用户名: 密码: 验证码:
功能性论证雌醌代谢酶基因多态性与乳腺癌发生易感性的关联
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:谷胱甘肽硫转移酶(GST)M1基因在乳腺癌发生中的复杂地位
     雌激素是引起乳腺癌的重要风险因素,雌激素醌类代谢产物是引起基因突变、导致乳腺癌发生的重要元凶。在正常乳腺组织中,部分Ⅱ期代谢酶承担着代谢雌醌或转化雌醌的作用。雌醌既能被醌氧化还原酶(NQO)还原形成半醌或其他物质后经由COMT途径被代谢;也可以通过谷胱甘肽硫转移酶(GST)途径被结合后降解清除。因此,NQO和GST这两类雌醌代谢酶与乳腺癌关系密切。很多研究针对GSTM1基因缺失多态与乳腺癌的发生风险开展了研究,但目前尚无一致性结论。不仅如此,此前的研究仅区分GSTM1有或无的状态,GSTM1基因剂量效应与乳腺癌发生的关系至今未被阐明。本研究第一部分中,我们首先开展了包括1920例研究对象的病例对照研究。结果显示GSTM1-null型(GSTM1-/-)相对于GSTM1-present型[包括纯合野生型(+/+)和杂合型(+/-)]提高了乳腺癌发生的风险。将我们的结果联合了40个相关研究进行Meta分析,得到总OR值为1.10(P<0.001)。出乎意外的是,后续三分法研究提示,GSTM1+/+型相对于GSTM1+/-型也是风险型。为了深入研究GSTMl基因剂量与乳腺癌发生之间的关系,我们对GSTM1基因内的单核苷酸多态(SNP)进行了分析,发现一个位于GSTM1启动子区域的多态与乳腺癌发生显著相关。该多态能影响所在基因序列与转录因子AP-2α的结合活性,并最终影响启动子活性与GSTM1的mRNA表达水平。然而,该SNP低活性的等位基因对应于保护性作用。我们的结果提示GSTM1在乳腺癌发生中具有相对复杂的基因剂量关系,而非原先所预测的那样呈现乳腺癌风险与基因剂量是线性关系,而是U型曲线关系。从基因剂量效应来看,大概GSTM1单等位基因60-70%的表达即可满足正常生理对抗乳腺癌致病代谢物的需要。GSTM1功能完全缺失或者活性过强均是有害的。这一复杂的量效关系值得引起我们的注意。
     第二部分:GSTM4-GSTM2-GSTM1-GSTM5-GSTM3基因簇多态性和乳腺癌易感性的关联研究
     GSTMs基因簇串联排列于染色体lp13.3。目前虽然对GSTM1基因缺失多态予以了较多研究,对GSTM1-5基因簇多态与乳腺癌的关系尚缺乏报道。在第二部分研究中,我们针对GSTMs基因簇进行关联分析,对在此64 kb基因区域内的11个SNP进行大规模分型(847病例vs.676对照)。关联分析按GSTM1亚组进行分析。在GSTM1-/-组中,我们发现位于M3-like基因区的一个SNP在病例组和对照组中分布具有显著差异(P=2.0×10~(-4),校正后P=0.001),变异型等位基因相对于野生型等位基因的OR值为1.75(95%CI:1.26-2.44)。相反,在GSTM1+/-组中,我们未能发现任何有意义的多态位点。流行病学的研究数据结合功能研究结果,提示保护型的基因型对应于高表达GSTM3的生物学效应。我们认为,M3-like基因多态与乳腺癌发生相关,GSTM3可能起到保护乳腺组织对抗致癌物质的作用,但是这种作用仅在GSTM1缺失时才显著。
     第三部分:NRH醌氧化还原酶2(NRH:Quinone Oxidoreductase 2,NQO2)与乳腺癌遗传易感性的关联研究和功能论证
     NRH醌氧化还原酶2(NQO2)不仅具有代谢雌醌的生物学活性,也具有稳定p53的功能,因此NQO2可作为乳腺癌易感候选基因。目前针对NQO2与乳腺癌的研究还非常少,在第三部分里,我们着重研究了乳腺癌和NQO2的关系。首先,我们通过病例对照研究(n=1,604)发现两个NQO2基因多态与散发性乳腺癌明显相关。这两个位点分别为29 bp-插入/缺失多态(29bp-I/D)与rs2071002(+237A>C)多态,均位于NQO2启动子区。29bp-I/D的D等位基因与rs2071002的+237C等位基因能显著降低乳腺癌的发生风险(OR分别为0.76,P=0.0027;0.80,P=0.0031)。不仅如此,NQO2多态与野生型p53乳腺癌特异性相关(最显著的P值为3.3×10~(-6))。这些一期研究中的发现,在第二期以家族性/散发性人群为主的病例对照研究中得到了进一步验证(n=1,442)。两期研究(n=3,046)的联合P值是3.8×10~(-7)(29bp-I/D)与2.3×10~(-6)(rs2071002)。我们进一步揭示了这两个具有潜在功能意义位点的作用机制。29bp-I/D通过29-Ⅰ等位基因引入了转录抑制因子Sp3的结合位点而起作用;rs2071002的+237A等位基因通过消除转录增强因子Sp1的结合位点而起作用。最后,我们在组织标本中验证了保护型多态位点所对应的NQO2表达水平更高。总之,我们的研究提示NQO2是一个乳腺癌易感基因。
PartⅠ:A Functional Polymorphism in the Promoter Region of GSTM1 Implies a Novel Two-sided Role for GSTM1 in Breast Cancer Susceptibility
     Estrogen-quinone can form unstable adducts with adenine and guanine in DNA,leading to depurination and mutation in vitro and in vivo.It seems that reactive equine estrogen metabolites mainly contribute to breast cancer.However,protective phaseⅡenzymes are active in breast tissue for protection against damage caused by reactive metabolites of endogenous and exogenous chemicals.The estrogen-quinone could be reduced by quinone oxidoreductases,or be conjugated by glutathione S-transferases.Therefore,quinone oxidoreductases and glutathione S-transferases are two kinds of important estrogen-quinone metabolizing related enzymes. Although a number of studies have been conducted to address the relationship between a gene deletion-polymorphism of glutathione-S-transferase M1(GSTM1) and breast cancer,no definite conclusion has been made and no clear risk pattern has yet to emerge for GSTM1.We first conducted case-control studies that included 1920 subjects using a true genotyping method.The results show that GSTM1-null(GSTM1-/-) confers an increased risk for breast cancer development compared with GSTM1-present individuals[homozygous wild-type(+/+) and heterozygous(+/-)],which was subsequently confirmed by a meta-analysis of all of the 41 relevant studies(odds ratio:1.10,P<0.001).Unexpectedly,we found that GSTM1+/+ is also a risk genotype compared with GSTM1+/-.Furthermore,we identified a functional polymorphism in the GSTM1 promoter region associated with breast cancer.The variant allele modifies the DNA-binding to the AP-2αtranscription factor,resulting in reduced promoter activity and mRNA expression.However,this low-activity allele is associated with reduced breast cancer risk. It seems that approximately 60-70%expression from one allele of GSTM1 could suffice for protection against breast cancer;null- and over-activity of GSTM1 are both disadvantageous. These results indicate a U-shaped association of GSTM1 with breast cancer,which challenges the linear gene-dosage effect of GSTM1 that was previously proposed.We recommend that a more complicated role for GSTM1 should be considered in breast cancer risk prediction.
     PartⅡ:Genetic Variants in M3-like Gene within GSTM4-GSTM2-GSTM1-GSTM5-GSTM3 Cluster Influence Breast Cancer Susceptibility Depending on GSTM1
     Mu class GSTMs genes arrange in a tandem on chromosome 1p13.3.The previous single-variant-based findings warrant more comprehensive study to explore the relationship between genetic variants in GSTM1-5 gene cluster and breast cancer.In the present study, seventeen tagging single-nucleotide polymorphisms(SNPs) covering 64-kb of GSTMs cluster (excluding recombination-regions) are originally selected and genotyped in a pilot population. Eleven validated-SNPs enter large sample size genotyping in 847-cases and 676-controls.The association analyses are performed according to the absence or presence of GSTM1.In GSTM1-/- group,the allele frequency of one SNP in M3-like loci is significantly different between cases and controls(P=2.0×10~(-4),corrected P=0.001),with odds ratio of 1.75(95% confidence interval:1.26-2.44) for variant genotype compared with wild-type genotype.Two haplotypes are also significantly linked with breast cancer(corrected P=0.044 and 0.010).In contrast,no susceptible allele/haplotype is identified when GSTM1 is present.Based on epidemiological observations,we further conduct in vitro and ex vivo studies and identify two genetic variants in M3-like loci accounting for differential expression of GSTM3 in normal breast tissues by such means as altering binding of RNA-pol-Ⅱ.Protective genotypes demonstrated in association study stage are correlated with higher GSTM3 expression phenotypes.In conclusion,the variants/haplotypes in M3-like loci rather than in M1-like loci within GSTMs cluster are likely to contribute to breast cancer risk when GSTM1 is absent.Our study also indicates that increased GSTM3 catalyzing ability in normal breast tissue might protect against breast oncogenesis.
     PartⅢ:Functional Polymorphisms,Altered Gene Expression and Genetic Association Link NRH:Quinone Oxidoreductase 2 to Breast Cancer
     We hypothesized that NRH:quinone oxidoreductase 2(NQO2) is a candidate susceptibility gene for breast cancer because of its known enzymatic activity on estrogen-derived quinones and its ability to stabilize p53.We performed case-control studies to investigate the contributions of genetic variants/haplotypes of the NQO2 gene to breast cancer risk.In the first hospital-based study(n=1,604),we observed significant associations between the incidence of breast cancer and a 29 bp-insertion/deletion polymorphism(29bp-I/D) and the rs2071002(+237A>C) polymorphism,both of which are located within the NQO2 promoter region.Decreased risk was associated with the D-allele of 29bp-I/D(odds ratio(OR),0.76;P=0.0027) and the +237C-allele of rs2071002(OR,0.80;P=0.0031).Specifically,the susceptibility variants within NQO2 were notably associated with breast carcinomas with wild-type p53(the most significant P-value: 3.3×10~(-6)).The associations were successfully replicated in an independent population set (familial/early-onset breast cancer cases and community-based controls,n=1,442).The combined P-values of the two studies(n=3,046) are 3.8×10~(-7) for 29bp-I/D and 2.3×10~(-6) for rs2071002. Furthermore,we revealed potential mechanisms of pathogenesis of the two susceptibility polymorphisms.Previous work has demonstrated that the risk-allele I-29 of 29bp-I/D introduces transcriptional-repressor Sp3 binding sites.Using promoter reporter-gene assays and electrophoretic-mobility-shift assays,our present work demonstrated that the other risk-allele, +237A-allele of rs2071002,abolishes a transcriptional-activator Sp1 binding site.Furthermore, an ex vivo study showed that normal breast tissues harboring protective genotypes expressed significantly higher levels of NQO2 mRNA than those in normal breast tissues harboring risk genotypes.Taken together,the data presented here strongly suggest that NQO2 is a susceptibility gene for breast carcinogenesis.
引文
1.Jemal A,Siegel R,Ward E,et al.Cancer statistics,2006[J].CA Cancer J Clin,2006,56(2):106-130.
    2.Yu KD,Di GH,Wu J,et al.Development and Trends of Surgical Modalities for Breast Cancer in China:A Review of 16-Year Data[J].Ann Surg Oncol,2007,14(9):2502-2509.
    3.Walsh T,King MC.Ten genes for inherited breast cancer[J].Cancer Cell,2007,11(2):103-105.
    4.De Vivo I,Huggins GS,Hankinson SE,et al.A functional polymorphism in the promoter of the progesterone receptor gene associated with endometrial cancer risk[J].Proc Natl Acad Sci U S A,2002,99(19):12263-12268.
    5.Levy-Lahad E,Lahad A,Eisenberg S,et al.A single nucleotide polymorphism in the RAD51 gene modifies cancer risk in BRCA2 but not BRCA1 carders[J].Proc Natl Acad Sci U S A,2001,98(6):3232-3236.
    6.Osborne CK.Tamoxifen in the treatment of breast cancer[J].N Engl J Med,1998,339(22):1609-1618.
    7.Yager JD,Davidson NE.Estrogen carcinogenesis in breast cancer[J].N Engl J Med,2006,354(3):270-282.
    8.Wolff TA,Wilson JE.Genetic risk assessment and BRCA mutation testing for breast and ovarian cancer susceptibility[J].Am Fam Physician,2006,74(10):1759-1760.
    9.Nelson HD,Huffman LH,Fu R,et al.Genetic risk assessment and BRCA mutation testing for breast and ovarian cancer susceptibility:systematic evidence review for the U.S.Preventive Services Task Force[J].Ann Intern Med,2005,143(5):362-379.
    10.Li WF,Hu Z,Rao NY,et al.The prevalence of BRCA 1 and BRCA2 germline mutations in high-risk breast cancer patients of Chinese Han nationality:two recurrent mutations were identified[J].Breast Cancer Res Treat,2007.
    11.Easton DF,Pooley KA,Dunning AM,et al.Genome-wide association study identifies novel breast cancer susceptibility loci[J].Nature,2007,447(7148):1087-1093.
    12.Huang CS,Chem HD,Chang KJ,et al.Breast cancer risk associated with genotype polymorphism of the estrogen-metabolizing genes CYP17,CYP1A1,and COMT:a multigenic study on cancer susceptibility [J]. Cancer Res, 1999, 59(19):4870-4875.
    
