用户名: 密码: 验证码:
Foxo蛋白在大鼠蛛网膜下腔出血不同脑区中表达及意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛛网膜下腔出血所致的脑血管痉挛往往造成迟发性局部缺血性神经损害,是患者死亡和致残率增加的重要原因。研究表明神经元发生凋亡是缺血缺氧导致神经元迟发性损害的主要机制。在细胞凋亡中作为转录因子的叉头框(forkhead box,Fox)蛋白主要起促进作用。因此,本研究通过枕大池二次注血法制备大鼠SAH模型,观察不同脑区中AKT、FKHR及凋亡相关蛋白的表达,探讨蛛网膜下腔出血的发病机制,为临床治疗脑血管疾病等提供理论基础及治疗靶点。
     结果表明:SAH组的神经行为评分明显降低,大脑基底动脉血流速度加快,神经元数目减少,脑水含量明显增加,说明SAH可以造成严重的脑损伤。通过上调脑皮质及脑干Bax/Bcl-2比值,促进神经元凋亡,加重脑损伤。其机制与P-AKT与AKT的比值下降,AKT处于无活性状态,使P-FKHR减少,未磷酸化的FKHR增加,进入胞核激活相关的死亡基因,促进细胞的凋亡有关。FKHR进出细胞核可能还需要14-3-3蛋白的参与。尼莫地平通过上调P-AKT与AKT的比值,激活AKT,增加FKHR的磷酸化,减少其入核,使其不能激活下游的Bax等死亡基因,减轻大脑皮质和脑干的损伤。
     结论:P-AKT及14-3-3蛋白通过调控FKHR的入核,进而调控下游的凋亡相关基因参与了大鼠蛛网膜下腔出血所致的损伤过程,而尼莫地平通过上调P-AKT及P-FKHR的表达,减少FKHR,从而减轻SAH所致脑损伤。
Subarachnoid haemorrhage is one of the common emergencies in neurology department. The cerebral vasospasm(CVS)induced by subarachnoid hemorrhage(SAH) was the main cause of delayed ischemic neurological deficit(DIND). CVS was also the main cause of disability and death induced by SAH. We have some knowledege about the mechanism of the CVS. The change of environmental around the vessel, hemoglobin and its metablotes will increase the release of vasocontrictive substances and decrease the release of vasodilator which result in CVS. In addition, the mechanism is related to mechanical strech of intracerebral hematoma. It was found that apoptosis was the main mechanism which resulted in DIND and Fox protein promote apoptosis. AKT and 14-3-3 was involved in regulation of FKHR.
     Aim: The SAH model was establish by double injections of blood into cistern magna in Wistar rats. The regulation mechanismof AKT and 14-3-3 for FOXO in and out of the nucleus was explored.
     Methods: The rats were randomly divided into three groups:sham group、subarachnoid hemorrhage group(SAH)、subarachnoid hemorrhage+Nimodipine group. A reliable models of subarachnoid hemorrhage (SAH) was establish by double injections of blood into cistern magna in Wistar rats. The neurological score were performed at 24 hours in all group according to Loeffler, respectively. The basilar artery blood flow velocity was measured by transcranial doppler sonography (TCD) and the brain morphological change was measured by HE staining. The cerebral water content was measured by using dry-wet weight method. The expression of FKHR,P-FKHR,AKT, P-FKHR,14-3-3, Bax and Bcl-2 was detected by Westernblotting.
     Results and discussion:
     The neurological score were performed at 24 hours in all group according to Loeffler, respectively. The results showed that compared with sham group, the neuroethological score of SAH group was obviously decreased. It suggested that SAH can result in brain damage. Compared with SAH group, the neuroethological score of SAH + Nimodipine group was obviously increased. It suggested that Nimodipine can lessen brain damage.
     The basilar artery blood flow velocity was measured by TCD. The results showed that compared with sham group, the basilar artery blood flow velocity of SAH group obviously increased. It suggested that the cerebral vasospasm(CVS) can be induced by subarachnoid hemorrhage(SAH). This is the foundamental for the further research. Compared with SAH group, the basilar artery blood flow velocity of SAH + Nimodipine group was obviously decreased. It suggested that Nimodipine can relieve the CVS.
     HE staining showed that the number of neuron in SAH group is decreasing. The neuron and glia in SAH group was swelling. Bleeding lesions can also be seen in SAH group. It suggested tha t the cerebral injury was induced by SAH. The number of necrosis neuron in SAH + Nimodipine group is decreasing. It was implied that Nimodipine has protective effect on brain damage induced by SAH.
     The cerebral water content was measured by using dry-wet weight method.The results showed that compared with sham group, cerebral water content in SAH was increasing. It suggested that brain edema was induced by SAH. Nimodipine is a kind of selective calcium blocker. It can lessen the brain edema by improving BBB permeability,decreasing [Ca2+]I in neuron and increasing the activity of Ca2+-ATPase.
     The brain damage area and cerebral water content in SAH was higher than that of sham group. It suggested that the SAH model is successfully established. It suggested tha t the brain damage was induced by SAH.
     The Western blotting results showed that the expression of FKHR in cortex and brain stem in SAH group was obviously increasing, but the expression of P-FKHR and the ratio of P-AKT/AKT in cortex and brain stem in SAH group was obviously decreasing. The expression of FKHR in cortex and brain stem in SAH + Nimodipine group was obviously decreasing, but the expression of P-FKHR and the ratio of P-AKT/AKT in cortex and brain stem in SAH+Nimodipine group was obviously increasing. It suggested that AKT cannot be activated when the ratio of P-AKT/AKT was decreasing in SAH group. So the FKHR cannot be phosphorylation, and it would enter into neucleus, then activated the death gene,such as Bax. The ratio of Bax/Bcl-2 then increased, and apoptosis will occur. After administration of Nimodipine, the ratio of P-AKT/AKT was increasing, AKT can be activated. So the FKHR can be phosphorylation, and it wouldnot enter into neucleus, then the death gene cannot be activated,such as Bax. The ratio of Bax/Bcl-2 then decreased, and survival will occur.
     On the other hand, the expression of 14-3-3 in SAH group was decreasing. It suggested that 14-3-3 cannot combine with FKHR, then FKHR enter into neucleus, activated the process of apoptosis.
     Conclusion:
     1.The neurological score and the number of neuron in SAH group was lower than that of sham group. The basilar artery blood flow velocity and cerebral water content in SAH group was higher than that of sham group. The It suggested that the SAH model is successfully established.
     2. The upregulation of Bax and inhibition of Bcl-2 induced by SAH was involved in brain damage.
     3. FKHR located into neucleus was the main cause for apoptosis. The mechanism was involved the ratio of P-AKT/AKT decreasing and AKT inactivaed then the FKHR cannot be phosphorylation.
     4. 14-3-3 was also involved in the brain damage induced by SAH. When lost of 14-3-3 induced by SAH, it cannot combine with FKHR.
     5.Nimodipine can lessen brain damage induced by SAH through upregulation of the ratio of P-AKT/ AKT, activation of AKT, phosphorylation of FKHR and upregulation of 14-3-3.
引文
1.俞志鹏,王文敏,王荪.蛛网膜下腔出血的发病率、死亡率和危险因素. 2002, 10(6):435-437.
    2. Al-Shahi R, White PM, Davenport RJ, Lindsay KW. Subarachnoid haemorrhage. BMJ. 2006, 333(7561):235-40.
    3. Rorx S ,loffer BM,Cray GA ,et al . The role of endothelin in experimental cerebral vasopasm. Neurosurgery ,1995 ,37 :78 - 86.
