用户名: 密码: 验证码:
基于有限时间系统理论的多飞行器协同拦截问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着空战环境日益复杂,作战武器性能日益提高,多飞行器协同作战已成为当今复杂空战中主要的作战方式。为了进一步扩大防御面积,提高防御能力,很多国家将多飞行器协同拦截作为一种新式的防御战术。现有的关于多飞行器协同拦截问题的研究大多存在顶层策略与底层方案脱节的问题。实际情况下,必须综合考虑各环节内的影响因素及各子任务之间的关联,才能满足复杂任务的需求。因此,有必要对该背景下关键问题进行归纳,充分考虑问题之间的耦合关系,采取行之有效的方法以提高任务的整体性能。本文以多飞行器协同拦截过程为研究对象,对其中的制导控制问题加以提炼并进行深入研究,主要研究内容包含以下几个方面。
     首先,针对协同拦截问题是有限时间问题这一特点,对有限时间系统理论进行了研究。介绍了延拓Lp空间内系统性能的输入-输出信号度量及有限时间H∞控制方法;针对离散事件系统,给出了基于混合逻辑动态的有限时间二次型优化方法;另外,给出了多智能体网络的描述方法及一些重要性质,在此基础上,提出了输入约束下的有限时间一致性设计方法。
     其次,针对多飞行器协同拦截过程中的协同探测问题,提出了基于混合逻辑动态优化的协同探测方法。结合末制导问题的特点,建立了目标-飞行器相对运动模型;引入目标兴趣值及目标年龄的概念,并在此基础上建立了考虑多飞行器信息交换的目标年龄修正模型;基于混合逻辑动态优化的思想,解决了协同探测中目标信息处理频率的优化问题;通过地面机器人实验对协同探测方法进行了验证。
     再次,针对多飞行器协同拦截过程中的目标分配问题,提出了基于有限时间范数的目标分配方法。结合协同拦截中目标分配问题的特点,给出了目标分配的约束条件及目标分配准则;指出了中末交班误差及目标机动是导致飞行器能量消耗的主要因素,构造了反映能量需求的有限时间范数指标函数,并提出了基于有限时间范数的目标分配方法;给出了有限时间范数性能准则,在此基础上,给出了基于有限时间范数的目标分配问题求解方法。根据目标分配优化结果,多对多协同拦截中的协同制导问题被分解为一对一、一对多及多对一制导问题。
     然后,针对多飞行器协同拦截过程中的协同制导律设计问题,提出了基于有限时间H∞控制理论的一对多制导方法及基于有限时间一致性的多对一制导方法。建立了一对多及多对一制导的数学模型。基于有限时间二次型最优控制,给出了一对多兼顾准则,并在此基础上,基于有限时间H∞控制理论设计了一对多制导律;此外,考虑飞行器控制输入受约束的情况下,基于有限时间一致性方法设计了多对一协同制导律,并分析了保证同时拦截的多飞行器网络连通条件。
     最后,对多飞行器协同拦截高超声速目标的过程进行了制导控制设计。结合高超声速飞行器的运动特性,设定了多飞行器协同拦截的条件。在此基础上,针对协同拦截高超声速目标末制导过程中的协同探测、目标分配及协同制导问题进行了优化和制导律设计;仿真结果验证了本文提出协同拦截方法的有效性。
As the environment of air-combat is getting more and more complicated and theperformance of weapons is getting more and more improved, cooperative battle usingmultiple flight vehicles is becoming the main mode in the complex air-combat. In orderto expand defense area and improve defense power, lots of countries lay the defense tac-tics with cooperative interception using multiple flight vehicles. Most of existing worksignore the external relevance between top-level strategy and low-level design. In prac-tice, we have to synthesize relevance of all parts so that the requirement of cooperativebattle can be satisfied. Therefore, it’s necessary to sum up the subproblems under thisbackground and adopt efective methods to guarantee the integral performance of cooper-ative interception, considering the relevance among subproblems. Under the backgroundof cooperative interception, this dissertation mainly works on some guidance and controlproblems. The main contributions are summarized as follows.