    13. Hirose K, Matsuo K, Toyama T, et al. The CYP19 gene codon 39 Trp/Arg polymorphism increases breast cancer risk in subsets of premenopausal Japanese [J]. Cancer Epidemiol Biomarkers Prev, 2004,13(8):1407-1411.
    
    14. Taioli E, Trachman J, Chen X, et al. A CYP1A1 restriction fragment length polymorphism is associated with breast cancer in African-American women [J]. Cancer Res, 1995,55(17):3757-3758.
    
    15. Zheng W, Xie DW, Jin F, et al. Genetic polymorphism of cytochrome P450-1B1 and risk of breast cancer [J]. Cancer Epidemiol Biomarkers Prev, 2000,9(2):147-150.
    
    16. Spurdle AB, Goodwin B, Hodgson E, et al. The CYP3A4*1B polymorphism has no functional significance and is not associated with risk of breast or ovarian cancer [J].Pharmacogenetics, 2002,12(5):355-366.
    
    17. Cheng TC, Chen ST, Huang CS, et al. Breast cancer risk associated with genotype polymorphism of the catechol estrogen-metabolizing genes: a multigenic study on cancer susceptibility [J]. Int J Cancer, 2005,113(3):345-353.
    
    18. Bergman-Jungestrom M, Wingren S. Catechol-O-Methyltransferase (COMT) gene polymorphism and breast cancer risk in young women [J]. Br J Cancer, 2001, 85(6):859-862.
    
    19. Linhares JJ, Da Silva ID, De Souza NC, et al. Genetic polymorphism of GSTMl in women with breast cancer and interact with reproductive history and several clinical pathologies [J]. Biol Res, 2005,38(2-3):273-281.
    
    20. Pearson WR, Vorachek WR, Xu SJ, et al. Identification of class-mu glutathione transferase genes GSTM1-GSTM5 on human chromosome 1p13 [J]. Am J Hum Genet, 1993,53(1):220-233.
    
    21. Xu S, Wang Y, Roe B, et al. Characterization of the human class Mu glutathione S-transferase gene cluster and the GSTMl deletion [J]. J Biol Chem, 1998,273(6):3517-3527.
    
    22. Menzel HJ, Sarmanova J, Soucek P, et al. Association of NQO1 polymorphism with spontaneous breast cancer in two independent populations [J]. Br J Cancer, 2004,90(10):1989-1994.
    
