用户名: 密码: 验证码:
MicroRNA-101与环氧化酶-2在胃癌组织中的表达及意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:microRNAs(miRNAs)是一类非编码蛋白质的单链小RNA,其主要功能是调节转录后的翻译过程,在人类多种肿瘤的发生、发展中起着癌基因或抑癌基因的作用。miRNA-101在胃癌、肝癌、结肠癌和前列腺癌等多种恶性肿瘤中低表达,可能发挥抑癌基因的作用。我们的前期研究发现,环氧合酶-2(cyclooxygenase-2, COX-2)在胃癌发生、浸润和转移中发挥重要作用,外源性miRNA-101抑制胃癌细胞的增殖和COX-2表达,动物实验证明miRNA-101抑制胃癌移植瘤生长,同时抑制COX-2在移植瘤的表达。然而,miRNA-101和COX-2在人胃癌组织中的表达及其与胃癌临床病理特征的相关性尚不清楚。目的:探讨miRNA-101和COX-2在人胃癌组织中的表达及其与临床病理特征的相关性。方法:
     1.研究对象:收集30例经手术切除证实的新鲜胃癌及癌旁正常组织标本作为研究对象。
     2.实时荧光定量多聚酶链反应:提取胃癌及癌旁正常组织中的总RNA并逆转录,实时荧光定量多聚酶链反应检测组织中目的基因COX-2mRNA的表达水平,以GAPDH的表达作为内对照;提取胃癌及癌旁正常组织中的miRNA-101,实时荧光定量多聚酶链反应检测组织中miRNA-101的表达水平,以U6的表达作为内对照。
     3.免疫印迹法:检测胃癌及癌旁正常组织中目的基因蛋白COX-2的表达水平。
     结果:
     1. miRNA-101在胃癌组织中的相对表达量显著低于癌旁正常组织。
     2. COX-2mRNA在胃癌组织中的相对表达量显著高于癌旁正常组织。COX-2mRNA与miRNA-101的表达在胃癌和癌旁正常组织中均呈显著负相关。
     3. TNM分期中III-IV期和伴有淋巴结转移的胃癌标本中,miRNA-101相对表达量显著低于I-II期和无淋巴结转移病例。
     4. COX-2mRNA在III-IV期和伴有淋巴结转移胃癌标本的表达水平显著高于I-II期和无淋巴结转移病例。结论:miRNA-101表达下调伴COX-2过表达与胃癌的浸润和转移密切相关。
     背景:特异性COX-2抑制剂能有效抑制胃癌细胞增殖、诱导细胞凋亡,然而数项大规模前瞻性研究发现,长期使用COX-2抑制剂可能增加心血管事件发生的风险,使其在临床上的应用受到了限制。熊果酸(ursolic acid, UA)是一种五环三萜类化合物,广泛存在于多种天然植物中,对胃癌、肝癌、肺癌、膀胱癌等多种实体瘤细胞和白血病细胞具有抑制增殖、促凋亡、抗血管生成及细胞毒作用。我们的前期研究发现,熊果酸和选择性COX-2抑制剂NS398能够抑制胃癌细胞SGC-7901的增殖和COX-2表达,但是它们对于COX-2阴性的胃癌细胞增殖的影响尚未知。观察熊果酸对COX-2阴性的胃癌细胞增殖的影响,将为熊果酸应用于胃癌的防治提供理论基础。目的:选择高表达COX-2的胃癌细胞株SGC-7901和不表达COX-2的胃癌细胞株MGC-803,观察熊果酸和选择性COX-2抑制剂NS-398对上述两种细胞增殖的影响。
     方法:
     1.将SGC-7901细胞和MGC-803细胞接种在RPMI-1640培养液中常规培养24h,换无血清培养基继续培养24h。
     2.在上述两种细胞中分别加入熊果酸(终浓度为10、20、40、80μmol/L)或NS-398(终浓度50、100、200、400μmol/L),继续培养12h、24h和48h。
     3. MTT法观察细胞增殖情况。
     结果:
     1.熊果酸呈时间和剂量依赖性抑制SGC-7901和MGC-803细胞的增殖。
     2. NS-398呈时间和剂量依赖性抑制SGC-7901和MGC-803细胞的增殖。
     结论:熊果酸和NS-398对高表达COX-2的胃癌细胞株SGC-7901和不表达COX-2的胃癌细胞株MGC-803均有增殖抑制作用。
     背景:绝大多数大肠癌是由息肉恶变而来,大肠息肉的早期发现和及时治疗是改善大肠癌预后的有效途径。随着年龄的增加,老年人群中大肠腺瘤性息肉的发病率逐渐增加[1,2]。自20世纪90年代德国ERBE公司研发的氩离子凝固装置应用于胃肠道疾病的治疗以来,内镜下氩离子凝固术(argon plasma coagulation,APC)已经广泛用于治疗消化道息肉,这种技术可以减少手术率。目的:探讨内镜下氩离子凝固术(argon plasma coagulation,APC)治疗老年人大肠息肉的安全性和有效性。方法:
     1.2008年10月至2011年6月,采用德国ERBE公司生产的APC(VIO200D型)内镜专用氩气刀,对肠镜检查发现大肠息肉的258例病人进行内镜下治疗。
     2.直径≤0.5cm的扁平息肉,予氩离子凝固导管电凝灼除病灶。凝固次数视病灶大小及质地而定。
     3.直径>0.5cm的扁平息肉,在息肉基底部注射1∶10000的肾上腺素生理盐水和美兰(1∶100)混合液,使得病灶抬举良好,予一次性电圈套器将抬举的病灶完整套扎,较深大的创面予钛夹闭合。
     4.带蒂或亚蒂的息肉,予一次性电圈套器套扎高频电切除。
     5.尽量将所有切除标本回收送病理学检查,注意观察病人的并发症。结果:
     1.258例老年病人共检出525枚息肉,全部APC治愈。
     2.根据息肉大小和形态,APC灼除302枚(57.5%),APC切除89枚(17%),黏膜下注射后APC切除134枚(25.5%),局部渗血者行APC电凝或钛夹止血。
     3.术后2例(0.8%)出现少量便血,予药物治疗后出血停止,无穿孔和大出血等严重并发症。
