Etanercept treatment of psoriatic arthritis: safety, efficacy, and effect on disease progression[J]. Arthritis Rheum. 2004; 50(7):2264-2272.
    [167]Papp KA, Tyring S, Lahfa M, et al. A global phase III randomized controlled trial of etanercept in psoriasis: safety, efficacy, and effect of dose reduction[J]. Br J Dermatol. 2005; 152(6):1304-1312.
    [168]Stoll G, Jung S, Jander S, et al. Tumor necrosis factor-alpha in immune-mediated demyelination and Wallerian degeneration of the rat peripheral nervous system[J]. J Neuroimmunol. 1993; 45(1-2):175-182.
    [169]Mitoma H, Horiuchi T, Hatta N, et al. Infliximab induces potent anti-inflammatory responses by outside-to-inside signals through transmembrane TNF-alpha[J]. Gastroenterology. 2005; 128(2):376-392.
    [170]Mitoma H, Horiuchi T, Tsukamoto H. Binding activities of infliximab and etanercept to transmembrane tumor necrosis factor-alpha[J]. Gastroenterology. 2004; 126(3):934-935; author reply 935-936.
    [171]Rigby WF. Drug insight: different mechanisms of action of tumor necrosis factor antagonists-passive-aggressive behavior?[J]. Nat Clin Pract Rheumatol. 2007; 3(4):227-233.
    [172]Scallon B, Cai A, Solowski N, et al. Binding and functional comparisons of two types of tumor necrosis factor antagonists[J]. J Pharmacol Exp Ther. 2002; 301(2):418-426.
    [173]Tracey D, Klareskog L, Sasso EH, et al. Tumor necrosis factor antagonist mechanisms of action: a comprehensive review[J]. Pharmacol Ther. 2008; 117(2):244-279.
    [174]Tha-In T, Bayry J, Metselaar HJ, et al. Modulation of the cellular immune system by intravenous immunoglobulin[J]. Trends Immunol. 2008; 29(12):608-615.
    [175]Steed PM, Tansey MG, Zalevsky J, et al. Inactivation of TNF signaling by rationally designed dominant-negative TNF variants[J]. Science. 2003; 301(5641):1895-1898.
    [176]Szymkowski DE. Creating the next generation of protein therapeutics through rational drug design[J]. Curr Opin Drug Discov Devel. 2005; 8(5):590-600.
    [177]Zalevsky J, Secher T, Ezhevsky SA, et al. Dominant-negative inhibitors of soluble TNF attenuate experimental arthritis without suppressing innate immunity to infection[J]. J Immunol. 2007; 179(3):1872-1883.
    [178]Yu S, Duan RS, Chen Z, et al. Increased susceptibility to experimental autoimmune neuritis after upregulation of the autoreactive T cell response to peripheral myelin antigen in apolipoprotein E-deficient mice[J]. J Neuropathol Exp Neurol. 2004; 63(2):120-128.
    [179]Vilcek J, Lee TH. Tumor necrosis factor. New insights into the molecular mechanisms of its multiple actions[J]. J Biol Chem. 1991; 266(12):7313-7316.
    [180]Jasinski M, Wieckiewicz J, Ruggiero I, et al. Isotype-specific regulation of MHC class II gene expression in human monocytes by exogenous and endogenous tumor necrosis factor[J]. J Clin Immunol. 1995; 15(4):185-193.
    [181]Hathcock KS, Laszlo G, Dickler HB, et al. Identification of an alternativeCTLA-4 ligand costimulatory for T cell activation[J]. Science. 1993; 262(5135):905-907.
    [182]Smith AL, Wikstrom ME, Fazekas de St Groth B. Visualizing T cell competition for peptide/MHC complexes: a specific mechanism to minimize the effect of precursor frequency[J]. Immunity. 2000; 13(6):783-794.
    [183]Djukanovic R. The role of co-stimulation in airway inflammation[J]. Clin Exp Allergy. 2000; 30 Suppl 1:46-50.
    [184]Liossis SN, Sfikakis PP, Tsokos GC. Immune cell signaling aberrations in human lupus[J]. Immunol Res. 1998; 18(1):27-39.
    [185]Harlan DM, Hengartner H, Huang ML, et al. Mice expressing both B7-1 and viral glycoprotein on pancreatic beta cells along with glycoprotein-specific transgenic T cells develop diabetes due to a breakdown of T-lymphocyte unresponsiveness[J]. Proc Natl Acad Sci U S A. 1994; 91(8):3137-3141.