    23. Long DJ, Jaiswal AK. NRH:quinone oxidoreductase2 (NQO2) [J]. Chem Biol Interact,2000,129(1-2):99-112.
    24.AbuKhader M,Heap J,De Matteis C,et al.Binding of the anticancer prodrug CB1954 to the activating enzyme NQO2 revealed by the crystal structure of their complex[J].J Med Chem,2005,48(24):7714-7719.
    25.Kwiek JJ,Haystead TA,Rudolph J.Kinetic mechanism of quinone oxidoreductase 2 and its inhibition by the antimalarial quinolines[J].Biochemistry,2004,43(15):4538-4547.
    26.Iskander K,Paquet M,Brayton C,et al.Deficiency of NRH:quinone oxidoreductase 2increases susceptibility to 7,12-dimethylbenz(a)anthracene and benzo(a)pyrene-induced skin carcinogenesis[J].Cancer Res,2004,64(17):5925-5928.
    27.Bergman M,Ahnstrom M,Palmeback Wegrnan P,et al.Polymorphism in the manganese superoxide dismutase(MnSOD) gene and risk of breast cancer in young women[J].J Cancer Res Clin Oncol,2005,131(7):439-444.
    28.Ames BN.Cancer prevention and diet:help from single nucleotide polymorphisms[J].Proc Natl Acad Sci U S A,1999,96(22):12216-12218.
    1.Yager JD,Davidson NE.Estrogen carcinogenesis in breast cancer[J].N Engl J Med,2006,354(3):270-282.
    2.Cavalieri EL,Stack DE,Devanesan PD,et al.Molecular origin of cancer:catechol estrogen-3,4-quinones as endogenous tumor initiators[J].Proc Natl Acad Sci U S A,1997,94(20):10937-10942.
    3.Dunning AM,Healey CS,Pharoah PD,et al.A systematic review of genetic polymorphisms and breast cancer risk[J].Cancer Epidemiol Biomarkers Prey,1999,8(10):843-854.
    4.Xiong P,Bondy ML,Li D,et al.Sensitivity to benzo(a)pyrene diol-epoxide associated with risk of breast cancer in young women and modulation by glutathione S-transferase polymorphisms:a case-control study[J].Cancer Res,2001,61(23):8465-8469.
    5.Xu X,Gammon MD,Zeisel SH,et al.Choline metabolism and risk of breast cancer in a population-based study[J].Faseb J,2008,22(6):2045-2052.
    6.Parl FF.Glutathione S-transferase genotypes and cancer risk[J].Cancer Lett,2005,221(2):123-129.
    7.Vogl FD,Taioli E,Maugard C,et al.Glutathione S-transferases M1,T1,and P1 and breast cancer:a pooled analysis[J].Cancer Epidemiol B iomarkers Prev,2004,13(9):1473-1479.
    8.Wilson MH,Grant PJ,Hardie LJ,et al.Glutathione S-transferase M1 null genotype is associated with a decreased risk of myocardial infarction[J].Faseb J,2000,14(5):791-796.
    9.Brasch-Andersen C,Christiansen L,Tan Q,et al.Possible gene dosage effect of glutathione-S-transferases on atopic asthma:using real-time PCR for quantification of GSTM1and GSTT1 gene copy numbers[J].Hum Mutat,2004,24(3):208-214.
    10.Roodi N,Dupont WD,Moore JH,et al.Association of homozygous wild-type glutathione S-transferase M1 genotype with increased breast cancer risk[J].Cancer Res,2004,64(4):1233-1236.
    11.Antoniou AC,Easton DF.Polygenic inheritance of breast cancer:Implications for design of association studies[J].Genet Epidemiol,2003,25(3):190-202.
    12.Li WF,Hu Z,Rao NY,et al.The prevalence of BRCA1 and BRCA2 germline mutations in high-risk breast cancer patients of Chinese Han nationality:two recurrent mutations were identified[J].Breast Cancer Res Treat,2008,110(1):99-109.
    13.Chacko P,Joseph T,Mathew BS,et al.Role of xenobiotic metabolizing gene polymorphisms in breast cancer susceptibility and treatment outcome[J].Murat Res,2005,581(1-2):153-163.
    14.Harada S,Tachikawa H,Kawanishi Y.Glutathione S-transferase M1 gene deletion may be associated with susceptibility to certain forms of schizophrenia[J].Biochem Biophys Res Commun,2001,281(2):267-271.
    15.Liu JB,Li M,Chen H,et al.Association of vitiligo with HLA-A2:a meta-analysis[J].J Eur Acad Dermatol Venereol,2007,21(2):205-213.
    16.Fryer AA,Zhao L,Alldersea J,et al.Use of site-directed mutagenesis of allele-specific PCR primers to identify the GSTM1 A,GSTM1 B,GSTM1 A,B and GSTM1 null polymorphisms at the glutathione S-transferase,GSTM1 locus[J].Biochem J,1993,295(Pt 1):313-315.
    17.Gabriel SB,Schaffner SF,Nguyen H,et al.The structure of haplotype blocks in the human genome[J].Science,2002,296(5576):2225-2229.
    18.Moshynska O,Moshynskyy I,Misra V,et al.G125A single-nucleotide polymorphism in the human BAX promoter affects gene expression[J].Oncogene,2005,24(12):2042-2049.
    19.Mitchell P J,Wang C,Tjian R.Positive and negative regulation of transcription in vitro:enhancer-binding protein AP-2 is inhibited by SV40 T antigen[J].Cell,1987,50(6):847-861.
    20.Danilition SL,Frederickson RM,Taylor CY,et al.Transcription factor binding and spacing constraints in the human beta-actin proximal promoter[J].Nucleic Acids Res,1991,19(24):6913-6922.
    21.Imagawa M,Chiu R,Karin M.Transcription factor AP-2 mediates induction by two different sigual-transduction pathways:protein kinase C and cAMP[J].Cell,1987,51(2):251-260.
    22.Pfaff1 MW.A new mathematical model for relative quantification in real-time RT-PCR[J].Nucleic Acids Res,2001,29(9):e45.
    23.Bonetti M,Gelber RD.A graphical method to assess treatment-covariate interactions using the Cox model on subsets of the data[J].Stat Med,2000,19(19):2595-2609.
    24.Egan KM,Cai Q,Shu XO,et al.Genetic polymorphisms in GSTM1,GSTP1,and GSTT1and the risk for breast cancer:results from the Shanghai Breast Cancer Study and meta-analysis [J].Cancer Epidemiol Biomarkers Prev,2004,13(2):197-204.
    25.Park SK,Yim DS,Yoon KS,et al.Combined effect of GSTM1,GSTT1,and COMT genotypes in individual breast cancer risk[J].Breast Cancer Res Treat,2004,88(1):55-62.
    26.Sull JW,Ohrr H,Kang DR,et al.Glutathione S-transferase M1 status and breast cancer risk:a meta-analysis[J].Yonsei Med J,2004,45(4):683-689.
    27.Ambrosone CB,Freudenheim JL,Graham S,et al.Cytochrome P4501A1 and glutathione S-transferase(M1) genetic polymorphisms and postmenopausal breast cancer risk[J].Cancer Res,1995,55(16):3483-3485.
    28.Helzlsouer K J,Selmin O,Huang HY,et al.Association between glutathione S-transferase M1,P1,and T1 genetic polymorphisms and development of breast cancer[J].J Natl Cancer Inst,1998,90(7):512-518.