    4 Halcy EC ,Kassell NF ,Tomer JC ,et al . A randomiged trial of two doses of nicardipine in aneurgsmal subarachnoid hemorrhage :a report of the cooperative aneurysm study. J Neurosurg , 1994 ,80 :788 - 796.
    5.迟相林,李振光,郭兆荣,等.蛛网膜下腔出血后脑血管痉挛机制的研究进展.中国脑血管病杂志, 2007,4(6):283-286.
    6赵欣春.自发性蛛网膜下腔出血1000例病因及CT估价方法.中风与神经疾病杂志, 2003,20(3):266-268.
    7吴江主编.神经内科学.人民卫生出版社, 2008,175-179
    8 Zhou C, Yamaguchi M, Kusaka G, et al. Caspase inhibitors prevent endothelial apoptosis and cerebral vasospasm in dog model of experimental subarachnoid hemorrhage [J]. J Cereb Blood Flow Metab, 2004; 24(4): 419-431.
    9 SEHBA F A, BEDERSON J B. Mechanisms of acute brain injury after subarachnoid hemorrhage [J]. Neurol Res, 2006, 28(4): 381-398.
    10 SCHIEVINK W I, WIJDICKS E F, PARISI J E, et al. Sudden death from aneurysmal subarachnoid hemorrhage [J]. Neurology, 1995, 45(5): 871-874.
    11 Yao H , Takasawa R , Fukudu K, et al . DNA fragmentation in ischemic core and penumbra in focal cerebral ischemia in rats. Mol Brain Res , 2001 , 91 : 112 - 118.
    12 Kawamata T, Peterson JW, Bun T, et al. Augmentation of both hemolysate-induced contraction and activation of protein kinase C by submaximum activation in canine cerebral arteries in vitro. J Neurosurg. 1997,87(6):908-15.
    13 Nishizawa S, Yamamoto S, Yokoyama T, et al. Dysfunction of nitric oxide induces protein kinase C activation resulting in vasospasm after subarachnoid hemorrhage. Neurol Res. 1997,19(5):558-62.
    14 Nishizawa S, Yamamoto S, Yokoyama T, Ryu H, Uemura K. Chronological changes of arterial diameter, cGMP, and protein kinase C in the development of vasospasm. Stroke. 1995,26(10):1916-20.
    15楚冰,邵国富.脑缺血后迟发性神经元死亡及分子机制.国外医学脑血管疾病分册, 1997,7(6):330-332.
    16 Harada T, Seto M, Sasaki Y, et al. The time course of myosin light-chain phosphorylation inblood-induced vasospasm. Neurosurgery. 1995,36(6):1178-82.
    17 Zhao H , Yenari MA , Cheng D , et al . Bcl - 2 overexpression protects against neuron loss within the ischemic margin following experimental stroke and inhibits cytochrome c transtocation and Caspase - 3 activity. J Neurochem , 2003 , 85 : 1026 - 1036.
    18万跃明,徐明,蒋从斌,等.大耳白兔蛛网膜下腔出血神经元细胞凋亡的研究.武警医学, 2004,15(3):186-189.
    19 Hara A, Iwai T, Niwa M, et al. Immunohistochemical detection of Bax and Bcl-2 proteins in gerbil hippocampus following transient forebrain ischemia. Brain Res. 1996,711(1-2):249-53.
    20 Nakamura M, Raghupathi R, Merry DE, et al. Overexpression of Bcl-2 is neuroprotective after experimental brain injury in transgenic mice. J Comp Neurol. 1999,412(4):681-92.
    21骆纯. Bcl-2基因家族与创伤性脑损伤.国外医学神经学神经外科学分册, 1997, 24(5):225-227.
    22.陈龙,陈忆九,李中.大鼠脑挫伤后组织学及Bax/Bcl-2表达的研究.法医学杂志,2000,16(4):211-214.
    23 Mikhailov V, Mikhailova M, Pulkrabek DJ, et al. Bcl-2 prevents Bax oligomerization in the mitochondrial outer membrane.J Biol Chem 2001, 276(21):18361-18374.
    24 Tsujimoto Y. Cell death regulation by the Bcl-2 protein family in the mitochondria.J Cell Physiol 2003,195(2):158-167.
    25 Harris MH,Thompson CB.The role of the Bcl-2 family in the regulation of outer mitochondrial membrane permeability.Cell Death Differ 2000,7(12): 1182-1191.
    26 Andera L. Signaling activated by the death receptors of the TNFR family. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2009,153(3):173-80..
    27茅磊,史继新.细胞凋亡对蛛网膜下腔出血后脑血管痉挛发病机制的研究.中华神经医学杂志,2005,4(3):312-313.
    28 Meguro O, Klett CP, Chen B, et al. immediate early gene expression in vascular smooth-muscle cells synergistically induced by hemolysate componenta[J]. J Neurosurg, 2000,93(4):640-646.
    29 Yin W, Tibbs R, Aoki K, et al. Metabolic alterations in cerebrospinal fluid from double hemorrhage model of dogs [J]. Neurol Res, 2001, 23(1): 87-92.
    30 Zubkov AY, Aoki K, Parent AD, et al. Preliminary study of the effects of caspase inhibitors on vasospasm in dog penetrating arteries [J]. Life Sci, 2002, 70(25): 3007-3018.
    31茅磊,史继新,张鑫,等.半胱氨酸蛋白酶-3抑制剂对蛛网膜下腔出血后脑血管痉挛的作用.中国微侵袭神经外科杂志(CMINSJ) , 2006, 11( 5):225-227.
    32 Aoki K, Zubkov AY, Ross IB, et al. Therapeutic effect of caspase inhibitors in the privention of apoptosis and reversal of chronic cerebral vasospasm[J]. J Clin Neurosci, 2002,9(6):672-677.
    33 Zhou C, M Yamaguchi, Kusaka G, et al. Caspase inhibitors prevent endothelial apoptosis and cerebral vasospasm in dog model of experimental subarachnoid hemorrhage[J]. Cereb Blood Flow Metab, 2004,24(4):419-431.
    34王樑,高国栋,赵振伟,等. TRAIL及其受体与蛛网膜下腔出血后痉挛动脉内皮细胞的凋亡.第四军医大学学报, 2005, 26(2):125-128.
    35 Friedman JR, Kaestner KH. The Foxa family of transcription factors in development and metabolism. Cell Mol Life Sci. 2006,63(19-20):2317-28..
    36 CLARK KL, HALAY ED, LA I E, et al. Co-crystal structure of the HNF23/fork head DNA-recognition motif resembles histone H5 [ J ]. Nature, 1993, 364 (6436) : 412 - 420.
    37甘立霞. FoxO转录因子在代谢调节及肿瘤抑制中的作用.第三军医大学学报, 2006, 28(12): 1347-1350.
    38 Kaestner KH, Knochel W, Martinez DE. Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev 2000;14:142–146.
    39 Larroux C, et al. Genesis and expansion of metazoan transcription factor gene classes. Mol. Biol. Evol 2008;25:980–996.996 [PubMed: 18296413] This paper provides a phylogenetic analysis of Fox genes, focusing on the early expansion of this family
    40 Mazet F, Yu JK, Liberles DA, Holland LZ, Shimeld SM. Phylogenetic relationships of the Fox (forkhead) gene family in the Bilateria. Gene 2003;316:79–89.89.