     First, aiming at the finite-time characteristic of cooperative interception, we studiedfinite-time system theory. An extended Lpspace and input-output signal measure of sys-tem performance are introduced. Finite-time H∞control is introduced. For discrete-eventsystem, finite-time quadratic optimizations are proposed based on mixed-logic dynamic.Besides, the description and characteristic of multi-agent network are introduced basedon which finite-time consensus is proposed under input constraints.
     Second, aiming at cooperative detection in cooperative interception, a cooperative-detection approach is proposed based on mixed-logic dynamic optimization. Combiningthe characteristics of terminal guidance system, relative kinematics model is formulatedbetween the target and the flight vehicle. The definitions of level-of-interest and age areintroduced, on this basis, age-correction model is formulated considering the informationexchange among vehicles. Based on the idea of mixed-logic dynamic optimization, theoptimization problem on processing frequency of target information is solved. A robotexperiment is implemented for verifying the feasibility of the proposed method.
     Thirdly, aiming at target assignment in cooperative interception, a finite-time-norm-based target-assignment approach is proposed. Combining the characteristics of targetassignment in cooperative interception, the constraints and assignment principle are pro-posed. We point out the main factors of energy cost are handover error and target maneu- ver, the index function is constructed in a finite-time norm pattern which represents theenergy cost of the flight vehicle. Based on the performance criterion of finite-time norm,the solving methods of the finite-time-norm-based target-assignment problem is proposed.According to the result of target assignment, cooperative guidance in the many-to-manyinterception is decomposed into one-to-one, one-to-many and many-to-one guidance sce-narios.
     Fourthly, aiming at cooperative guidance-law design in cooperative interception, aone-to-many guidance law based on finite-time H∞control and a many-to-one guidancelaw based on finite-time consensus are proposed. The models for both one-to-many andmany-to-one guidance are formulated. The one-to-many principle is given based on finite-time quadratic optimal control, on this basis, a one-to-many guidance law is proposedbased on finite-time H∞control. Besides, considering the constraints of control input,a many-to-one guidance law is design based on finite-time consensus, furthermore theconnection condition of network is analyzed which guarantee the salvo.
     At last, a control and guidance design for cooperative interception using multipleflight vehicles against a hypersonic target is carried out. Combining the motion charac-teristics of hypersonic target, the condition of cooperative interception is set up. On thisbasis, aiming at the problems of cooperative detection, target assignment and cooperativeguidance in the terminal guidance of cooperative interception, corresponding optimizationand guidance-law design are implemented. The efectiveness of the proposed methods isverified through the simulation result.
引文
[1]彭灏,李业惠,张素梅.多拦截器:弹道导弹防御的新锐[J].现代军事,2006,1:44–45.
    [2] Alighanbari M, How J. Decentralized task assignment for unmanned aerial vehi-cles[C]//Decision and Control, and European Control Conference. CDC-ECC’05.44th IEEE Conference on. Seville, Spain: IEEE,2005:5668–5673.
    [3] Chandler P. Decentralized control for an autonomous team[J]. Proceedings ofAIAA Unmanned Unlimited systems, technologies, and operations,2003.
    [4]胡国平,张守宏.多传感器协同探测目标的分类识别研究[J].西安电子科技大学学报(自然科学版),2009,36(3).
    [5] Choset H, Pignon P. Coverage path planning: The boustrophedon cellular decom-position[C]//International Conference on Field and Service Robotics. Canberra,Australia: ICFSR,1997,12.
    [6] Acar E, Choset H. Critical point sensing in unknown environments[C]//Roboticsand Automation,2000. Proceedings. ICRA’00. IEEE International Conference on.San Francisco, CA, USA: IEEE,2000,4:3803–3810.
    [7] Acar E, Choset H. Sensor-based coverage of unknown environments: Incrementalconstruction of morse decompositions[J]. The International Journal of RoboticsResearch,2002,21(4):345–366.