    29.Mitrunen K,Jourenkova N,Kataja V,et al.Glutathione S-transferase M1,M3,P1,and T1genetic polymorphisms and susceptibility to breast cancer[J].Cancer Epidemiol Biomarkers Prev,2001,10(3):229-236.
    30.Gyorffy B,Kocsis I,Vasarhelyi B.Missed calculations and new conclusions:re-calculation of genotype distribution data published in Journal of Investigative Dermatology,1998-2003[J].J Invest Dermatol,2004,122(3):644-646.
    31.Deng HW,Chen WM,Reeker RR.Population admixture:detection by Hardy-Weinberg test and its quantitative effects on linkage-disequilibrium methods for localizing genes underlying complex traits[J].Genetics,2001,157(2):885-897.
    32.Reed DJ.Glutathione:toxicological implications[J].Annu Rev Pharmacol Toxicol,1990,30:603-631.
    33.Widersten M,Pearson WR,Engstrom A,et al.Heterologous expression of the allelic variant mu-class glutathione transferases mu and psi[J].Biochem J,1991,276(Pt 2):519-524.
    34.Moyer AM,Salavaggione OE,Hebbring SJ,et al.Glutathione S-transferase T1 and M1:gene sequence variation and functional genomics[J].Clin Cancer Res,2007,13(23):7207-7216.
    35.Ambrosone CB,Coles BF,Freudenheim JL,et al.Glutathione-S-transferase(GSTM1)genetic polymorphisms do not affect human breast cancer risk,regardless of dietary antioxidants [J].J Nutr,1999,129(2S Suppl):565S-568S.
    36.Bailey LR,Roodi N,Verrier CS,et al.Breast cancer and CYPLA1,GSTM1,and GSTT1 polymorphisms:evidence of a lack of association in Caucasians and African Americans[J].Cancer Res,1998,58(1):65-70.
    37.Charrier J,Maugard CM,Le Mevel B,et al.Allelotype influence at glutathione S-transferase M1 locus on breast cancer susceptibility[J].Br J Cancer,1999,79(2):346-353.
    38.Maugard CM,Charrier J,Bignon YJ.Allelic deletion at glutathione S-transferase M1 locus and its association with breast cancer susceptibility[J].Chem Biol Interact,1998,111-112:365-375.
    39.Cheng TC,Chen ST,Huang CS,et al.Breast cancer risk associated with genotype polymorphism of the catechol estrogen-metabolizing genes:a multigenie study on cancer susceptibility[J].Int J Cancer,2005,113(3):345-353.
    40.Curran JE,Weinstein SR,Griffiths LR.Polymorphisms of glutathione S-transferase genes (GSTM1,GSTP1 and GSTT1) and breast cancer susceptibility[J].Cancer Lett,2000,153(1-2):113-120.
    41.da Fonte de Amorim L,Rossini A,Mendonca G,et al.CYP1A1,GSTM1,and GSTT1polymorphisms and breast cancer risk in Brazilian women[J].Cancer Lett,2002,181(2):179-186.
    42.Dialyna IA,Arvanitis DA,Spandidos DA.Genetic polymorphisms and transcriptional pattern analysis of CYP1A1,AhR,GSTM1,GSTP1 and GSTT1 genes in breast cancer[J].Int J Mol Med,2001,8(1):79-87.
    43.Gago-Dominguez M,Castelao JE,Sun CL,et al.Marine n-3 fatty acid intake,glutathione S-transferase polymorphisms and breast cancer risk in post-menopausal Chinese women in Singapore[J].Carcinogenesis,2004,25(11):2143-2147.
    44.Garcia-Closas M,Kelsey KT,Hankinson SE,et al.Glutathione S-transferase mu and theta polymorphisms and breast cancer susceptibility[J].J Natl Cancer Inst,1999,91(22):1960-1964.
    45.Gudmundsdottir K,Tryggvadottir L,Eyfjord JE.GSTM1,GSTT1,and GSTP1 genotypes in relation to breast cancer risk and frequency of mutations in the p53 gene[J].Cancer Epidemiol Biomarkers Prev,2001,10(11):1169-1173.
    46.Kelsey KT,Hankinson SE,Colditz GA,et al.Glutathione S-transferase class mu deletion polymorphism and breast cancer:results from prevalent versus incident cases[J].Cancer Epidemiol Biomarkers Prev,1997,6(7):511-515.
    47.Khedhaier A,Remadi S,Corbex M,et al.Glutathione S-transferases(GSTT1 and GSTM1)gene deletions in Tunisians:susceptibility and prognostic implications in breast carcinoma[J].Br J Cancer,2003,89(8):1502-1507.
    48.Krajinovic M,Ghadirian P,Richer C,et al.Genetic susceptibility to breast cancer in French-Canadians:role of carcinogen-metabolizing enzymes and gene-environment interactions [J].Int J Cancer,2001,92(2):220-225.
    49.Li D,Walcott FL,Chang P,et al.Genetic and environmental determinants on tissue response to in vitro carcinogen exposure and risk of breast cancer[J].Cancer Res,2002,62(16):4566-4570.
    50.Linhares JJ,Da Silva ID,De Souza NC,et al.Genetic polymorphism of GSTM1 in women with breast cancer and interact with reproductive history and several clinical pathologies[J].Biol Res,2005,38(2-3):273-281.
    51.Matheson MC,Stevenson T,Akbarzadeh S,et al.GSTT1 null genotype increases risk of premenopausal breast cancer[J].Cancer Lett,2002,181(1):73-79.
    52.McCready D,Aronson KJ,Chu W,et al.Breast tissue organochlorine levels and metabolic genotypes in relation to breast cancer risk Canada[J].Cancer Causes Control,2004,15(4):399-418.
    53.Millikan R,Pittman G,Tse CK,et al.Glutathione S-transferases M1,T1,and P1 and breast cancer[J].Cancer Epidemiol Biomarkers Prev,2000,9(6):567-573.
    54.Park SK,Yoo KY,Lee SJ,et al.Alcohol consumption,glutathione S-transferase M1 and T1genetic polymorphisms and breast cancer risk[J].Pharmaeogeneties,2000,10(4):301-309.
    55.Rundle A,Tang D,Zhou J,et al.The association between glutathione S-transferase M1genotype and polycyelic aromatic hydrocarbon-DNA adducts in breast tissue[J].Cancer Epidemiol Biomarkers Prev,2000,9(10):1079-1085.
    56.Sakoda LC,Blackston CR,Xue K,et al.Glutathione S-transferase M1 and P1polymorphisms and risk of breast cancer and fibrocystic breast conditions in Chinese women[J].Breast Cancer Res Treat,2008,109(1):143-155.
    57.Samson M,Swaminathan R,Rama R,et al.Role of GSTM1(Null/Present),GSTP1(lie 105Val) and P53(Arg72Pro) genetic polymorphisms and the risk of breast cancer:a ease control study from South India[J].Asian Pac J Cancer Prev,2007,8(2):253-257.
    58. Sarmanova J, Susova S, Gut I, et al. Breast cancer: role of polymorphisms in biotransformation enzymes [J]. Eur J Hum Genet, 2004,12(10):848-854.
    