    41 Daitoku H, Fukamizu A. FOXO transcription factors in the regulatory networks of longevity. J Biochem. 2007,141(6):769-74.
    42 Boura E, Silhan J, Herman P, et al. Both the N-terminal loop and wing W2 of the forkhead domain of transcription factor Foxo4 are important for DNA binding. J Biol Chem. 2007, 282(11):8265-75.
    43李学斌,谢庄,石放雄,等. FOXO蛋白的修饰与细胞凋亡和癌变.生物化学与生物物理进展, 2005, 32(7): 600-603.
    44 Obsil T, Obsilova V. Structure/function relationships underlying regulation of FOXO transcription factors. Oncogene. 2008,27(16):2263-75.
    45 Tsai KL, Huang CY, Chang CH, et al. Crystal structure of the human FOXK1a-DNA complex and its implications on the diverse binding specificity of winged helix/forkhead proteins. J Biol Chem. 2006,281(25):17400-9..
    46李学斌,谢庄,石放雄. FOXO蛋白在动物细胞的分化、增殖、免疫、衰老调节中的作用.中国临床康复, 2006, 10(9): 158-162.
    47 http: / /www. biology. pomona. edu / fox. html
    48 Maiese K, Chong ZZ, Shang YC, et al. A "FOXO" in sight: targeting Foxo proteins from conception to cancer. Med Res Rev. 2009,29(3):395-418.
    49 Jacobs FM, van der Heide LP, Wijchers PJ, et al. FoxO6, a novel member of the FoxO class of transcription factors with distinct shuttling dynamics. J Biol Chem. 2003,19;278(38):35959-67.
    50 Hoekman MF, Jacobs FM, Smidt MP, et al. Spatial and temporal expression of FoxO transcription factors in the developing and adult murine brain. Gene Expr Patterns. 2006,6(2): 134-40.
    51 Jünger MA, Rintelen F, Stocker H, et al. The Drosophila forkhead transcription factor FOXO mediates the reduction in cell number associated with reduced insulin signaling. J Biol. 2003,2(3):20.
    52 Eric L Greer, Anne Brunet. FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene,2005,24:7410–7425.
    53 Gross DN, Wan M, Birnbaum MJ. The role of FOXO in the regulation of metabolism. Curr Diab Rep. 2009, 9(3):208-14.
    54 Tevosian S, Deconinck A, Tanaka M, et al. FOG-2, a cofactor for GATA transcription factors, is essential for heart morphogenesis and Development of coronary vessels from epicardium.Cell, 2000,101:729-39.
    55 Ramsey A.Saleem,Sharmila Banerjee-Basu,Fred B.Berry,et al. Structural and functional analyses of disease-causing missense mutations in the forkhead domain of FOXC1. Human Molecular Genetics, 2003,22;2993-3005.
    56 Kume T,Jiang H,Topczewska JM,et al.The murine winged helix transcription factors,Foxc1 and FOXC2, are both required for cardiovascular development and somitogenesis[J].Genes Dev, 2001, 15(18): 2470-2482.
    57 Traboulsi EI, Al-Khayer K, Matsumoto M, et al. Lymphedema-distichiasis syndrome and FOXC2 gene mutation. Am J Ophthalmol. 2002,134(4):592-6..
    58刘珉,刘伟. FOXC2的研究进展.上海第二医科大学学报, 2005, 25(7 ):757-761.
    59 Osawa H, Onuma H, MurakamiA, et al. Systematic search for single nucleotide polymorphisms in the FOXC2 gene: the absence of evidence for the association of three frequent single nucleotide polymorphisms and four common hap lotypes with Japanese type 2 diabetes [J]. Diabetes, 2003, 52 (2) : 562 - 567.
    60付艳,邓伟国,李玉林,等.叉头框c2在中轴骨骼发育过程中的作用.中国病理生理杂志[J].2004,20(11):1966-1971.
    61 Fang J.M, Dagenais S.L.,Erickson R.P.,et al.(2000)Mutations in Foxc2 (MFH-1), a forkhead family transcription factor, are responsible for the hereditary lymphedema-distichiasis syndrome. Am J Hum Genet,67(6):1382-1388.
    62 Bahuau M, Houdayer C, Tredano M, et al. FOXC2 truncating mutation in distichiasis, lymphedema, and cleft palate [ J ]. Clin Genet, 2002, 62 (6) : 470 - 473.
    63 Bell R,Brice G, Child AH, et al. Analysis of lymphoedema distichiasis families for FOXC2mutations reveals small insertions and deletions throughtout the gene[ J ]. Hum Genet, 2001, 108 m (6) : 546 -551.
    64 Kume T. Foxc2 transcription factor: a newly described regulator of angiogenesis. Trends Cardiovasc Med. 2008,18(6):224-8..
    65 Finegold DN,Kimak MA,Lawrence EC,et al.Truncating mutations in FOXC2 cause multiple lymphedema syndromes[J]. Hum Mol Genet,2001,10(11):1185-1189.
    66 Yang X, Smith U. Adipose tissue distribution and risk of metabolic disease: does thiazolidinedione- induced adipose tissue redistribution provide a clue to the answer? Diabetologia. 2007, 50(6): 1127-39.
    67 Yang X, Enerback S, Smith U, et al. Reduced exp ression of FOXC2 and brown adipogenic genes in human subjecswith insulin resistance . Obes Res, 2003, 52 (5) : 1292 - 1295.
    68 CerderbergA, GronningLM, Ahren B, et al. FOXC2 is awinged helix gene that counteracts obesity, hypertriglyceridemia, and diet induced insulin resistance[J]. Cell, 2001, 106: 563 - 573.
    69 Ridderstrale M, Carlsson E, KlannemarkM, et al. FOXC2 mRNA expression and 5’untranslated region polymorphism of the gene are associated with insulin resistance[J]. Diabetes, 2002, 51 (12) : 3554- 3560.
    70 KlannemarkM, Carlsson E, Cederberg A, et al. FOXC2 is a candidate gene for insulin rsistance [ R ]. ADA 62nd Scientific Sessions, 2002, 199.
    71 Sano H, Leboeuf JP, Novitskiy SV, et al. The Foxc2 transcription factor regulates tumor angiogenesis. Biochem Biophys Res Commun. 2010, 392(2):201-6.
    72 Walker MR , Kasprowicz DJ , Gersuk VH ,et al . Induction of Foxp3 and acquisition of T regulatory activity by stimulated human CD4 +CD25 - Tcells. J Clin Invest , 2003, 112 :1437-1443.
    73 Brunkow ME ,Jeffery EW,Hjerrild KA ,et al . Disruption of a new forkhead/ winged2helix protein , scurfin , results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet, 2001, 27 :68-73.
    74 Fontenot JD ,Gavin MA ,Rudensky AY,et al . Foxp3 programs the development and function of CD4 + CD25 + regulatory T cells. Nat Immunol, 2003 ,4 :330-336.
    75 Nakamura K, Kitani A ,Strober W. Cell contact2dependent immunosuppression by CD4 +CD25 + regulatory T cells is mediated by cell surface bound transforming growth factorβ. J Exp Med, 2001, 194 ,629-644.
    76 Peng Y,Laouar Y,Li MO ,et al . TGF2βregulates in vivo expansion of Foxp3-expressing CD4 +CD25 + regulatory T cells responsible for protection against diabetes. Proc Natl Acad Sci USA , 2004, 101 :4572-4577.