     4.随着息肉体积增大,绒毛管状腺瘤的发生率增加而管状腺瘤的发生率下降,轻度异型增生的比例下降而中度异型增生比例增加。结论:APC可作为老年人大肠息肉的首选治疗,安全性高,并发症少。
Background: MicroRNAs (miRNAs) are short single-stranded non-coding RNAsthat influence post-transcriptional gene regulation by affecting mRNA stability and/ortranslational repression of their target mRNAs. Alterations of the expression patternof miRNAs that regulate genes involved in cellular proliferation, differentiation orapoptosis, have been found in different human tumors including gastric cancer,suggesting that they may represent a novel class of oncogenes or tumor suppressorgenes. Previous studies showed that Cyclooxygenase-2(COX-2) is over-expressed ingastric cancer, and could be one of the key molecules that might contribute to thegrowth and invasiveness of gastric cancer cells. It has been reported that miR-101down-regulation is involved in COX-2over-expression in human gastric cancer cellsin animal models.Objective: To investigate the expression of microRNA-101(miRNA-101) andCOX-2in gastric cancer and their relationship with clinicopathologic characteristicsof the patients.Methods:
     1. Objects: Thirty gastric cancer specimens and matched normal gastric tissuespecimens were obtained surgically from patients.
     2. Real time quantitative fluorescence PCR(qRT-PCR): Total RNA was extractedfrom30resected gastric cancer specimens and matched normal tissues specimens,according to the manufacturer’s instructions, followed by reverse transcription.qRT-PCR was carried out to exam the relative expression of target genes miRNA-101and COX-2mRNA. The relative expressions of target gene COX-2mRNA were normalized to that of U6. The relative expressions of target geneCOX-2mRNA were normalized to that of glyceraldehydes-3-phosphatedehydrogenase (GAPDH).
     3. Immunoblotting test: Western blot was carried out to identify the expression ofCOX-2in gastric cancer specimens and matched normal gastric tissue.Results:
     1. The relative level of miRNA-101in the cancerous tissue was significantly lowerthan those in the normal gastric mucosa.
     2. The relative level of COX-2mRNA in the cancerous tissue was significantlyhigher than those in the normal gastric mucosa. The expression of miRNA-101wasnegatively correlated with COX-2mRNA in cancer tissues and normal tissues.
     3. The expression levels of miRNA-101were significantly lower in the patients withstages III-IV or lymph node metastasis than that in those with stages I-II or withoutsuch metastasis.