    59. Sgambato A, Campisi B, Zupa A, et al. Glutathione S-transferase (GST) polymorphisms as risk factors for cancer in a highly homogeneous population from southern Italy [J]. Anticancer Res, 2002,22(6B):3647-3652.
    
    60. Siegelmann-Danieli N, Buetow KH. Significance of genetic variation at the glutathione S-transferase M1 and NAD(P)H:quinone oxidoreductase 1 detoxification genes in breast cancer development [J]. Oncology, 2002, 62(1):39-45.
    
    61. Spurdle AB, Chang JH, Byrnes GB, et al. A systematic approach to analysing gene-gene interactions: polymorphisms at the microsomal epoxide hydrolase EPHX and glutathione S-transferase GSTM1, GSTT1, and GSTP1 loci and breast cancer risk [J]. Cancer Epidemiol Biomarkers Prev, 2007,16(4):769-774.
    
    62. Steck SE, Gaudet MM, Britton JA, et al. Interactions among GSTM1, GSTT1 and GSTP1 polymorphisms, cruciferous vegetable intake and breast cancer risk [J]. Carcinogenesis, 2007,28(9):1954-1959.
    
    63. Syamala VS, Sreeja L, Syamala V, et al. Influence of germline polymorphisms of GSTT1,GSTM1, and GSTP1 in familial versus sporadic breast cancer susceptibility and survival [J].Fam Cancer, 2007.
    
    64. van der Hel OL, Peeters PH, Hein DW, et al. NAT2 slow acetylation and GSTM1 null genotypes may increase postmenopausal breast cancer risk in long-term smoking women [J].Pharmacogenetics, 2003, 13(7):399-407.
    
    65. van der Hel OL, Peeters PH, Hein DW, et al. GSTM1 null genotype, red meat consumption and breast cancer risk (The Netherlands) [J]. Cancer Causes Control, 2004,15(3):295-303.
    
    66. van der Hel OL, Bueno-de-Mesquita HB, van Gils CH, et al. Cumulative genetic defects in carcinogen metabolism may increase breast cancer risk (The Netherlands) [J]. Cancer Causes Control, 2005, 16(6):675-681.
    
    67. Wu SH, Tsai SM, Hou MF, et al. Interaction of genetic polymorphisms in cytochrome P450 2E1 and glutathione S-transferase M1 to breast cancer in Taiwanese woman without smoking and drinking habits [J]. Breast Cancer Res Treat, 2006,100(1):93-98.
    