    77 Fantini MC,Becker C,Monteleone G,et al. Cutting edge :TGF-beta induces a regulatory phenotype in CD4 +CD25 - T cells through Foxp3 induction and down-regulation of Smad7.J Immunol , 2004 , 172 :5149-5153.
    78 Wildin RS ,Ramsdell F ,Peake J ,et al . X2linked neonatal diabetes mellitus ,enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet ,2001 ,27 :18-20.
    79 Bassuny WM,Ihara K,Sasaki Y,et al . A functional polymorphism in the promoter / enhancer region of the FOXP3/ Scurfin gene associated with type 1 diabetes. Immunogenetics, 2003,55 :149-156.
    80 Zavattari P ,Deidda E ,Pitzalis M,et al . No association between variation of the FOXP3 gene and common type 1 diabetes in the Sardinian population. Diabetes ,2004 ,53 :1911-1914.
    81. Ronnebaum SM, Patterson C. The FoxO family in cardiac function and dysfunction. Annu Rev Physiol. 2010,72:81-94.
    82.Arden KC. Multiple roles of FOXO transcription factors in mammalian cells point to multiple roles in cancer. Exp Gerontol. 2006,41(8):709-17.
    83 Reagan-Shaw S, Ahmad N. RNA interference-mediated depletion of phosphoinositide 3-kinase activates forkhead box class O transcription factors and induces cell cycle arrest and apoptosis in breast carcinoma cells. Cancer Res. 2006,66(2):1062-9.
    84 van der Horst A, Burgering BM. Stressing the role of FoxO proteins in lifespan and disease. Nat Rev Mol Cell Biol. 2007,8(6):440-50.
    85 Huang H, Tindall DJ. Dynamic FoxO transcription factors. J Cell Sci. 2007, 120(Pt 15):2479-87.
    86 ACCIL ID, ARDEN K C. FoxOs at the crossroads of cellular metabo-lism, differentiation, and transformation [ J ]. Cell, 2004, 117 ( 4) : 421 - 426.
    87 ANDERSON M J, V IARS C S, CZEKAY S, et al. Cloning and characterization of three human forkhead genes that comp rise an FKHR-like gene subfamily [ J ]. Genomics, 1998, 47 (2) : 187 - 199.
    88 FURUYAMA T, NAKAZAWA T, NAKANO I, et al. Identification of the differential distribution patterns of mRNAs and consensus binding sequences formouse DAF216 homologues [ J ]. Biochem J, 2000, 349 ( Pt 2) : 629 - 634.
    89 van der Heide LP, Jacobs FM, Burbach JP, Hoekman MF, Smidt MP. FoxO6 transcriptional activity is regulated by Thr26 and Ser184, independent of nucleo-cytoplasmic shuttling. Biochem J. 2005, 391(Pt 3):623-9..
    90 BARTHEL A, SCHMOLL D, UNTERMAN T G. FoxO p roteins in insulin action and metabolism [ J ]. Trends EndocrinolMetab, 2005, 16(4) : 183 - 189.
    91 Dijkers PF, Medema RH, Pals C, et al. Forkhead transcription factor FKHR-L1 modulates cytokine-dependent transcriptional regulation of p27(KIP1). Mol Cell Biol. 2000,20(24):9138-48.
    92 Ward EC, Hoekstra AV, Blok LJ, et al. The regulation and function of the forkhead transcription factor, Forkhead box O1, is dependent on the progesterone receptor in endometrial carcinoma. Endocrinology. 2008,149(4):1942-50.
    93 Ramaswamy S, Nakamura N, Sansal I, Bergeron L, Sellers WR. A novel mechanism of generegulation and tumor suppression by the transcription factor FKHR. Cancer Cell. 2002,2(1):81-91.
    94 Furukawa-Hibi Y, Kobayashi Y, Chen C, Motoyama N. FOXO transcription factors in cell-cycle regulation and the response to oxidative stress. Antioxid Redox Signal. 2005,7(5-6):752-60.
    95 Kops GJ, Medema RH, Glassford J, et al. Control of cell cycle exit and entry by protein kinase B-regulated forkhead transcription factors. Mol Cell Biol. 2002 ,22(7):2025-36.
    96 Kim S, Kim Y, Lee J, Chung J. Regulation of FOXO1 by TAK1-Nemo-like kinase pathway. J Biol Chem. 2010,285(11):8122-9.
    97 Chen J, Yusuf I, Andersen HM, Fruman DA. FOXO transcription factors cooperate with delta EF1 to activate growth suppressive genes in B lymphocytes. J Immunol. 2006,176(5):2711-21.
    98 Furukawa-Hibi Y, Yoshida-Araki K, Ohta T, et al. FOXO forkhead transcription factors induce G(2)-M checkpoint in response to oxidative stress. J Biol Chem. 2002, 277(30):26729-32.
    99 Schmidt M, Fernandez de Mattos S, van der Horst A, et al. Cell cycle inhibition by FoxO forkhead transcription factors involves downregulation of cyclin D. Mol Cell Biol. 2002, 22(22):7842-52.
    100 Martínez-Gac L, Marqués M, García Z, et al. Control of cyclin G2 mRNA expression by forkhead transcription factors: novel mechanism for cell cycle control by phosphoinositide 3-kinase and forkhead. Mol Cell Biol. 2004,24(5):2181-9.
    101 Fukuoka M, Daitoku H, Hatta M, et al. Negative regulation of forkhead transcription factor AFX (Foxo4) by CBP-induced acetylation. Int J Mol Med. 2003,12(4):503-8.
    102 Kuiperij HB, van der Horst A, Raaijmakers J, et al. Activation of FoxO transcription factors contributes to the antiproliferative effect of cAMP. Oncogene. 2005, 24(12):2087-95.
    103 Abid MR, Yano K, Guo S, et al. Forkhead transcription factors inhibit vascular smooth muscle cell proliferation and neointimal hyperplasia. J Biol Chem. 2005, 80(33):29864-73.
    104 Yang H, Zhao R, Yang HY, Lee MH. Constitutively active FOXO4 inhibits Akt activity, regulates p27 Kip1 stability, and suppresses HER2-mediated tumorigenicity. Oncogene. 2005, 24(11):1924-35.
    105 Burgering BM, Medema RH. Decisions on life and death: FOXO Forkhead transcription factors are in command when PKB/Akt is off duty. J Leukoc Biol. 2003, 73(6): 689-701.
    106 Wolfrum C, Asilmaz E, Luca E, et al. Foxa2 regulates lipid metabolism and ketogenesis in the liver during fasting and in diabetes. Nature. 2004,432(7020):1027-32.
    107. Furuyama T, Kitayama K, Yamashita H, et al. Forkhead transcription factor FOXO1 (FKHR)- dependent induction of PDK4 gene expression in skeletal muscle during energy deprivation. Biochem J. 2003,375(Pt 2):365-71.
    108 GREER E L, BRUNETA. FOXO transcrip tion factors at the interface between longevity and tumor supp ression [ J ]. Oncogene, 2005, 24 (50) : 7410 - 7425.
    109 Nowak K, Killmer K, Gessner C, Lutz W. E2F-1 regulates expression of FOXO1 and FOXO3a.Biochim Biophys Acta. 2007,1769(4):244-52.
    110 Fu Z, Tindall DJ. FOXOs, cancer and regulation of apoptosis. Oncogene. 2008,27(16):2312-9.
    111 Hisahara S, Chiba S, Matsumoto H, Horio Y. Transcriptional regulation of neuronal genes and its effect on neural functions: NAD-dependent histone deacetylase SIRT1 (Sir2alpha). J Pharmacol Sci. 2005,98(3):200-4..