    [8] Kurabayashi D, Ota J, Arai T, et al. An algorithm of dividing a work area to multi-ple mobile robots[C]//Intelligent Robots and Systems95.’Human Robot Interactionand Cooperative Robots’, Proceedings.1995IEEE/RSJ International Conferenceon. Pittsburgh, PA, USA: IEEE,1995,2:286–291.
    [9] Koenig S, Szymanski B, Liu Y. Efcient and inefcient ant coverage methods[J].Annals of Mathematics and Artificial Intelligence,2001,31(1):41–76.
    [10] Lawrence D, Donahue R, Mohseni K, et al. Information energy for sensor-reactiveUAV flock control[C]//AIAA3rd” Unmanned Unlimited” Technical Conference,Workshop and Exhibit. Chicago, IL, USA: AIAA,2004:1–14.
    [11] Erignac C. An exhaustive swarming search strategy based on distributedpheromone maps[J]. Advanced Design Systems M&CT, The Boeing Company,2007.
    [12] Sujit P, Ghose D. Search using multiple UAVs with flight time constraints[J].Aerospace and Electronic Systems, IEEE Transactions on,2004,40(2):491–509.
    [13] Hougen D, Erickson M, Rybski P, et al. Autonomous mobile robots and distributedexploratory missions[J]. Distributed Autonomous Robotic Systems,2000,4:221–230.
    [14] Choset H. Coverage for robotics–A survey of recent results[J]. Annals of Mathe-matics and Artificial Intelligence,2001,31(1):113–126.
    [15] Burgard W, Moors M, Schneider F. Collaborative exploration of unknown environ-ments with teams of mobile robots[J]. Advances in plan-based control of roboticagents,2002:187–215.
    [16] Yang Y, Polycarpou M, Minai A. Multi-UAV cooperative search using an op-portunistic learning method[J]. Journal of Dynamic Systems, Measurement, andControl,2007,129:716.
    [17] Thrun S. Exploration and model building in mobile robot domains[C]//IEEEInternational Conference on Neural Networks. San Francisco, CA, USA: IEEE,1993:175–180.
    [18] Flint M, Fernandez E, Polycarpou M. Stochastic models of a cooperative au-tonomous UAV search problem[J]. Military Operations Research,2003,8(4):13–32.
    [19] Batalin M, Sukhatme G. The analysis of an efcient algorithm for robot coverageand exploration based on sensor network deployment[C]//Proceedings of the2005IEEE International Conference on Robotics and Automation. Barcelona, Spain:IEEE,2005:3478–3485.
    [20] Gaudiano P, Shargel B, Bonabeau E, et al. Control of UAV swarms: What thebugs can teach us[C]//Proceedings of the2nd AIAA Unmanned Unlimited System-s, Technologies, and Operations Aerospace Conference. San Diego, CA: AIAA,2003:6624–6624.
    [21] Nigam N, Kroo I. Control and design of multiple unmanned air vehicles for apersistent surveillance task[C]//12th AIAA/ISSMO multidisciplinary analysis andoptimization conference. Victoria, BC, Canada: AIAA,2008:1–19.
    [22] Heinzelman W, Chandrakasan A, Balakrishnan H. Energy-efcient communicationprotocol for wireless microsensor networks[C]//System Sciences,2000. Proceed-ings of the33rd Annual Hawaii International Conference on. Hawaii, USA: IEEE,2000:10–pp.
    [23] Richards A, Bellingham J, Tillerson M, et al. Coordination and control of multi-ple UAVs[C]//AIAA guidance, navigation, and control conference, Monterey, CA.Monterey, CA, USA: AIAA,2002:68–75.
    [24] Parunak H. Making swarming happen[C]//Proceedings of Swarming and Network-Enabled C4ISR. VI, USA: IEEE,2003.
    [25] Tumer K, Agogino A. Coordinating multi-rover systems: Evaluation functionsfor dynamic and noisy environments[C]//Proceedings of the2005conference onGenetic and evolutionary computation. Washington, DC, USA: ACM,2005:591–598.
    [26] Cai H, Liu J, Chen Y, et al. Survey of the research on dynamic weapon-targetassignment problem[J]. Journal of Systems Engineering and Electronics,2006,17(3):559–565.