     4. COX-2mRNA expression was significantly higher in the patients with stagesIII-IV or lymph node metastasis than that in those with stages I-II or without suchmetastasis.Conclusion: Reduced miRNA-101expression correlated to high levels of COX-2ingastric cancer tissues is closely related to tumor invasion and lymph node metastasis.
     Background: The specific cyclooxygenase (COX)-2inhibitor have theanti-proliferative and pro-apoptotic effects on gastric cancer cells. There aresomerandomized, double-blind, placebo-controlled trials with COX-2inhibitors(coxibs) showing an increased rate of thrombotic vascular events in patients treatedwith coxibs. Ursolic acid (UA), a natural pentacyclic triterpenoid carboxylic acid, islargely distributed in medical herbs. UA has a wide range of anticancer functionssuch as proapoptosis, antiangiogenesis, antimetastasis and cytotoxicity in stomach,liver, lung and bladder cancers. Our previous study indicated that UA and NS398inhibited the proliferation and induced the apoptosis of COX-2positive gastric cancercell line SGC-7901, along with down-regulating the expression of COX-2. This studyis designed to evaluate the effects of UA and NS398on COX-2negative gastriccancer cell line MGC-803, which is in an attempt to develop potent antitumor agents.
     Objective: To investigate the effects of UA and COX-2inhibitor NS398on theproliferation of COX-2positive gastric cancer cell line SGC-7901and COX-2negative gastric cancer cell line MGC-803.Methods: SGC-7901cells and MGC-803cells were seeded in RPMI-1640supplemented with10%heat-inactivated fetal calfserum and routinely incubated for24h. After serum-free starvation for24h, the cellswere cultured with either UA at the Final concentration of10,20,40,80μmol/L orNS-398at the final concentration of50,100,200,400μmol/L for12,24and48h respectively. Cell proliferation was determined using methyl thiazolyl tetrazolium(MTT) colorimetric assay.
     Results: Both UA and NS398significantly inhibited SGC-7901and MGC-803cellproliferation in a dose-and time-dependent manner.
     Conclusion: Both UA and COX-2inhibitor NS398significantly inhibited cellproliferation of COX-2positive gastric cancer cell line SGC-7901and COX-2negative gastric cancer cell line MGC-803.
     Background: Nearly all colorectal cancers are thought to arise from adenomatouspolyps. The conclusions from the National Polyp Study strongly support the conceptthat the removal of polyps may prevent the future development of colorectal cancer.With age increasing, there is a higher prevalence of colonic adenomatous polyps inelderly individuals. Argon plasma coagulation(APC), invented by ERBE German, hasbeen introduced to therapy of gastroenterology in1990’s. APC is useful in themanagement of adenomas in gastrointestinal tract, which can reduce surgery.Objects: To evaluate the safety and efficacy of endoscopic argon plasma coagulation(APC) in the management of elderly patients with colorectal polyps.Methods: Colorectal polyps found in electronic enteroscopy were treated with argonplasma generated by ERBE APC (VIO200D) made in German ERBE Company.
     Results:
     1. A total of525polyps in258elderly patients were all cured by APC.
     2.302(57.5%) sessile flat polyps with diameter0.2cm to0.5cm were ablated withAPC,89(17%) semi-pedunculated and pedunculated polyps were resected by high-frequency electrosection, and134sessile (25.5%) polyps with diameter0.6cm to5.0cm were resected after submucosal injection with epinephrine plus methylene bluenormal saline on focal membrane. APC electric coagulation or titanium clip would beemployed if bleeding appeared in partial wounds.
     3. Minor bleeding occurred in two patients (0.8%), there were no majorcomplications (perforations or bleeding requiring transfusion).
     4. With the size of the polyps growing, the incidence of tubulo-villous adenomasincreases, while the incidence of tubular adenomas decreases. Meanwhile, theincidence of moderate-dysplasia adenomas increases, as well as the incidence ofwild-dysplasia adenomas decreases.
     Conclusion: APC is a well tolerated and effective treatment in elderly patients withcolorectal polyps.
引文
[1] Chen W, Zheng R, Zhang S, Zhao P, Li G, Wu L, He J. The incidence andmortalities of major cancers in China. Chin J Cancer,2013,32(3):106-112.
    [2]陈万青,张思维,郑荣寿,曾红梅,邹小农,赵平,吴良有,李光琳,赫捷.中国2009年恶性肿瘤发病和死亡分析.中国肿瘤,2013,22(1):2-12.