    68. Zheng T, Holford TR, Zahm SH, et al. Cigarette smoking, glutathione-s-transferase M1 and t1 genetic polymorphisms,and breast cancer risk(United States)[J].Cancer Causes Control,2002,13(7):637-645.
    69.Zheng W,Wen WQ,Gustafson DR,et al.GSTM1 and GSTT1 polymorphisms and postmenopausal breast cancer risk[J].Breast Cancer Res Treat,2002,74(1):9-16.
    70.Zhong S,Wyllie AH,Barnes D,et al.Relationship between the GSTM1 genetic polymorphism and susceptibility to bladder,breast and colon cancer[J].Carcinogenesis,1993,14(9):1821-1824.
    1.Yager JD,Davidson NE.Estrogen carcinogenesis in breast cancer[J].N Engl J Med,2006,354(3):270-282.
    2.Pearson WR,Vorachek WR,Xu SJ,et al.Identification of class-mu glutathione transferase genes GSTM1-GSTM5 on human chromosome 1p13[J].Am J Hum Genet,1993,53(1):220-233.
    3.Bieche I,Champeme MH,Matifas F,et al.Two distinct regions involved in 1p deletion in human primary breast cancer[J].Cancer Res,1993,53(9):1990-1994.
    4.Nagasaki K,Maass N,Manabe T,et al.Identification of a novel gene,DAM1,amplified at chromosome 1p13.3-21 region in human breast cancer cell lines[J].Cancer Lett,1999,140(1-2):219-226.
    5.Maass N,Rosel F,Schem C,et al.Amplification of the BCAS2 gene at chromosome 1p13.3-21 in human primary breast cancer[J].Cancer Lett,2002,185(2):219-223.
    6.Antoniou AC,Easton DF.Polygenic inheritance of breast cancer:Implications for design of association studies[J].Genet Epidemiol,2003,25(3):190-202.
    7.Chacko P,Joseph T,Mathew BS,et al.Role of xenobiotic metabolizing gene polymorphisms in breast cancer susceptibility and treatment outcome[J].Mutat Res,2005,581(1-2):153-163.
    8.Harada S,Tachikawa H,Kawanishi Y.Glutathione S-transferase M1 gene deletion may be associated with susceptibility to certain forms of schizophrenia[J].Biochem Biophys Res Commun,2001,281(2):267-271.
    9.Brasch-Andersen C,Christiansen L,Tan Q,et al.Possible gene dosage effect of glutathione-S-transferases on atopic asthma:using real-time PCR for quantification of GSTM1and GSTT1 gene copy numbers[J].Hum Mutat,2004,24(3):208-214.
    10.Bejder L,Fletcher D,BrAger S.A method for testing association patterns of social animals [J].Anim Behav,1998,56(3):719-725.
    11.Roodi N,Dupont WD,Moore JH,et al.Association of homozygous wild-type glutathione S-transferase M1 genotype with increased breast cancer risk[J].Cancer Res,2004,64(4):1233-1236.
    12. Inskip A, Elexperu-Camiruaga J, Buxton N, et al. Identification of polymorphism at the glutathione S-transferase, GSTM3 locus: evidence for linkage with GSTM1*A [J]. Biochem J,1995, 312 (Pt 3):713-716.
    
    13. Rowe JD, Patskovsky YV, Patskovska LN, et al. Rationale for reclassification of a distinctive subdivision of mammalian class Mu glutathione S-transferases that are primarily expressed in testis [J]. J Biol Chem, 1998,273(16):9593-9601.
    
    14. Patskovsky YV, Huang MQ, Takayama T, et al. Distinctive structure of the human GSTM3 gene-inverted orientation relative to the mu class glutathione transferase gene cluster [J]. Arch Biochem Biophys, 1999,361(1):85-93.
    
    15. Liu X, Campbell MR, Pittman GS, et al. Expression-based discovery of variation in the human glutathione S-transferase M3 promoter and functional analysis in a glioma cell line using allele-specific chromatin immunoprecipitation [J]. Cancer Res, 2005,65(1):99-104.
    
    16. Mitrunen K, JourenkovaN, Kataja V, et al. Glutathione S-transferase M1, M3, P1, and T1 genetic polymorphisms and susceptibility to breast cancer [J]. Cancer Epidemiol Biomarkers Prev,2001,10(3):229-236.
    
    17. Sikdar N, Paul RR, Roy B. Glutathione S-transferase M3 (A/A) genotype as a risk factor for oral cancer and leukoplakia among Indian tobacco smokers [J]. Int J Cancer, 2004,109(1):95-101.
    
    18. Jain M, Kumar S, Lal P, et al. Role of GSTM3 polymorphism in the risk of developing esophageal cancer [J]. Cancer Epidemiol Biomarkers Prev, 2007,16(1):178-181.
    
    19. Yengi L, Inskip A, Gilford J, et al. Polymorphism at the glutathione S-transferase locus GSTM3: interactions with cytochrome P450 and glutathione S-transferase genotypes as risk factors for multiple cutaneous basal cell carcinoma [J]. Cancer Res, 1996, 56(9):1974-1977.
    
    20. Gabriel SB, Schaffher SF, Nguyen H, et al. The structure of haplotype blocks in the human genome [J]. Science, 2002,296(5576):2225-2229.
    
    21. Hayes JD, Flanagan JU, Jowsey IR. Glutathione transferases [J]. Annu Rev Pharmacol Toxicol,2005,45:51-88.
    1. Yager JD, Davidson NE. Estrogen carcinogenesis in breast cancer [J]. N Engl J Med, 2006,354(3):270-282.
    
    2. Le Marchand L, Donlon T, Kolonel LN, et al. Estrogen metabolism-related genes and breast cancer risk: the multiethnic cohort study [J]. Cancer Epidemiol Biomarkers Prev, 2005,14(8):1998-2003.
    
    3. Haiman CA, Stram DO, Pike MC, et al. A comprehensive haplotype analysis of CYP19 and breast cancer risk: the Multiethnic Cohort [J]. Hum Mol Genet, 2003,12(20):2679-2692.
    
    4. Li KM, Todorovic R, Devanesan P, et al. Metabolism and DNA binding studies of 4-hydroxyestradiol and estradiol-3,4-quinone in vitro and in female ACI rat mammary gland in vivo [J]. Carcinogenesis, 2004,25(2):289-297.
    
    5. Talalay P. Mechanisms of induction of enzymes that protect against chemical carcinogenesis [J]. Adv Enzyme Regul, 1989, 28:237-250.
    
    6. Jaiswal AK. Characterization and partial purification of microsomal NAD(P)H:quinone oxidoreductases [J]. Arch Biochem Biophys, 2000, 375(1):62-68.
    
    7. Menzel HJ, Sarmanova J, Soucek P, et al. Association of NQO1 polymorphism with spontaneous breast cancer in two independent populations [J]. Br J Cancer, 2004,90(10):1989-1994.
    
    8. Fagerholm R, Hofstetter B, Tommiska J, et al. NAD(P)H:quinone oxidoreductase 1 NQO1*2 genotype (P187S) is a strong prognostic and predictive factor in breast cancer [J]. Nat Genet, 2008,40(7):844-853.
    
    9. Long DJ, Jaiswal AK. NRH:quinone oxidoreductase2 (NQO2) [J]. Chem Biol Interact,2000,129(1-2):99-112.
    
    10. Celli CM, Tran N, Knox R et al. NRH:quinone oxidoreductase 2 (NQO2) catalyzes metabolic activation of quinones and anti-tumor drugs [J]. Biochem Pharmacol, 2006,72(3):366-376.
    
    11. Harada S, Fujii C, Hayashi A, et al. An association between idiopathic Parkinson's disease and polymorphisms of phase II detoxification enzymes: glutathione S-transferase Ml and quinone oxidoreductase 1 and 2 [J]. Biochem Biophys Res Commun, 2001, 288(4):887-892.
    12. Iskander K, Paquet M, Brayton C, et al. Deficiency of NRH:quinone oxidoreductase 2 increases susceptibility to 7,12-dimethylbenz(a)anthracene and benzo(a)pyrene-induced skin carcinogenesis [J]. Cancer Res, 2004,64(17):5925-5928.
    