    112 Tran H, Brunet A, Grenier JM, et al. DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein. Science. 2002 ,296(5567):530-4.
    113 Tsai KL, Sun YJ, Huang CY, Yang JY, Hung MC, Hsiao CD. Crystal structure of the human FOXO3a-DBD/DNA complex suggests the effects of post-translational modification. Nucleic Acids Res. 2007;35(20):6984-94.
    114杨治芳,周智广. FOXP3及其与自身免疫性糖尿病.国外医学内分泌学分册2005, 25(2): 91-93.
    115 Greer EL, Brunet A. FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene. 2005,24(50):7410-25..
    116 BARTHEL A, SCHMOLL D, UNTERMAN T G. FoxO p roteins in insulin action and metabolism [ J ]. Trends EndocrinolMetab, 2005, 16(4) : 183 - 189.
    117 ZHAO X, GAN L, PAN H, et al. Multip le elements regulate nuclear/cytop lasmic shuttling of FOXO1: characterization of phosphorylation and 14-3-3-dependent and 2independentmechanisms [ J ]. Biochem J, 2004, 378 ( Pt 3) : 839 - 849.
    118 RENA G, WOODS Y L, PRESCOTTA R, et al. Two novel phosphorylation sites on FKHR that are critical for its nuclear exclusion [ J ]. EMBO J, 2002, 21 (9) : 2263 - 2271.
    119 So CW, Cleary ML. MLL-AFX requires the transcriptional effector domains of AFX to transform myeloid progenitors and transdominantly interfere with forkhead protein function. Mol Cell Biol. 2002,22(18):6542-52..
    120 MottaMC,Divecha N, LemieuxM, et al. Mammalian SIRT1 rep resses forkhead transcrip tion factors [ J ]. Cell, 2004, 116 ( 4 ) : 551 -563.
    121 GAN L, HAN Y, BASTIANETTO S, et al. FoxO-dependent and independent mechanisms mediate SirT1 effects on IGFBP21 gene exp ression [ J ]. Biochem Biophys Res Commun, 2005, 337 ( 4) : 1092 -1096.
    122 GIANNAKOU M E, PARTR IDGE L. The interaction between FOXO and SIRT1: tipp ing the balance towards survival [ J ]. Trends CellBiol, 2004, 14 (8) : 408 - 412.
    123 Bouras T, Fu M, Sauve AA, et al. SIRT1 deacetylation and repression of p300 involves lysine residues 1020/1024 within the cell cycle regulatory domain 1. J Biol Chem. 2005,280(11):10264-76..
    124 Giannakou ME, Partridge L. The interaction between FOXO and SIRT1: tipping the balancetowards survival. Trends Cell Biol. 2004,14(8):408-12.
    125 Dehan E, Pagano M. Skp2, the FoxO1 hunter. Cancer Cell. 2005, 7(3):209-10.
    126 HU M C, LEE D F, XIAW, et al. IkappaB kinase p romotes tumorigenesis through inhibition of forkhead FOXO3a [ J ]. Cell, 2004, 117(2) : 225 - 237.
    127 Ahlgren U, Jonsson J, Edlund H. Themorphogenesis of the pancreatic mesenchyme is uncoup led from that of the pancreatic ep ithelium in IPF1 /PDX12deficient mice [ J ]. Development, 1996, 122 ( 5 ) : 1409 - 1416.
    128 HarbeckMC, Louie DC, Howland J, et al. Exp ression of insulin recep tormRNA and insulin recep tor substrate 1 in pancreatic islet beta cells[ J ]. Diabetes, 1996, 45 (6) : 711 - 717.
    129 Martinez SC, Tanabe K, Cras-Méneur C, et al. Inhibition of Foxo1 protects pancreatic islet beta-cells against fatty acid and endoplasmic reticulum stress-induced apoptosis. Diabetes. 2008,57(4):846-59.
    130 Brownawell AM, Kops GJ, Macara IG, Burgering BM. Inhibition of nuclear import by protein kinase B (Akt) regulates the subcellular distribution and activity of the forkhead transcription factor AFX. Mol Cell Biol. 2001,21(10):3534-46..
    131 Boldin MP, Goncharov TM, Goltsev YV, et al. Involvement of MACH, a novel MORT1/ FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell. 1996, 85(6):803-15.
    132 Behzad H, Jamil S, Denny TA, et al. Cytokine-mediated FOXO3a phosphorylation suppresses FasL expression in hemopoietic cell lines: investigations of the role of Fas in apoptosis due to cytokine starvation. Cytokine. 2007,38(2):74-83.
    133 Yang JY, Hung MC. A new fork for clinical application: targeting forkhead transcription factors in cancer. Clin Cancer Res. 2009,15(3):752-7..
    134 Urbich C, Knau A, Fichtlscherer S, et al. FOXO-dependent expression of the proapoptotic protein Bim: pivotal role for apoptosis signaling in endothelial progenitor cells. FASEB J. 2005, 19(8):974-6.
    134 Modur V, Nagarajan R, Evers BM, Milbrandt J. FOXO proteins regulate tumor necrosis factor-related apoptosis inducing ligand expression. Implications for PTEN mutation in prostate cancer. J Biol Chem. 2002,277(49):47928-37.
    135 Wagner KW, Punnoose EA, Januario T, et al. Death-receptor O-glycosylation controls tumor-cell sensitivity to the proapoptotic ligand Apo2L/TRAIL. Nat Med. 2007 ,13(9):1070-7.
    136 Puthalakath H, Huang DC, O'Reilly LA, et al. The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Mol Cell. 1999, 3(3):287-96.
    137 Adams JM, Cory S. Bcl-2-regulated apoptosis: mechanism and therapeutic potential. Curr Opin Immunol. 2007,19(5):488-96.
    138 Tang TT, Dowbenko D, Jackson A, et al. The forkhead transcription factor AFX activatesapoptosis by induction of the BCL-6 transcriptional repressor. J Biol Chem. 2002, 277(16):14255-65.
    139. Halestrap AP, Doran E, Gillespie JP, et al. Mitochondria and cell death. Biochem Soci Trans, 2000, 28: 170-177.
    140 Jia P, Chen G, Huang X, et al. Arsenic trioxide induced multiple myeloma cell apoptosis via disruption of mitochondrial transmembrane potential and activation of caspase-3. Chin Med J(Engl), 2001, 114: 119-24.
    141 Yang J, Liu X, Bhalla K,et al. Prevention of apoptosis by bcl-2: release of cytochrome C from mitochondria blocked. Science, 1997,257(21): 1129~1130
    142 Kluck R M, Bossy-Wetzel E, Green D R,et al. The release of cytochrome C from mitochondria: A primary Site for Bcl-2 regulation of apoptosis. Science, 1997,275(21): 1132~1136
    143. Cheng EH, Kisch DG, Clem RT, et al. Conversion of bcl-2 to bax-like death factor by caspases. Science, 1997, 278: 1966-68.
    144 Thress K, Kornbluth S, Smith JJ. Mitochondria at the crossroad of apoptotic cell death. J Bioenerg Biomembr, 1999, 31(4): 321-6.
    145 Kim SJ, Winter K, Nian C, et al. Glucose-dependent insulinotropic polypeptide (GIP) stimulation of pancreatic beta-cell survival is dependent upon phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB) signaling, inactivation of the forkhead transcription factor Foxo1, and down-regulation of bax expression. J Biol Chem. 2005,280(23):22297-307.