    [3] Mann JR, DuBois RN. Cyclooxygenase-2and gastrointestinal cancer. Cancer J,2004,10(3):145-152.
    [4] Mrena J, Wiksten JP, Kokkola A, Nordling S, Ristim ki A, Haglund C. COX-2isassociated with proliferation and apoptosis markers and serves as an independentprognostic factor in gastric cancer. Tumour Biol,2010,31(1):1-7.
    [5] Sheng H, Shao J, Washington MK, DuBois RN. Prostaglandin E2increasesgrowth and motility of colorectal carcinoma cells. J Biol Chem,2001,276(21):18075-18081.
    [6] Sharma S, Zhu L, Yang SC, Zhang L, Lin J, Hillinger S, Gardner B, ReckampK, Strieter RM, Huang M, Batra RK, Dubinett SM. Cyclooxygenase2inhibitionpromotes IFN-gamma-dependent enhancement of antitumor responses. J Immunol,2005,175(2):813-819.
    [7] de Maat MF, van de Velde CJ, Umetani N, de Heer P, Putter H, van Hoesel AQ,Meijer GA, van Grieken NC, Kuppen PJ, Bilchik AJ, Tollenaar RA, Hoon DS.Epigenetic silencing of cyclooxygenase-2affects clinical outcome in gastric cancer. JClin Oncol,2007,25(31):4887-4894.
    [8] Sun WH, Sun YL, Fang RN, Shao Y, Xu HC, Xue QP, Ding GX, Cheng YL.Expression of Cyclooxygenase-2and Matrix Metallo-proteinase-9in GastricCarcinoma and its Correlation with Angiogenesis. Jpn J Clin Oncol,2005,35(12):707-713.
    [9] Cha YI, DuBois RN. NSAIDs and cancer prevention: targets downstream ofCOX-2. Annu Rev Med,2007,58:239-252.
    [10] Kang YJ, Mbonye UR, DeLong CJ, Wada M, Smith WL. Regulation ofintracellular cyclooxygenase levels by gene transcription and protein degradation.Prog Lipid Res,2007,46(2):108-125.
    [11] Harper KA, Tyson-Capper AJ. Complexity of COX-2gene regulation. BiochemSoc Trans,2008,36(pt3):543-545.
    [12] RasilaKK, BugrerRA, SmithH, Lee FC, Verschraegen C. Angiogenesis ingynecological oncology-mechanism of tumor progression and therpaeutie targets. IntJ Gynecol Cnacer,2005,15(5):710-726.
    [13] Shiff SJ, Koutsos MI, Qiao L, Rigas B. Nonsteroidal antiinflammatory drugsinhibit the proliferation of colon adenocarcinoma cells: effects on cell cycle andapoptosis. Exp Cell Res,1996,222(1):179-188.
    [14] Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell,2004,116(2):281-297.
    [15] Meister G, Tuschl T. Mechanisms of gene silencing by double-stranded RNA.Nature,2004,431(7006):343-349.
    [16] Zamore PD, Haley B. Ribo-gnome: the big world of small RNAs. Science,2005,309(5740):1519-1524.
    [17] Wiemer EA.The role of microRNAs in cancer: No small matter. Eur J Cancer,2007,43(10):1529-1544.
    [18] Lim LP, Glasner ME, Yekta S, Burge CB, Bartel DP. Vertebrate microRNAgenes. Science,2003,299(5612):1540.
    [19] Silahtaroglu A, J. Stenvang J. MicroRNAs, epigenetics and disease. EssaysBiochem,2010,48(1):165-185.
    [20] Zhang B, Stellwag EJ, Pan X. Large-scale genome analysis reveals uniquefeatures of microRNAs. Gene,2009,443(1-2):100-109.
    [21] Zhao Y, Ransom JF, Li A, Vedantham V, von Drehle M, Muth AN, TsuchihashiT, McManus MT, Schwartz RJ, Srivastava D. Dysregulation of cardiogenesis, cardiacconduction, and cell cycle in mice lacking miRNA-1-2. Cell,2007,129(2):303-317.
    [22] Chakrabarty A, Tranguch S, Daikoku T, Jensen K, Furneaux H, Dey SK.MicroRNA regulation of cyclooxygenase-2during embryo implantation. Proc NatlAcad Sci U S A,2007,104(38):15144-15149.
    [23] Daikoku T, Hirota Y, Tranguch S, Joshi AR, DeMayo FJ, Lydon JP, EllensonLH, Dey SK. Conditional loss of uterine Pten unfailingly and rapidly inducesendometrial cancer in mice. Cancer Res,2008,68(14):5619-5627.