    [186]McRae BL, Vanderlugt CL, Dal Canto MC, et al. Functional evidence for epitope spreading in the relapsing pathology of experimental autoimmune encephalomyelitis[J]. J Exp Med. 1995; 182(1):75-85.
    [187]Miller SD, Vanderlugt CL, Lenschow DJ, et al. Blockade of CD28/B7-1 interaction prevents epitope spreading and clinical relapses of murine EAE[J]. Immunity. 1995; 3(6):739-745.
    [188]Teleshova N, Matusevicius D, Kivisakk P, et al. Altered expression of costimulatory molecules in myasthenia gravis[J]. Muscle Nerve. 2000; 23(6):946-953.
    [189]Grewal IS, Flavell RA. CD40 and CD154 in cell-mediated immunity[J]. Annu Rev Immunol. 1998; 16:111-135.
    [190]Rademaekers A, Kolsch E, Specht C. T cell mediated antibody invariance in an immune response against a bacterial carbohydrate antigen requires CD28/B7-1 costimulation[J]. Dev Immunol. 2001; 8(3-4):243-257.
    [191]Krummel MF, Allison JP. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation[J]. J Exp Med. 1995; 182(2):459-465.
    [192]Zhu W, Mix E, Jin T, et al. B cells play a cooperative role via CD40L-CD40interaction in T cell-mediated experimental autoimmune neuritis in Lewis rats[J]. Neurobiol Dis. 2007; 25(3):642-648.
    [193]Harding FA, McArthur JG, Gross JA, et al. CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones[J]. Nature. 1992; 356(6370):607-609.
    [194]Oliveira-dos-Santos AJ, Ho A, Tada Y, et al. CD28 costimulation is crucial for the development of spontaneous autoimmune encephalomyelitis[J]. J Immunol. 1999; 162(8):4490-4495.
    [195]Pollard JD, Baverstock J, McLeod JG. Class II antigen expression and inflammatory cells in the Guillain-Barre syndrome[J]. Ann Neurol. 1987; 21(4):337-341.
    [196]Mithen FA, Cochran M, Cornbrooks CJ, et al. Expression of the trembler mouse mutation in organotypic cultures of dorsal root ganglia[J]. Brain Res. 1982; 256(4):407-415.
    [197]Levy D, Hoke A, Zochodne DW. Local expression of inducible nitric oxide synthase in an animal model of neuropathic pain[J]. Neurosci Lett. 1999; 260(3):207-209.
    [198]Gold R, Zielasek J, Kiefer R, et al. Secretion of nitrite by Schwann cells and its effect on T-cell activation in vitro[J]. Cell Immunol. 1996; 168(1):69-77.
    [199]Nagano S, Takeda M, Ma L, et al. Cytokine-induced cell death in immortalized Schwann cells: roles of nitric oxide and cyclic AMP[J]. J Neurochem. 2001; 77(6):1486-1495.
    [200]Samdani AF, Dawson TM, Dawson VL. Nitric oxide synthase in models of focal ischemia[J]. Stroke. 1997; 28(6):1283-1288.
    [201]Hooper DC, Ohnishi ST, Kean R, et al. Local nitric oxide production in viral and autoimmune diseases of the central nervous system[J]. Proc Natl Acad Sci U S A. 1995; 92(12):5312-5316.
    [202]Giovannoni G, Heales SJ, Land JM, et al. The potential role of nitric oxide in multiple sclerosis[J]. Mult Scler. 1998; 4(3):212-216.
    [203]Endoh M, Maiese K, Wagner J. Expression of the inducible form of nitricoxide synthase by reactive astrocytes after transient global ischemia[J]. Brain Res. 1994; 651(1-2):92-100.
    [204]Tran EH, Hardin-Pouzet H, Verge G, et al. Astrocytes and microglia express inducible nitric oxide synthase in mice with experimental allergic encephalomyelitis[J]. J Neuroimmunol. 1997; 74(1-2):121-129.
    [205]Bogdan C. The multiplex function of nitric oxide in (auto)immunity[J]. J Exp Med. 1998; 187(9):1361-1365.
    [206]Willenborg DO, Staykova MA, Cowden WB. Our shifting understanding of the role of nitric oxide in autoimmune encephalomyelitis: a review[J]. J Neuroimmunol. 1999; 100(1-2):21-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700