    [27] Hosein P, Athans M. An asymptotic result for the multi-stage weapon-target al-location problem[C]//Decision and Control,1990., Proceedings of the29th IEEEConference on. Honolulu, HI: IEEE,1990:240–245.
    [28]蔡怀平,陈英武.武器一目标分配(WTA)问题研究进展[J].火力与指挥控制,2006.
    [29] Chandler P, Pachter M. Hierarchical control for autonomous teams[C]//AIAAGuidance, Navigation, and Control Conference. Montreal, Canada: AIAA,2001:632–642.
    [30] Bellingham J. Multi-task allocation and path planning for cooperating UAVs[D].Boston, USA: Massachusetts Institute of Technology,2001.
    [31] Flint M, Polycarpou M, Fernandez-Gaucherand E. Cooperative path-planning forautonomous vehicles using dynamic programming[C]//Proc. IFAC15th TriennialWorld Congress. Barcelona, Spain: IFAC,2002:1694–1699.
    [32] Chandler P, Rasumussen S, Pachter M. UAV cooperative path planning[C]//AIAAGuidance Navigation and Control Conference. Denver, CO, USA: AIAA,2000.
    [33] Brandt F, Brauer W, Weiss G. Task assignment in multiagent systems based onvickrey-type auctioning and leveled commitment contracting[J]. Cooperative In-formation Agents IV-The Future of Information Agents in Cyberspace,2000:11–44.
    [34] Schumacher C, Chandler P, Rasmussen S. Task allocation for wide area searchmunitions[C]//American Control Conference,2002. Proceedings of the2002. An-chorage, Alaska, USA: IEEE,2002,3:1917–1922.
    [35] Nygard K, Chandler P, Pachter M. Dynamic network flow optimization models forair vehicle resource allocation[C]//American Control Conference,2001. Proceed-ings of the2001. Arlington, VI, USA: IEEE,2001,3:1853–1858.
    [36] Furukawa T, Bourgault F, Durrant-Whyte H, et al. Dynamic allocation andcontrol of coordinated UAVs to engage multiple targets in a time-optimal man-ner[C]//Robotics and Automation,2004. Proceedings. ICRA’04.2004IEEE Inter-national Conference on. New Orleans, LA, USA: IEEE,2004,3:2353–2358.
    [37] Bertuccelli L F, Choi H L, Cho P, et al. Real-time multi-UAV task assignment indynamic and uncertain environments[C]//AIAA Guidance, Navigation, and Con-trol Conference. Chicago, IL, USA: AIAA,2009:1–16.
    [38] Austin F, Carbone G, Falco M, et al. Automated maneuvering decisions for air-to-air combat[C]//AIAA Guidance, Navigation and Control Conference. Monterey,CA, USA: AIAA,1987:659–669.
    [39] Bellingham J, Tillerson M, Alighanbari M, et al. Cooperative path planning formultiple UAVs in dynamic and uncertain environments[C]//Decision and Control,2002, Proceedings of the41st IEEE Conference on. Las Vegas, Nevada, USA:IEEE,2002:2816–2822.
    [40] Zengin U, Dogan A. Cooperative target tracking for autonomous UAVs in an ad-versarial environment[C]//Proceedings of AIAA Guidance, Navigation, and Con-trol Conference and Exhibit. Keystone, USA: AIAA,2006:1–15.
    [41]孙星,万自明,成楚之.空间拦截末制导段能量需求分析[J].现代防御技术,2005,33(6):28–31.
    [42] Rajasekhar V, Sreenatha A. Fuzzy logic implementation of proportional navigationguidance[J]. Acta Astronautica,2000,46(1):17–24.
    [43] Zarchan P. Tactical and strategic missile guidance[M]. Washington, DC, USA:American Institute of Aeronautics and Astronautics, Inc,1994.
    [44] Moorman M, Warkomski E, Lam Q, et al. Extending Adjoint Simulation Beyondits Traditional Role: Accounting for Kalman Tracker Dynamic Interaction&Be-yond[C]//2005AIAA Guidance, Navigation, and Control Conference and Exhibit.San Francisco, CA, USA: AIAA,2005:1–22.