    [24] Strillacci A, Griffoni C, Sansone P, Paterini P, Piazzi G, Lazzarini G, SpisniE, Pantaleo MA, Biasco G, Tomasi V. MiR-101downregulation is involved incyclooxygenase-2overexpression in human colon cancer cells. Exp Cell Res,2009,315(8):1439-1447.
    [25] Aguda BD, Kim Y, Piper-Hunter MG, Friedman A, Marsh CB. MicroRNAregulation of a cancer network: consequences of the feedback loops involvingmiR-17-92, E2F, and Myc. Proc Natl Acad Sci U S A,2008,105(50):19678-19683.
    [26] Ji J, Shi J, Budhu A, Yu Z, Forgues M, Roessler S, Ambs S, Chen Y, MeltzerPS, Croce CM, Qin LX, Man K, Lo CM, Lee J, Ng IO, Fan J, Tang ZY, SunHC, Wang XW. MicroRNA expression, survival, and response to interferon in livercancer. N Engl J Med,2009,361(15):1437-1447.
    [27] Jing Q, Huang S, Guth S, Zarubin T, Motoyama A, Chen J, Di Padova F, LinSC, Gram H, Han J. Involvement of microRNA in AU-rich element-mediated mRNAinstability. Cell,2005,120(5):623-634.
    [28] Kanemaru H, Fukushima S, Yamashita J, Honda N, Oyama R, Kakimoto A,Masuguchi S, Ishihara T, Inoue Y, Jinnin M, Ihn H. The circulating microRNA-221level in patients with malignant melanoma as a new tumor marker. J Dermatol Sci,2011,61(3):187-193.
    [29] Esquela-Kerscher A, Slack FJ. Oncomirs-microRNAs with a role in cancer. NatRev Cancer,2006,6(4):259-269.
    [30] Liu R, Zhang C, Hu Z, Li G, Wang C, Yang C, Huang D, Chen X, Zhang H,Zhuang R, Deng T, Liu H, Yin J, Wang S, Zen K, Ba Y, Zhang CY.Afive-microRNA signature identified from genome-wide serum microRNA expressionprofiling serves as a fingerprint for gastric cancer diagnosis. Eur J Cancer,2011,47(5):784-791.
    [31] Du Y, Xu Y, Ding L. Yao H, Yu H, Zhou T, Si J. Down-regulation of miR-141in gastric cancer and its involvement in cell growth. J Gastroenterol,2009,44(6):556-561.
    [32] Takagi T, Iio A, Nakagawa Y. Naoe T, Tanigawa N, Akao Y. Decreasedexpression of microRNA-143and-145in human gastric cancers. Oncology,2009,77(1):12-21.
    [33] Gao C, Zhang Z, Liu W, Xiao S, Gu W, Lu H. Reduced microRNA-218expression is associated with high nuclear factor kappa B activation in gastric cancer.Cancer,2010,116(1):41-49.
    [34] Zhang Y, Guo J, Li D, Xiao B, Miao Y, Jiang Z, Zhuo H. Downregulation ofmiR-31expression in gastric cancer tissues and its clinical significance. Med Oncol,2009,27(3):685-689.
    [35] Zhang HH, Wang XJ, Li GX, Yang E, Yang NM. Detection of let-7a microRNAby real-time PCR in gastric carcinoma. World J Gastroenterol,2007,13(20):2883-2888.
    [36] Petrocca F, Visone R, Onelli MR, Shah MH, Nicoloso MS, de Martino I,Iliopoulos D, Pilozzi E, Liu CG, Negrini M, Cavazzini L, Volinia S, Alder H, RucoLP, Baldassarre G, Croce CM, Vecchione A.E2F1-regulated microRNAs impairTGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell,2008,13(3):272-286.
    [37] He XP, Shao Y, Li XL, Xu W, Chen GS, Sun HH, Xu HC, Xu X, Tang D,Zheng XF, Xue YP, Huang GC, Sun WH. Downregulation of miR-101in gastriccancer correlates with cyclooxygenase-2overexpression and tumor growth. FEBS J.2012,279(22):4201-4212.
    [38] Xiao BX, Guo JM, Miao Y, et al. Detection of miR-106a in gastric carcinomaand its clinical significance. Clini Chim Acta,2009,400(1-2):97-102.