    13. Gaikwad NW, Yang L, Rogan EG, et al. Evidence for NQO2-mediated reduction of the carcinogenic estrogen ortho-quinones [J]. Free Radic Biol Med, 2009,46(2):253-262.
    
    14. Gong X, Kole L, Iskander K, et al. NRHrquinone oxidoreductase 2 and NAD(P)H:quinone oxidoreductase 1 protect tumor suppressor p53 against 20s proteasomal degradation leading to stabilization and activation of p53 [J]. Cancer Res, 2007,67(11):5380-5388.
    
    15. Liu X, Holstege H, van der Gulden H, et al. Somatic loss of BRCA1 and p53 in mice induces mammary tumors with features of human BRCA1-mutated basal-like breast cancer [J].Proc Natl Acad Sci U S A, 2007,104(29):12111-12116.
    
    16. Orphanos V, McGown G, Hey Y, et al. Proximal 6q, a region showing allele loss in primary breast cancer [J]. Br J Cancer, 1995,71(2):290-293.
    
    17. Piao Z, Lee KS, Kim H, et al. Identification of novel deletion regions on chromosome arms 2q and 6p in breast carcinomas by amplotype analysis [J]. Genes Chromosomes Cancer, 2001,30(2):113-122.
    
    18. Lerebours F, Bertheau P, Bieche I, et al. Evidence of chromosome regions and gene involvement in inflammatory breast cancer [J]. Int J Cancer, 2002,102(6):618-622.
    
    19. Li WF, Hu Z, Rao NY, et al. The prevalence of BRCA1 and BRCA2 germline mutations in high-risk breast cancer patients of Chinese Han nationality: two recurrent mutations were identified [J]. Breast Cancer Res Treat, 2008,110(1):99-109.
    
    20. Song CG, Hu Z, Wu J, et al. The prevalence of BRCA1 and BRCA2 mutations in eastern Chinese women with breast cancer [J]. J Cancer Res Clin Oncol, 2006, 132(10):617-626.
    
    21. Cao AY, Huang J, Hu Z, et al. Mutation analysis of BRIP1/BACH1 in BRCA1/BRCA2 negative Chinese women with early onset breast cancer or affected relatives [J]. Breast Cancer Res Treat, 2008, In press.
    
    22. Cao AY, Huang J, Hu Z, et al. The prevalence of PALB2 germline mutations in BRCA1/BRCA2 negative Chinese women with early onset breast cancer or affected relatives [J].Breast Cancer Res Treat, 2008, In press.
    
    23. Bell PA, Chaturvedi S, Gelfand CA, et al. SNPstream UHT: ultra-high throughput SNP genotyping for pharmacogenomics and drug discovery[J].Biotechniques,2002,Suppl:70-72,74,76-77.
    24.Wang W,Le WD,Pan T,et al.Association of NRH:quinone oxidoreductase 2 gene promoter polymorphism with higher gene expression and increased susceptibility to Parkinson's disease[J].J Gerontol A Biol Sci Med Sci,2008,63(2):127-134.
    25.Gabriel SB,Schaffner SF,Nguyen H,et al.The structure of haplotype blocks in the human genome[J].Science,2002,296(5576):2225-2229.
    26.Scheet P,Stephens M.A fast and flexible statistical model for large-scale population genotype data:applications to inferring missing genotypes and haplotypic phase[J].Am J Hum Genet,2006,78(4):629-644.
    27.Wang W,Jaiswal AK.Sp3 repression of polymorphic human NRH:quinone oxidoreductase 2 gene promoter[J].Free Radic Biol Med,2004,37(8):1231-1243.
    28.Gyorffy B,Kocsis I,Vasarhelyi B.Missed calculations and new conclusions:re-calculation of genotype distribution data published in Journal of Investigative Dermatology,1998-2003[J].J Invest Dermatol,2004,122(3):644-646.
    29.Deng HW,Chen WM,Recker RR.Population admixture:detection by Hardy-Weinberg test and its quantitative effects on linkage-disequilibrium methods for localizing genes underlying complex traits[J].Genetics,2001,157(2):885-897.
    30.Yin WJ,Lu JS,Di GH,et al.Clinicopathological features of the triple-negative tumors in Chinese breast cancer patients[J].Breast Cancer Res Treat,2008,In press.
    31.Strassburg A,Strassburg CP,Manns MP,et al.Differential gene expression of NAD(P)H:quinone oxidoreductase and NRH:quinone oxidoreductase in human hepatocellular and biliary tissue[J].Mol Pharmacol,2002,61(2):320-325.
    32.Walsh T,King MC.Ten genes for inherited breast cancer[J].Cancer Cell,2007,11(2):103-105.
    33.Johnson N,Fletcher O,Palles C,et al.Counting potentially functional variants in BRCA1,BRCA2 and ATM predicts breast cancer susceptibility[J].Hum Mol Genet,2007,16(9):1051-1057.
    34.Chen P,Liang J,Wang Z,et al.Association of common PALB2 polymorphisms with breast cancer risk:a case-control study[J].Clin Cancer Res,2008,14(18):5931-5937.
    35.Song H,Ramus SJ,Kjaer SK,et al.Tagging single nucleotide polymorphisms in the BRIP1gene and susceptibility to breast and ovarian cancer[J].PLoS ONE,2007,2(3):e268.
    36.Peto J.Breast cancer susceptibility-A new look at an old model[J].Cancer Cell,2002,1(5):411-412.
    37.Easton DF,Pooley KA,Dunning AM,et al.Genome-wide association study identifies novel breast cancer susceptibility loci[J].Nature,2007,447(7148):1087-1093.
    38.Easton DF,Eeles RA.Genome-wide association studies in cancer[J].Hum Mol Genet,2008,17(R2):R109-115.
    39.Sensi E,Tancredi M,Aretini P,et al.p53 inactivation is a rare event in familial breast tumors negative for BRCA1 and BRCA2 mutations[J].Breast Cancer Res Treat,2003,82(1):1-9.
    40.Frebourg T,Barbier N,Yan YX,et al.Germ-line p53 mutations in 15 families with Li-Fraumeni syndrome[J].Am J Hum Genet,1995,56(3):608-615.
    41.Walsh T,Casadei S,Coats KH,et al.Spectrum of mutations in BRCA1,BRCA2,CHEK2,and TP53 in families at high risk of breast cancer[J].Jama,2006,295(12):1379-1388.
    42.Coles C,Condie A,Chetty U,et al.p53 mutations in breast cancer[J].Cancer Res,1992,52(19):5291-5298.
    43.Hartmann A,Blaszyk H,Saitoh S,et al.High frequency of p53 gene mutations in primary breast cancers in Japanese women,a low-incidence population[J].Br J Cancer,1996,73(8):896-901.
    44.Visakorpi T,Kallioniemi OP,Heikkinen A,et al.Small subgroup of aggressive,highly proliferative prostatic carcinomas defined by p53 accumulation[J].J Natl Cancer Inst,1992,84(11):883-887.
    45.Alsner J,Jensen V,Kyndi M,et al.A comparison between p53 accumulation determined by immunohistochemistry and TP53 mutations as prognostic variables in tumours from breast cancer patients[J].Acta Oncol,2008,47(4):600-607.
    46.Ghayor C,Chadjichristos C,Herrouin JF,et al.Sp3 represses the Sp1-mediated transactivation of the human COL2A1 gene in primary and de-differentiated chondrocytes[J].J Biol Chem,2001,276(40):36881-36895.
    1.McPherson K,Steel CM,Dixon JM.ABC of breast disease:Breast cancer-epidemiology,risk factors,and genetics[J].British Medical Journal,2000,321(7261):624-628.
    2.Madigan MP,Ziegler RG,Benichou J,et al.PROPORTION OF BREAST-CANCER CASES IN THE UNITED-STATES EXPLAINED BY WELL-ESTABLISHED RISK-FACTORS[J].Journal of the National Cancer Institute,1995,87(22):1681-1685.
    3.Ford D,Easton DF,Stratton M,et al.Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families[J].American Journal of Human Genetics,1998,62(3):676-689.
    4.Mucci LA,Wedren S,Tamimi RM,et al.The role of gene-environment interaction in the aetiology of human cancer:examples from cancers of the large bowel,lung and breast[J].Journal of Internal Medicine,2001,249(6):477-493.
    5.Minamoto T,Mai M,Ronai Z.Environmental factors as regulators and effectors of multistep carcinogenesis[J].Carcinogenesis,1999,20(4):519-527.
    6.Pearson WR,Vorachek WR,Xu SJ,et al.IDENTIFICATION OF CLASS-MU GLUTATHIONE TRANSFERASE GENES GSTM1-GSTM5 ON HUMAN CHROMOSOME-1P13[J].American Journal of Human Genetics,1993,53(1):220-233.
    7.Parl FF.Glutathione S-transferase genotypes and cancer risk[J].Cancer Letters,2005,221(2):123-129.
    8.Inskip A,ElexperuCamiruaga J,Buxton N,et al.Identification of polymorphism at the glutathione S-transferase,GSTM3 locus:Evidence for linkage with GSTM1~*A[J].Biochemical Journal,1995,312:713-716.
    9.Yu KD,Di GH,Fan L,et al.A functional polymorphism in the promoter region of GSTM1implies a complex role for GSTM1 in breast cancer[J].Faseb J,2009,19:19.
    10.Gago-Dominguez M,Castelao JE,Sun CL,et al.Marine n-3 fatty acid intake,glutathione S-transferase polymorphisms and breast cancer risk in post-menopausal Chinese women in Singapore[J].Carcinogenesis,2004,25(11):2143-2147.
    11.Park SK,Yoo KY,Lee SJ,et al.Alcohol consumption,glutathione S-transferase M1 and T1genetic polymorphisms and breast cancer risk[J].Pharmacogenetics,2000,10(4):301-309.
    12. Mitrunen K, Jourenkova N, Kataja V, et al. Glutathione S-transferase M1, M3, P1, and T1 genetic polymorphisms and susceptibility to breast cancer [J]. Cancer Epidemiology Biomarkers & Prevention, 2001,10(3):229-236.
    