    [45] Weiss L. Converse theorems for finite time stability[J]. SIAM journal on appliedmathematics,1968,16(6):1319–1324.
    [46] Gelb A, Warren R. Direct statistical analysis of nonlinear systems: CADET[J].AIAA Journal,2012,11(5).
    [47] Guelman M, Idan M, Golan O. Three-dimensional minimum energy guidance[J].Aerospace and Electronic Systems, IEEE Transactions on,1995,31(2):835–841.
    [48] Yang C, Chen H. Nonlinear H∞robust guidance law for homing missiles[J]. Jour-nal of Guidance Control and Dynamics,1998,21(6):882–890.
    [49] Ratnoo A, Shima T. Guidance Laws Against Defended Aerial Targets[C]//AIAAguidance, navigation, and control conference. Portland, OR, USA: AIAA,2011:AIAA–2011–6419.
    [50] Ratnoo A, Shima T. Line-of-Sight Interceptor Guidance for Defending an Air-craft[J]. Journal of guidance, control, and dynamics,2011,34(2):522–532.
    [51] Yamasaki T, Balakrishnan S. Triangle Intercept Guidance for Aerial De-fense[C]//AIAA guidance, navigation, and control conference. Toronto, ON, Cana-da: AIAA,2010:AIAA–2010–7876.
    [52] Yamasaki T, Balakrishnan S, Takano H. Modified CLOS Intercept Guidance forAircraft Defense Against a Guided Missile[C]//AIAA guidance, navigation, andcontrol conference. Portland, OR, USA: AIAA,2011:AIAA–2011–6419.
    [53] Perelman A, Shima T. Cooperative Diferential Games Strategies for Active Air-craft Protection from a Homing Missile[J]. Journal of guidance, control, and dy-namics,2011,34(3):761–773.
    [54] Shaferman V, Shima T. Cooperative Multiple Model Adaptive Guidance for anAircraft Defending Missile[C]//AIAA guidance, navigation, and control confer-ence. Toronto, ON, Canada: AIAA,2010.
    [55] Shaferman V, Oshman Y. Cooperative Interception in a Multi-Missile Engage-ment[C]//AIAA guidance, navigation, and control conference. Chicago, IL, USA:AIAA,2009.
    [56] Rabbath C, Su C, Tsourdos A. Guest editorial introduction to the special issueon multivehicle systems cooperative control with application[J]. Control SystemsTechnology, IEEE Transactions on,2007,15(4):599–600.
    [57] Qu Z, Wang J, Hull R. Cooperative control of dynamical systems with applica-tion to autonomous vehicles[J]. Automatic Control, IEEE Transactions on,2008,53(4):894–911.
    [58] Dong W, Farrell J. Cooperative control of multiple nonholonomic mobile agents[J].Automatic Control, IEEE Transactions on,2008,53(6):1434–1448.
    [59] Yamasaki T, Balakrishnan S, Takano H. Modified CLOS Intercept Guidance forAircraft Defense Against a Guided Missile[C]//AIAA guidance, navigation, andcontrol conference. Portland, OR, USA: AIAA,2011.
    [60] Jeon I, Lee J, Tahk M. Impact-time-control guidance law for anti-ship missiles[J].Control Systems Technology, IEEE Transactions on,2006,14(2):260–266.
    [61] Lee J, Jeon I, Tahk M. Guidance law to control impact time and angle[J].Aerospace and Electronic Systems, IEEE Transactions on,2007,43(1):301–310.
    [62] Shiyu Z, Rui Z. Cooperative guidance for multimissile salvo attack[J]. ChineseJournal of Aeronautics,2008,21(6):533–539.
    [63] Jeon I, Lee J, Tahk M. Homing Guidance Law for Cooperative Attack of MultipleMissiles[J]. Journal of guidance, control, and dynamics,2010,33(1):275–280.
    [64] Hull D, Radke J, Mack R. Time-to-go prediction for homing missiles based onminimum-time intercepts[J]. Journal of Guidance, Control, and Dynamics,1991,14:865–871.