    [39] Feng RH, Chen XH, Yu YY, et al. miR-126functions as a tumour suppressor inhuman gastric cancer. Cancer Lett,2010,298(1):50-63.
    [40] Strillacci A, Griffoni C, Sansone P, Paterini P, Piazzi G, Lazzarini G, Spisni E,Pantaleo MA, Biasco G, Tomasi V.MiRNA-101downregulation is involved incyclooxygenase-2overexpression in human colon cancer cells. Exp Cell Res,2009,315(8):1439-1447.
    [41] Varambally S, Cao Q, Mani RS, Shankar S, Wang X, Ateeq B, Laxman B, CaoX, Jing X, Ramnarayanan K, Brenner JC, Yu J, Kim JH, Han B, Tan P, Kumar-SinhaC, Lonigro RJ, Palanisamy N, Maher CA, Chinnaiyan AM. Genomic loss ofmicroRNA-101leads to overexpression of histone methyltransferase EZH2in cancer.Science,2008,322(5908):1695-1699.
    [42] Su H, Yang JR, Xu T, Huang J, Xu L, Yuan Y, Zhuang SM. MicroRNA-101,down-regulated in hepatocellular carcinoma, promotes apoptosis and suppressestumorigenicity. Cancer Res,2009,69(3):1135-1142.
    [1]孙为豪,苏菡,章礼久,邵耘,许海尘,张涛,薛绮萍,丁国宪,程蕴琳.胃泌素受体拮抗剂和环氧合酶-2抑制剂对胃癌细胞增殖和凋亡的影响.中华医学杂志,2006,86(4):250-254.
    [2]张园,程蕴琳,孙为豪.环氧化酶-2抑制剂与心血管事件.中华老年医学杂志,2007,26(3):229-231.
    [3] Andersson D, Liu JJ, Nilsson A, Duan RD. Ursolic acid inhibits proliferation andstimulates apoptosis in HT29cells following activation of alkaline sphingomyelinase.Anticancer Res,2003,23:3317-3322.
    [4] Kazmi I, Narooka AR, Afzal M, Singh R, Al-Abbasi FA, Ahmad A, Anwar F.Anticancer effect of ursolic acid stearoyl glucoside in chemically inducedhepatocellular carcinoma. J Physiol Biochem.2013Mar20.[Epub ahead of print]
    [5] Wang J, Guo W, Chen W, Yu W, Tian Y, Fu L, Shi D, Tong B, Xiao X, HuangW, Deng W. Melatonin potentiates the antiproliferative and pro-apoptotic effectsof ursolic acid in colon cancer cells by modulating multiple signaling pathways. JPineal Res.2012Dec8. doi:10.1111/jpi.12035.
    [6] Gai L, Cai N, Wang L, Xu X, Kong X. Ursolic acid induces apoptosis viaAkt/NF-κB signaling suppression in T24human bladder cancer cells. Mol Med Rep,2013Mar11. doi:10.3892/mmr.2013.1364.
    [7]崔岚,祝德秋,安富荣.熊果酸抗肿瘤机制研究进展.中国中医药信息杂志,2005,12(10):100-102.
    [8]李剑萍,邵耘,陈国胜,何晓璞,刘翠霞,许海尘,周苏明,孙为豪.熊果酸和环氧化酶-2抑制剂对胃癌细胞增殖的影响.江苏医药,2009,35(3)︰305-307.
    [9] Zhang H, Li X, Ding J, Xu H, Dai X, Hou Z, Zhang K, Sun K, Sun W. Deliveryof ursolic acid (UA) in polymeric nanoparticles effectively promotes the apoptosisof gastric cancer cells through enhanced inhibition of cyclooxygenase2(COX-2). IntJ Pharm,2013,441(1-2):261-268.
    [10]胡志芳,邓涛,张奕颖,江华,陈会敏,董兴高,张秋萍.熊果酸抑制人胃腺癌SGC-7901细胞系COX-2的表达.基础医学与临床,2007,27(5):557-560.
    [11] Zhang YY, Deng T, Hu ZF, Zhang QP, Zhang J, Jiang H. Mechanisims ofinhibiting proliferation and inducing apoptosis of human gastic cancer cell lineSGC7901by ursolic acid. Ai Zheng,2006,25(4):432-437.
    [12]张静,邓涛,陈会敏,胡志芳,张奕颖,罗和生,张秋萍.熊果酸抑制胃癌细胞BGC-823增殖并诱导凋亡.武汉大学学报︰医学版,2005,6(3):375-378.