    146 Luo X , Budihardjo I , Zou H , Slaughter C , Wang X. Bid , a Bcl2 interacting protein , mediates cytochrome c release f rom mitochondria in response to activation of cell surface deat h receptors [J ] . Cel l , 1998 ,94 (4) :481 - 490.
    147 Li H , Zhu H , Xu CJ , Yuan J . Cleavage of Bid by caspase 8 mediates t he mitochondrial damage in t he Fas pathway of apoptosis [J ] . Cel l , 1998 ,94 (4) :491 - 501.
    148 McDonnell JM , Fushman D , Milliman CL , et al. Solution st ructure of t he proapoptotic molecule BID : a st ructural basis for apoptotic agonist s and antagonist s [J ] . Cel l , 1999 ,96 (5) :625 - 634.
    149 Chou JJ , Li H , Salvesen GS , et al. Solution st ructure of Bid , an int racellular amplifier of apoptotic signaling[J ] . Cel l , 1999 ,96 (5) :615 - 624.
    150 Yin XM , Wang K , Gross A , et al. Bid - deficient mice are resistant to Fas - induced hepatocellular apoptosis [J ] . Natu re , 1999 ,400(6747) :886 - 891.
    151 Wang K, Yin XM, Chao DT, et al. BID: A Novel BH3 domain2only death agonist [J ] . Genes Develop , 1996 , 10 (22) : 2859-2869.
    152 Korsmeyer SJ , Weim C , Saitom, et al. Proapoptotic cascade activates BID , which oligomerizes BAK or BAX into pores that result in the release of cytochrome c[J ] . Cell Death Diff , 2000 , 7 (12) : 1166-1173.
    153 Kim TH , Zhao Y, Barber MJ , et al. Bid-induced cytochrome c release is mediated by a pathway independent of mitochondrial permeability transition pore and Bax[J ] . J Biol Chem , 2000 , 275 (50) : 39474-39481.
    154 Wang K, Yin XM, Copeland NG,et al. BID, a proapoptotic BCL-2 family member, is localized to mouse chromosome 6 and human chromosome 22q11. Genomics. 1998,53(2):235-8.
    155 Wei MC , Lindsen T, Mootha VK, et al. tBID, a membrane-targeted death ligand , oligomerizes BAKto release cytochrome c[J ] . Genes Dev , 2000 , 14 (16) : 2060-2071.
    156 David , CS Huang , St rasser A. BH3 - only proteins - essential initiators of apoptosis cell deat h [J ] . Cel l , 2000 ,103 :839 - 842.
    157 Stoka V , Turk B , Schendel SL ,et al. Lysosomal Protease Pat hways to Apoptosis . cleavage of Bid , not pro - caspases , is t he most likely route [J ] . J Biol Chem , 2001 ,276 :3149 - 3157.
    158 Heibein JA , Goping IS , Barry M , et al. Granzyme B - mediated Cytochrome c Release Is Regulated by t he Bcl - 2 Family Members Bid and Bax [J ] . J Exp Med , 2000 ,192 :1391 - 1402.
    159 Zinkel SS. Investigation of the proapoptotic BCL-2 family member bid on the crossroad of the DNA damage response and apoptosis. Methods Enzymol. 2008,442:231-50.
    160 Zinkel SS, Hurov KE, Ong C, et al. A role for proapoptotic BID in the DNA-damage response. Cell. 2005,122(4):579-91.
    161 Charvet C, Alberti I, Luciano F, et al. Proteolytic regulation of Forkhead transcription factor FOXO3a by caspase-3-like proteases. Oncogene. 2003,22(29):4557-68.
    162 Xin M G, Deng X M. Nicotine inactivation of the proapoptotic function of bax through phosphorylation. J Biol Chem, 2005, 280 (11) : 10781- 10789.
    163 Song G, Ouyang G L, Bao S D. The activation of Akt /PKB signaling pathway and cell survival. J Cell Mol Med, 2005, 9(1) : 59- 71.
    164 Koichi Hamada, Takehiko Sasaki, Pandelakis A. Koni, et al. (2005).The PTEN/PI3K pathway governs normal vascular development and tumor angiogenesis. Genes & Development 2005 19:2054-2065.
    165 Oudit GY, Crackower MA, Eriksson U, Sarao R, Kozieradzki I, Sasaki Tet al.Phosphoinositide 3-kinase gamma-deficient mice are protected from isoproterenol-induced heart failure. Circulation 2003;108: 2147–2152.
    166 Jackson SF, Schoenwaelder SM. Type I phosphoinositide 3-kinases: potential antithrombotic targets? Cell Mol Life Sci. 2006,63(10):1085-90.
    167 Doepfner KT, Boller D, De Laurentiis A, et al. Recent patents of gene sequences relative to the phosphatidylinositol 3-kinase/Akt pathway and their relevance to drug discovery. Recent Pat DNA Gene Seq. 2007,1(1):9-23.168 Arne Gericke, Mary Munson , Alonzo H. Ross et al. Regulation of the PTEN phosphatase. Gene 2006, 374: 1–9.
    169 Cai Z, Semenza GL. PTEN activity is modulated during ischemia andreperfusion: involvement in the induction and decay of preconditioning. Circulation Research 2005, 97: 1351–1359.
    170黄秀兰,崔国辉,周克元. PI3K-Akt信号通路与肿瘤细胞凋亡关系的研究进展.癌症, 2008, 27( 3) : 331- 336
    171 Dervis AM Sa lih and Anne Brunet. FOXO transcription factors in the maintenance of cellular homeostasis during aging. Current Opinion in Cell Biology 2008, 20:126–136.
    172 Huang H, Tindall DJ. FOXO factors: a matter of life and death. Future Oncol. 2006, 2(1):83-9.
    173 Nakashima K, Yakabe Y, Yamazaki M, et al. Effects of fasting and refeeding on expression of atrogin-1 and Akt/Foxo signaling pathway in skeletal muscle of chicks. Biosci Biotechnol Biochem. 2006, 70(11):2775-8.
    174 Martinez SC, Cras-Meneur C, Bernal-Mizrachi E, et al. Glucose Regulates FoxO1 through insulin receptor signaling in the pancreatic isletβ-cell. Diabetes. 2006, 55(6):1581-91.
    175 Kajstura J, Leri A, Finato N, et al. Myocyte proliferation in end stage cardiac failure in humans. Proc Nat Acad Sci USA, 1998,95(15):8801-5.
    176 LiZ, Bing OH, Long X, et al. Increased cardiomyocyte apoptosisduring the transition to heart failure in the spontaneously hypertensive rat. Am J Physiol. 1997, 272 (5Pt 2): H2313-9.
    177 Matsuzaki H, Ichino A, Hayashi T, et al. Regulation of intracellular localization and transcriptional activity of FOXO4 by protein kinase B through phosphorylation at the motif sites conserved among the FOXO family. J Biochem. 2005,138(4):485-91.
    178 Boerth SR, Zimmer DB, Artman M. Steady-state mRNA levels of the sarcolemmal Na(+)-Ca2+ exchanger peak near birth in developing rabbit and rat hearts. Circ Res. 1994,74(2):354-9.
    179 Li JM, Brooks G. Downregulation of cyclin-dependent kinase inhibitors p21 and p27 in pressure-overload hypertrophy. Am J Physiol. 1997,273(3 Pt 2):H1358-67.
    180 Birkenkamp KU, Coffer PJ. Regulation of cell survival and proliferation by the FOXO (Forkhead box, class O) subfamily of Forkhead transcription factors. Biochem Soc Trans. 2003,31(Pt 1):292-7.