    [65] Tahk M, Ryoo C, Cho H. Recursive time-to-go estimation for homing guid-ance missiles[J]. Aerospace and Electronic Systems, IEEE Transactions on,2002,38(1):13–24.
    [66] Ben-Asher J, Yaesh I. Optimal guidance with reduced sensitivity to time-to-goestimation errors[J]. Journal of guidance, control, and dynamics,1997,20(1):158–163.
    [67] Kim K, Kim M, Kwon W. Receding horizon guidance laws with no informationon the time-to-go[J]. Journal of Guidance, Control, and Dynamics,2000.
    [68] D’Angelo H. Linear time-varying systems: analysis and synthesis[M]. Boston,MA: Allyn and Bacon,1970.
    [69] Dorato P. Short-time stability in linear time-varying systems[J]. Proc. IRE Int.Convention Record Part.4,1961:83–87.
    [70] Weiss L, Infante E. Finite time stability under perturbing forces and on productspaces[J]. Automatic Control, IEEE Transactions on,1967,12(1):54–59.
    [71] Weiss L, Infante E. On the stability of systems defined over a finite time interval[J].Proceedings of the National Academy of Sciences of the United States of America,1965,54(1):44.
    [72] Anderson B, Moore J. Linear optimal control[M]. Englewood clif, NJ: Prentice-Hall, Inc.,1971.
    [73] Zames G. Feedback and optimal sensitivity: Model reference transformations,multiplicative seminorms, and approximate inverses[J]. Automatic Control, IEEETransactions on,1981,26(2):301–320.
    [74] Doyle J, Glover K, Khargonekar P, et al. State-space solutions to standard H∞and H2control problems[J]. Automatic Control, IEEE Transactions on,1989,34(8):831–847.
    [75] Khargonekar P, Nagpal K, Poolla K. H∞Control with Transients[J]. SIAM journalon control and optimization,1991,29(6):1373–1393.
    [76] Lu W, Balas G, Lee E. A variational approach to H∞control with transients[J].Automatic Control, IEEE Transactions on,1999,44(10):1875–1879.
    [77] Yung K. H∞control with initial conditions[J]. IEEE Transactions on Circuits andSystems,2006,53(9):867–871.
    [78] Bhat S, Bernstein D. Continuous finite-time stabilization of the translational androtational double integrators[J]. Automatic Control, IEEE Transactions on,1998,43(5):678–682.
    [79] Bhat S, Bernstein D. Finite-time stability of continuous autonomous systems[J].SIAM Journal on Control and Optimization,2000,38:751.
    [80] Hong Y, Huang J, Xu Y. On an output feedback finite-time stabilization problem[J].Automatic Control, IEEE Transactions on,2001,46(2):305–309.
    [81] Olfati-Saber R, Murray R. Consensus problems in networks of agents with switch-ing topology and time-delays[J]. Automatic Control, IEEE Transactions on,2004,49(9):1520–1533.
    [82] Ren W, Beard R, Kingston D. Multi-agent Kalman consensus with relative uncer-tainty[C]//American Control Conference,2005. Proceedings of the2005. Portland,OR, USA: IEEE,2005:1865–1870.
    [83] Ren W, Beard R, McLain T. Coordination variables and consensus building inmultiple vehicle systems[J]. Cooperative Control,2005:439–442.
    [84] Ren W, Beard R. Consensus seeking in multiagent systems under dynamicallychanging interaction topologies[J]. Automatic Control, IEEE Transactions on,2005,50(5):655–661.
    [85] Fax J, Murray R. Information flow and cooperative control of vehicle formation-s[J]. Automatic Control, IEEE Transactions on,2004,49(9):1465–1476.
    [86] Benediktsson J A, Swain P H. Consensus theoretic classification methods[J]. Sys-tems, Man and Cybernetics, IEEE Transactions on,1992,22(4):688–704.
    [87] Jadbabaie A, Lin J, Morse A S. Coordination of groups of mobile autonomousagents using nearest neighbor rules[J]. Automatic Control, IEEE Transactions on,2003,48(6):988–1001.