    [13]刘纯伦,唐承薇,万学红,王春晖,周旭春.选择性环氧合酶-2抑制剂对胃癌细胞生长的影响.四川大学学报(医学版),2003,34(3):480-483.
    [14] Cheng J, Imanish IH, Amuro Y, Hada T. NS-398, a selective cyclooxygenase2inhibitor, inhibited cell growth and induced cell cyclearrest in human hepato-cellularcarcinoma cell lines. Int Cancer,2002,99(5):755-761.
    [15] Park MK, Hwang SY, Kim JO, Kwack MH, Kim JC, Kim MK, Sung YK.NS-398inhibits the growth of Hep-3B human hepatocellular cells via caspase-2independent apoptosis. Mol Cells,2004,17(1):45-50.
    [16] Liu MC, Yang SJ, Jin LH, Hu DY, Xue W, Song BA, Yang S. Synthesis andcytotoxicity of novel ursolic acid derivatives containing an acyl piperazine moiety.Eur J Med Chem.2012,58:128-135.
    [17]Pang RP, Zhou JG, Zeng ZR, Li XY, Chen W, Chen MH, Hu PJ. COX-2deficient human gastric cancer cells through Akt/GSK3beta/NAG-1pathway. CancerLett.2007,251(2):268-277.
    [18] Liu K, Guo L, Miao L, Bao W, Yang J, Li X, Xi T, Zhao W. Ursolicacid inhibits epithelial-mesenchymal transition by suppressing the expression ofastrocyte-elevated gene-1in human nonsmall cell lung cancer A549cells. AnticancerDrugs,2013,24(5):494-503.
    [19] Zhu Z, Qian Z, Yan Z, Zhao C, Wang H, Ying G. A phase I pharmacokineticstudy of ursolic acid nanoliposomes in healthy volunteers and patients with advancedsolid tumors. Int J Nanomedicine,2013,8:129-136.
    [1] Itzkowitz SH. Gastrointestinal adenomatous polyps. Semin Gastrointest Dis,1996,7(2):105-116.
    [2] O’Brien MJ, Winawer SJ, Zauber AG, Gottlieb LS, Sternberg SS, Diaz B,Dickersin GR, Ewing S, Geller S, Kasimian D. The National Polyp Study. Patient andpolyp characteristics associated with high-grade dysplasia in colorectal adenomas.Gastroenterology,1990,98(2):371-379.
    [3] Watson JP, Bennett MK, Griffin SM, Matthewson K.The tissue effect of argonplasma coagulation on esophageal and gastric mucosa. Gastrointest Endosc,2000,52(3):342-345.
    [4] Mitsufuji S, Nagoshi M, Tatsumi Y, et al. Argon plasma coagulation: In vivotissue damage to the esophagus and stomach and clinical efficacy for earlyesophageal and gastric cancer. Dig Endosc,2005,17(1):21-27.
    [5] Grund KE, Storek D, Farin G. Endoscopic argon plasma coagulation (APC) firstclinical experiences in flexible endoscopy. Endoscopy,1994,2(1):42-46.
    [6] Goulet CJ, Disario JA, Emerson L, Hilden K, Holubkov R, Fang JC. In vivoevaluation of argon plasma coagulation in a porcine model. Gastrointest Endosc,2007,65(3):457-462.
    [7] Manner H, May A, Faerber M, Pech O, Plum N, Ell C. The tissue effect of secondgeneration argon plasma coagulation (VIO APC) in comparison to standard APC andNd: YAG laser in vitro. Acta Gastroenterol Belg,2007,70(4):352-356.
    [8] Manner H, May A, Rabenstein T, Pech O, Nachbar L, Enderle MD, GossnerL, Ell C. Prospective evaluation of a new highpower argon plasma coagulationsystem (hp-APC) in therapeutic gastrointestinal endoscopy. Scand J Gastroenterol,2007,42(3):397-405.
    [9] Nürnberg D, Pannwitz H, Burkhardt KD, Peters M. Gas explosion caused byargon plasma coagulation of colonic angiodysplasias. Endoscopy,2007,39(Suppl1):E182.
    [10] Brooker JC, Saunders BP, Shah SG, Thapar CJ, Suzuki N, Williams CB.Treatment with argon plasma coagulation reduces recurrence after piecemal resectionof large sessile colonic polyps: a randomized trial and recommendations. GastrointestEndosc,2002,55(3):371-375.