    181 Zhang H. Skip the nucleus, AKT drives Skp2 and FOXO1 to the same place? Cell Cycle. 2010,9(5). [Epub ahead of print].
    182 Alvarez B, Martínez-A C, Burgering BM, et al. Forkhead transcription factors contribute to execution of the mitotic programme in mammals. Nature. 2001,413(6857):744-7.
    183 Castrillon DH, Miao L, Kollipara R, et al. Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a. Science. 2003,301(5630):215-8.
    184 Zhang HS, Cao EH, Qin JF. Homocysteine induces cell cycle G1 arrest in endothelial cellsthrough the PI3K/Akt/FOXO signaling pathway. Pharmacology. 2005, 74(2):57-64.
    185 Jeong S J, Pise-Masison C A, Radonovich M F, et al. Activated Akt regulates NF-κB activation, p53 inhibition and cell survival in HTLV-1-transformed cells [ J] . Oncogene, 2005, 24( 44) : 6719- 6728.
    186 Nogueira V, Park Y, Chen CC, et al. Akt determines replicative senescence and oxidative or oncogenic premature senescence and sensitizes cells to oxidative apoptosis. Cancer Cell. 2008,14(6): 458-70.
    187吴日平,黄昌明. PI3K/Akt信号通路与肿瘤关系的研究进展.医学综述, 2009, 15(10):1501-1504.
    188 Vander Heiden MG, Plas DR , Rathmell JC, et al . Growth factors can influence cell growth and survival through effects on glucose metabolism[J] . Mol Cell Biol, 2001, 21 (17) : 5899-5912.
    189 Dan HC , Sun M , Kaneko S , et al . Akt Phosphorylation and Stabilization of X2linked Inhibitor of Apoptosis Protein (XIAP) [J ] . J Biol Chem , 2004 ,279 (7) :5405-5412.
    190 Veronique Nogueira1,Youngkyu Park1,Chia-Chen Chen1,et al. Akt Determines Replicative Senescence and Oxidative or Oncogenic Premature Senescence and Sensitizes Cells to Oxidative Apoptosis. Cancer Cell, 2008,14(6):458-470.
    191 Karin Ecker, Ludger Hengst. Skp2: caught in the Akt. Nature Cell Biology, 2009,11:377 - 379.
    192 Goto T, Takano M, Albergaria A, et al. Mechanism and functional consequences of loss of FOXO1 expression in endometrioid endometrial cancer cells. Oncogene. 2008 ,27(1):9-19.
    193 Hussain AR, Al-Rasheed M, Manogaran PS, et al. Curcumin induces apoptosis via inhibition of PI3'-kinase/AKT pathway in acute T cell leukemias. Apoptosis. 2006,11(2):245-54.
    194 Uddin S, Hussain AR, Siraj AK, et al. Role of phosphatidylinositol 3'-kinase/AKT pathway in diffuse large B-cell lymphoma survival. Blood. 2006,108(13):4178-86.
    195 Jin S, Pang RP, Shen JN, et al. Grifolin induces apoptosis via inhibition of PI3K/AKT signalling pathway in human osteosarcoma cells. Apoptosis. 2007,12(7):1317-26.
    196 Li CJ, Chang JK, Chou CH, et al. The PI3K/Akt/FOXO3a/p27Kip1 signaling contributes to anti-inflammatory drug-suppressed proliferation of human osteoblasts. Biochem Pharmacol. 2010,79(6): 926-37.
    197 Adachi M, Osawa Y, Uchinami H, et al. The forkhead transcription factor FoxO1 regulates proliferation and transdifferentiation of hepatic stellate cells. Gastroenterology. 2007,132(4):1434-46.
    198 Dong S, Kang S, Gu TL, et al. 14-3-3 Integrates prosurvival signals mediated by the AKT and MAPK pathways in ZNF198-FGFR1-transformed hematopoietic cells. Blood. 2007,110(1):360-9.
    199 Sunters A, Fernández de Mattos S, Stahl M, et al. FoxO3a transcriptional regulation of Bim controls apoptosis in paclitaxel-treated breast cancer cell lines. J Biol Chem. 2003, 278(50):49795-805.
    200 Frescas D, Valenti L, Accili D. Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes. J Biol Chem. 2005,280(21): 20589-95.
    201 Kobayashi Y, Furukawa-Hibi Y, Chen C, et al. SIRT1 is critical regulator of FOXO-mediated transcription in response to oxidative stress. Int J Mol Med. 2005,16(2):237-43.
    202 Guo S, et al. Phosphorylation of serine 256 by protein kinase B disrupts transactivation by FKHR and mediates effects of insulin on insulin-like growth factor-binding protein-1 promoter activity through a conserved insulin response sequence. J. Biol. Chem 1999;274:17184–17192.
    203 Hall RK, et al. Regulation of phosphoenolpyruvate carboxykinase and insulin-like growth factorbinding protein-1 gene expression by insulin. The role of winged helix/forkhead proteins. J. Biol. Chem 2000, 275: 30169–30175.
    204. Rena G, Guo S, Cichy SC, Unterman TG, Cohen P. Phosphorylation of the transcription factor forkhead family member FKHR by protein kinase B. J. Biol. Chem 1999, 274:17179–17183.
    205 Xia SJ, Barr FG. Analysis of the transforming and growth suppressive activities of the PAX3–FKHR oncoprotein. Oncogene 2004;23:6864–6871.
    206 Yang JY, Zong CS, Xia W, et al. ERK promotes tumorigenesis by inhibiting FOXO3a via MDM2-mediated degradation. Nat Cell Biol. 2008,10(2):138-48.
    207 Adachi M, Osawa Y, Uchinami H, et al. The forkhead transcription factor FoxO1 regulates proliferation and transdifferentiation of hepatic stellate cells. Gastroenterology. 2007,132(4):1434-46.
    208 Chiribau CB, Cheng L, Cucoranu IC, et al. FOXO3A regulates peroxiredoxin III expression in human cardiac fibroblasts. J Biol Chem. 2008,283(13):8211-7.
    209 Shankar S, Chen Q, Srivastava RK. Inhibition of PI3K/AKT and MEK/ERK pathways act synergistically to enhance antiangiogenic effects of EGCG through activation of FOXO transcription factor. J Mol Signal. 2008,3:7
    210 Kikuno N, Shiina H, Urakami S, et al. Knockdown of astrocyte-elevated gene-1 inhibits prostate cancer progression through upregulation of FOXO3a activity. Oncogene. 2007,26(55):7647-55.
    211 Asada S, Daitoku H, Matsuzaki H, et al. Mitogen-activated protein kinases, Erk and p38, phosphorylate and regulate Foxo1. Cell Signal. 2007,19(3):519-27.
    212 Vogt PK, Jiang H, Aoki M. Triple layer control: phosphorylation, acetylation and ubiquitination of FOXO proteins. Cell Cycle. 2005, 4(7):908-13.
    213 Seoane J, Le HV, Shen L, Anderson SA, MassaguéJ. Integration of Smad and forkhead pathways in the control of neuroep ithelial and glioblastoma cell proliferation [ J ]. Cell, 2004, 117 (2) : 211 - 223.
    214 Essers MA, de Vries-Smits LM, Barker N, Polderman PE, Burgering BM, Korswagen HC.. Functional interaction between beta2catenin and FOXO in oxidative stress signaling [ J ]. Science, 2005,308 (5725) : 1181 - 1184.