    [88] Corte′s J. Finite-time convergent gradient flows with applications to network con-sensus[J]. Automatica,2006,42(11):1993–2000.
    [89] Feng X, Long W. Reaching agreement in finite time via continuous local statefeedback[C]//Chinese Control Conference. Hunan, China: IEEE,2007:711–715.
    [90] Wang L, Xiao F. Finite-time consensus problems for networks of dynamic a-gents[J]. Automatic Control, IEEE Transactions on,2010,55(4):950–955.
    [91] Wang X, Hong Y. Finite-time consensus for multi-agent networks with second-order agent dynamics[C]//IFAC World Congress, Korea. Seoul, Korea: IFAC,2008:15185–15190.
    [92] Savkin A, Pathirana P, Faruqi F. Problem of precision missile guidance: LQR andH∞control frameworks[J]. Aerospace and Electronic Systems, IEEE Transactionson,2003,39(3):901–910.
    [93]季登高.基于有限时间范数的末制导系统性能分析[D].哈尔滨:哈尔滨工业大学,2008.
    [94] Vidyasagar M. Nonlinear systems analysis[M]. Englewood clif, NJ: Prentice-Hall,Inc.,1993.
    [95]俞立.鲁棒控制:线性矩阵不等式处理方法[M].北京:清华大学出版社,2002.
    [96] Carpanese N. Parameterization for Riccati inequalities in Hilbert spaces[C]//IEEEConference on Decision and Control. Maui, Hawaii, USA: IEEE,2003:4951–4955.
    [97] Saber R O, Murray R M. Consensus Protocols for Networks of Dynam-ic Agents[C]//2003American Control Conference. Denver, CO, USA: IEEE,2003:951–956.
    [98] Callebaut D. Generalization of the Cauchy-Schwarz inequality[J]. Journal of math-ematical analysis and applications,1965,12(3):491–494.
    [99] Chen B, Jamieson K, Balakrishnan H, et al. Span: An energy-efcient coordina-tion algorithm for topology maintenance in ad hoc wireless networks[J]. WirelessNetworks,2002,8(5):481–494.
    [100] He T, Stankovic J, Lu C, et al. SPEED: A stateless protocol for real-time communi-cation in sensor networks[C]//Distributed Computing Systems,2003. Proceedings.23rd International Conference on. Providence, RI, USA: IEEE,2003:46–55.
    [101] Xu Y, Heidemann J, Estrin D. Geography-informed energy conservation for adhoc routing[C]//Proceedings of the7th annual international conference on Mobilecomputing and networking. Rome, Italy: ACM,2001:70–84.
    [102] Kleinrock L, Silvester J. Optimum transmission radii for packet radio networks orwhy six is a magic number[C]//Proceedings of the IEEE National Telecommunica-tions Conference. Birimingham, Alabama: IEEE,1978,4:1–4.
    [103] Younis M, Akkaya K, Kunjithapatham A. Optimization of task allocation in acluster-based sensor network[C]//Eighth IEEE International Symposium on Com-puters and Communication. Antalya, Turkey: IEEE,2003:329–334.
    [104] Ye F, Zhong G, Lu S, et al. Energy efcient robust sensing coverage in large sensornetworks[J]. Computer Science Dept-UCLA, Tech. Rep,2002.
    [105] Tian D, Georganas N. A node scheduling scheme for energy conservation in largewireless sensor networks[J]. Wireless Communications and Mobile Computing,2003,3(2):271–290.
    [106]钱杏芳,林瑞雄,赵亚男.导弹飞行力学[M].北京:北京理工大学出版社,2000.
    [107]周荻.寻的导弹新型导引规律[M].北京:国防工业出版社,2002.
    [108] Zhang P, Liu H, Yao Y. Optimal Persistent Surveillance Using Ground Robot WithLevel of Interest[C]//23rd Canadian Congress of Applied Mechanics. Vancouver,BC, Canada: CANCAM,2011.
    [109] Bullnheimer B, Hartl R F, Strauss C. An improved ant System algorithm for theve-hicle Routing Problem[J]. Annals of Operations Research,1999,89:319–328.