    13. Gudmundsdottir K, Tryggvadottir L, Eyfjord JE. GSTM1, GSTT1, and GSTP1 genotypes in relation to breast cancer risk and frequency of mutations in the p53 gene [J]. Cancer Epidemiology Biomarkers & Prevention, 2001,10(11):1169-1173.
    
    14. Zhong S, Wyllie AH, Barnes D, et al. RELATIONSHIP BETWEEN THE GSTM1 GENETIC-POLYMORPHISM AND SUSCEPTIBILITY TO BLADDER, BREAST AND COLON-CANCER [J]. Carcinogenesis, 1993,14(9):1821-1824.
    
    15. Millikan R, Pittman G, Tse CK, et al. Glutathione S-transferases M1, T1, and P1 and breast cancer [J]. Cancer Epidemiology Biomarkers & Prevention, 2000, 9(6):567-573.
    
    16. van der Hel OL, Peeters PHM, Hein DW, et al. NAT2 slow acetylation and GSTM1 null genotypes may increase postmenopausal breast cancer risk in long-term smoking women [J].Pharmacogenetics, 2003,13(7):399-407.
    
    17. Zheng T, Holford TR, Zahm SH, et al. Glutathione S-transferase MI and TI genetic polymorphisms, alcohol consumption and breast cancer risk [J]. British Journal of Cancer, 2003,88(1):58-62.
    
    18. Zheng W, Wen WQ, Gustafson DR, et al. GSTM1 and GSTT1 polymorphisms and postmenopausal breast cancer risk [J]. Breast Cancer Research and Treatment, 2002,74(1):9-16.
    
    19. Bailey LR, Roodi N, Verrier CS, et al. Breast cancer and CYPIA1, GSTM1, and GSTT1 polymorphisms: Evidence of a lack of association in Caucasians and African Americans [J].Cancer Research, 1998, 58(1):65-70.
    
    20. Ambrosone CB, Freudenheim JL, Graham S, et al. CYTOCHROME P4501A1 AND GLUTATHIONE-S-TRANSFERASE (M1) GENETIC POLYMORPHISMS AND POSTMENOPAUSAL BREAST-CANCER RISK [J]. Cancer Research, 1995,55(16):3483-3485.
    
    21. Matheson MC, Stevenson T, Akbarzadeh S, et al. GSTT1 null genotype increases risk of premenopausal breast cancer [J]. Cancer Letters, 2002, 181(1):73-79.
    
    22. van der Hel OL, Bueno-de-Mesquita HB, van Gils CH, et al. Cumulative genetic defects in carcinogen metabolism may increase breast cancer risk (The Netherlands) [J]. Cancer Causes & Control,2005,16(6):675-681.
    23.Zheng TZ,Holford TR,Zahm SH,et al.Cigarette smoking,glutathione-S-transferase M1and T1 genetic polymorphisms,and breast cancer risk(United States)[J].Cancer Causes &Control,2002,13(7):637-645.
    24.Roodi N,Dupont WD,Moore JH,et al.Association of homozygous wild-type glutathione S-transferase M1 genotype with increased breast cancer risk[J].Cancer Research,2004,64(4):1233-1236.
    25.Rebbeck TR.Molecular epidemiology of the human glutathione S-transferase genotypes GSTM1 and GSTT1 in cancer susceptibility[J].Cancer Epidemiology Biomarkers & Prevention,1997,6(9):733-743.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700