    215 Yamamura Y, Lee W L, Inoue K, et al. RUNX3 cooperates with FoxO3a to induce apop tosis in gastric cancer cells [ J ]. J Biol Chem, 2006, 281 (8) : 5267 - 5276.
    216 Yang W, Dolloff NG, El-Deiry WS. ERK and MDM2 prey on FOXO3a. Nat Cell Biol. 2008,10(2):125-6.
    217 Janjua N, Mayer SA. Cerebral vasospasm after subarachnoid hemorrhage[J]. CurrOp in Crit Care,2003,9(2):113-119
    218 Bendok BR ,Getch CC ,Malisch TW,et al . Treatment of aneurismal subarachnoid hemorrhage[J ] . Semin Neurol ,1998 ,18 :521 -531.
    219 Meguro T, Clower BR, Carpenter R, et al. Improved rat model for cerebral vasospasm studies [J]. Neurol Res, 2001; 23(7): 761-766.
    220 Suzuki H, Kanamaru K, Tsunoda H, et al. Heme oxygenase-1 gene induction as an intrinsic regulation against delayed cerebral vasospasm in rats [J]. J Clin Invest, 1999; 104(1): 59-66.
    221 Harada S, Kamiya K, Masago A, et al. Subarachnoid hemorrhage induces c-fos, c-jun and hsp70 mRNA expression in rat brain [J]. Neuroreport, 1997; 8(15): 3399-3404.
    222 Megyesi JF, Vollrath B, Cook DA, et al. In vivo animal models of cerebral vasospasm: a review [J]. Neurosurgery, 2000; 46(2): 448-461.
    223 Titova E, Ostrowski RP, Zhang JH, Tang J. Experimental models of subarachnoid hemorrhage for studies of cerebral vasospasm. Neurol Res. 2009;31(6):568-81.
    224 Bederson JB, Germano IM, Guarino L. Cortical blood flow and cerebral perfusion pressure in a new noncraniotomy model of subarachnoid hemorrhage in the rat. Stroke 1995; 26: 1086–1091
    225 Veelken JA, Laing RJ, Jakubowski J. The Sheffield model of subarachnoid hemorrhage in rats. Stroke 1995; 26: 1279–1283
    226 Svendgaard NA, Brismar J, Delgado TJ, et al. Subarachnoid haemorrhage in the rat: Effect on the development of vasospasm of selective lesions of the catecholamine systems in the lower brain stem. Stroke 1985; 16: 602–608
    227 Delgado TJ, Brismar J, Svendgaard NA. Subarachnoid haemorrhage in the rat: Angiography and fluorescence microscopy of the major cerebral arteries. Stroke 1985; 16: 595–602
    228 Satoh M, Date I, Ohmoto T, et al.The expression and activation of matrix metalloproteinase1 after subarachnoid haemorrhage in rate. JActa Neurochirurgica, 2005,147: 187.
    229 Giselle F.CA,Mathiesen,Tiit,Svendgaard,Niels- Aage.A new experimental model in rats for study of the pathophysiology of subarachoid hemorrhage[J].J Neuroreport, 2002,13:2553.
    230 Mayberg MR , Okada T, Bark DH. The significance of morphological changes in cerebral arteries after subarachnoid hemorrhage[J ] . J Neurosurg , 1990 , 72(4) : 626 - 633.
    231 Findlay JM, Weir BK, Kanamaru K, et al . Arterial wall changes in cerebral vasospasm[ J ] . Neurosurgery , 1989 , 25(5) :736 - 746.
    232 Shimoda M,Takeuchi M,Tominaga J,et al. Asymptomatic versus symptomatic infarcts from vasospasm in patients with subarachnoid hemorrhage: serial magnetic resonance imaging[J]. Neurosurgery,2001,49(6):1341-8
    233 Dumont AS,Dumont RJ,Chow MM,et al. Cerebral vasospasm after subarachnoid hemorrhage: putative role of inflammation [J]. Neurosurgery,2003,53(1):123-33
    234 Ryba MS, Gordon-Krajcer W, Walski M, Chalimoniuk M, Chrapusta SJ. Hydroxylamine attenuates the effects of simulated subarachnoid hemorrhage in the rat brain and improves neurological outcome. Brain Res. 1999;850(1-2):225-33.
    235姚维成,邢如新,兰小磊,王淑珍万金娥,刘学玲,杨新生。水通道蛋白与大鼠蛛网膜下腔出血后脑水肿形成的关系及地塞米松的影响,山东医药,2007,47(24):25-26
    236杨国芳;曹冠柏。尼莫地平预防创伤性蛛网膜下腔出血所致的脑血管痉挛,临床神经外科杂志,1998,3(1):22-23
    237齐尚书,李新华,刘恒方,孔德枝,刘尊敬。尼莫地平加脑脊液置换对蛛网膜下腔出血脑血管痉挛的疗效观察,中国实用神经疾病杂志,2007,10(2):27-28
    238 Mathisen DJ . Tracheal tumors. Chest Surg Clin N Am ,1996 ,6 (4) :875- 898.
    239 Wilson RF ,Steiger Z,Jacobs J ,et al . Temporary partial cardiopulmonary bypass during emergency operative management of near tracheal occlusion. Anesthesiology ,1984 ,61 (1) :103 - 105
    238 Menziea SA, Betz AL, Hoff JT, Contributions of ions and albumin to the formation and resolution of ischemic brain edema. J Neuro surg , 1993, 78 (2) : 257-266.
    239 GermanòA, d'Avella D, Imperatore C, Caruso G, Tomasello F. Time-course of blood-brain barrier permeability changes after experimental subarachnoid haemorrhage. Acta Neurochir (Wien). 2000;142(5):575-80; discussion 580-1.
    240陈立华;杨于嘉;刘运生;何正文;秦天森;马建荣;陶永光;曹美鸿.冷冻伤性脑水肿的发生机制及尼莫地平治疗作用的实验研究,中华创伤杂志,1998,14(5):303-306
    241 Brunet A,Sweeney LB,Sturgill JF,et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science,2004,303:2011–2015.
    242 Tzivion G, Luo Z, Avruch J. A dimeric 14-3-3 protein is an essential cofactor for Raf kinase activity. Nature 1998;394:88–92.
    243 Yaffe MB, Rittinger K, Volinia S, et al. The structural basis for 14-3-3:phosphopeptide binding specificity. Cell 1997;91:961–71.
    244 Nomura M, Shimizu S, Sugiyama T,et al. 14-3-3 interacts directly with and negatively regulates pro-apoptotic Bax. J Biol Chem 2003;278(3):2058–65.
    245 Lee SK, Park SO, Joe CO, et al. Interaction of HCV core protein with 14-3-3epsilon protein releases Bax to activate apoptosis. Biochem Biophys Res Commun. 2007,352 (3):756-62.
    246 Basu S, Totty NF, Irwin MS, et al. Akt phosphorylates the Yes-associated protein, YAP, to induce interaction with 14-3-3 and attenuation of p73-mediated apoptosis. Mol Cell 2003;11(1):11–23.
    247 Berdichevsky A, Viswanathan M, Horvitz HR, et al. C. elegans SIR-2.1 interacts with 14-3-3 proteins to activate DAF-16 and extend life span. Cell. 2006,125(6):1165-77.
    248 Yang JY, Xia W, Hu MC. Ionizing radiation activates expression of FOXO3a,Fas ligand,and Bim,and induces cell apoptosis. Int J Oncol, 2006,29:643-648.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700