    [110] Tan G z, He H, Aaron S. Global optimal path planning for mobile robot based onimproved Dijkstra algorithm and ant system algorithm[J]. Journal of Central SouthUniversity of Technology,2006,13(1):80–86.
    [111] Hosein P. A class of dynamic nonlinear resource allocation problems[M]. Boston,MA, USA: Massachusetts Inst of Tech Cambridge Lab for Information and Deci-sion Systems,1989.
    [112] Rosenberger J, Hwang H, Pallerla R, et al. The generalized weapon target assign-ment problem[M]. McLean, VA: Texas Univ at Arlington,2005.
    [113]赵晨光,耿奎,李为民, et al.防空导弹武器系统目标分配的多种算法[J].现代防御技术,2001,29(3):7–9.
    [114]谢春燕,李为民,刘付显.整数规划与动态规划在防空导弹火力分配中的应用研究[J].弹箭与制导学报,2003,23(004):72–74.
    [115]柳毅,佟明安.匈牙利算法在多目标分配中的应用[J].火力与指挥控制,2002,27(4):34–37.
    [116]袁梅.基于蚁群算法的WTA问题求解[D].哈尔滨:哈尔滨工业大学,2007.
    [117]刘付显,邢清华.基于混合遗传算法的目标优化分配[J].系统工程理论与实践,2002,22(7):84–88.
    [118]郭张龙,李为民,王刚.基于遗传算法的目标分配问题研究[J].现代防御技术,2002,30(6):3–7.
    [119]杜天军,陈光,刘占辰.多目标攻击空战决策WBG模型及其蚁群算法[J].系统工程与电子技术,2005,27(5):861–865.
    [120] Dorigo M, Gambardella L. Ant colony system: A cooperative learning approach tothe traveling salesman problem[J]. Evolutionary Computation, IEEE Transactionson,1997,1(1):53–66.
    [121]曹奇英,何张兵. WTA问题的遗传算法研究[J].控制理论与应用,2001,18(1):76–79.
    [122] Gambardella L, Taillard E, Dorigo M, et al. Ant colonies for the quadratic assign-ment problem[J]. Journal of the operational research society,1999,50(2):167–176.
    [123] Shen W, et al. Agent-Based Systems for Intelligent Manufacturing: A State-of-the-Art Survey.[J]. Knowledge and Information Systems, an International Journal,1999,1:129–156.
    [124] Dionne D, Michalska H, Rabbath C. Predictive guidance for pursuit-evasion en-gagements involving multiple decoys[J]. Journal of guidance, control, and dynam-ics,2007,30(5):1277–1286.
    [125] Gutman O, Palmor Z. Proportional Navigation Against Multiple Targets[J]. Journalof guidance, control, and dynamics,2011,34(6):1728–1733.
    [126]鲁芳.美军高超武器“乘波者”X-51A的独特方案和技术透析[J].国防科技,2010(003):9–13.
    [127]呼卫军,周军.临近空间飞行器拦截策略与拦截武器能力分析[J].现代防御技术,2012,40(001):11–15.
    [128]韩朝超,黄树彩.临近空间多传感器探测跟踪CM分析[J].航空兵器,2010(002):3–7.
    [129]刘旭,李为民,任晓虹.高超声速巡航导弹及其拦截策略研究[J].飞航导弹,2011(4):47–50.
    [130] Lane J. Design Processes and Criteria for the X-51A Flight Vehicle Airframe[M].Huntington Beach, CA: Boeing Co Integerated Defense Systems,2007.
    [131] L Moses P, L Rausch V, T Nguyen L, et al. NASA hypersonic flight demonstrators—overview, status, and future plans[J]. Acta Astronautica,2004,55(3):619–630.
    [132] Harris R. On the threshold-The outlook for supersonic and hypersonic aircraft[J].Journal of Aircraft,1992,29:10–19.
    [133] Hirschel E H, Weiland C. Selected aerothermodynamic design problems of hyper-sonic flight vehicles[M]. Germany: Springer,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700