    [11] Regula J, Wronska E, Polkowski M, Nasierowska-Guttmejer A, Pachlewski J,Rupinski M, Butruk E. Argon plasma coagulation after piecemeal polypectomy ofsessile colorectal adenomas: long-term follow-up study. Endoscopy,2003,35(3):212-218.
    [12] Neneman B, Gasiorowska A, Ma ecka-Panas E. The efficacy and safety of argonplasma coagulation (APC) in the management of polyp remnants in stomach andcolon. Adv Med Sci,2006,51:88-93.
    [13] Imperiale TF, Glowinski EA, Lin-Cooper C, Larkin GN, Rogge JD, RansohoffDF. Five-Year Risk of Colorectal Neoplasia after Negative Screening Colonoscopy.N Engl J Med,2008,359(12):1218-1224.
    [14] Puente Gutiérrez JJ, Marín Moreno MA, Domínguez Jiménez JL, Bernal BlancoE, Díaz Iglesias JM. Effectiveness of a colonoscopic screening programme in first-degree relatives of patients with colorectal cancer. Colorectal Dis,2011,13(6):e145-
    153.
    [1] Calin GA,Dumitru CD,Shimizu M,Bichi R, Zupo S, Noch E, Aldler H,Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM.Frequent deletions and down-regulation of micro-RNA genes miR15an d miR16at13q14in chronic lymphocytic leukemia. Proc Natl Acad Sci USA,2002,99(24):15524-15529.
    [2]陈万青,张思维,郑荣寿,曾红梅,邹小农,赵平,吴良有,李光琳,赫捷.中国2009年恶性肿瘤发病和死亡分析.中国肿瘤,2013,22(1):2-12.
    [3] Matsuda A, Matsuda T. Time trends in stomach cancer mortality(1950-2008) inJapan, the USA and Europe based on the WHO mortality database. Jpn J Clin Oncol,2011,41(7):932-933.
    [4] Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics,2002. CA Cancer JClin.2005,55(2):74-108.
    [5] Zhang B, Stellwag EJ, Pan X. Large-scale genome analysis reveals uniquefeatures of microRNAs. Gene,2009,443(1-2):100-109.
    [6] Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4encodes small RNAs with antisense complementarity to lin-14. Cell,1993,75(5):843-854.
    [7] Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation anddeep-sequencing data. Nucleic Acids Res.201139(Database issue):D152-D157.
    [8] Winter J, Jung S, Keller S, Gregory RI, Diederichs S. Many roads to maturity:microRNA biogenesis pathways and their regulation. Nat Cell Biol,2009,11(3):228-234.
    [9] Cashew R W, Sontheimer E J. Origins and Mechanisms of miRNAs and siRNAs.Cell,2009,136(4):642-655.
    [10] Inui M, Martello G, Piccolo S. MicroRNA control of signal ransduction. Nat RevMol Cell Biol,2010,11(4):252-263.
    [11] Zeng Y, Yi R, Cullen B R. MicroRNAs and small interfering RNAs can inhibitmRNA expression by similar mechanisms. Proc Natl Acad Sci USA,2003,100(17):9779-9784.
    [12] Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM, Lim B,Rigoutsos I. A pattern-based method for the identification of MicroRNA binding sitesand their corresponding heteroduplexes. Cell,2006,126(6):1203-1217.
    [13] Suzuki H, Yamamoto E, Nojima M, Kai M, Yamano HO, Yoshikawa K, KimuraT, Kudo T, Harada E, Sugai T, Takamaru H, Niinuma T, Maruyama R, Yamamoto H,Tokino T, Imai K, Toyota M, Shinomura Y. Methylation-associated silenceing ofmicroRNA34b/c in gastric cancer and its involvement in an epigenetic field defect.Carcinogenesis,2010,31(12):2066-2073.
    [14] Tsai KW, Hu LY, Wu CW, Li SC, Lai CH, Kao HW, Fang WL, Lin WC.Epigenetic regulation of miR-196b expression in gastric cancer. Genes ChromosomesCancer,2010,49(11):969-980.
    [15] Hashimoto Y, Akiyama Y, Otsubo T, Shimada S, Yuasa Y. Involvement ofepigenetically silenced microRNA-181c in gastric carcinogenesis. Carcinogenesis,2010,31(5):777-784.
    [16] Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, IorioM, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A,Negrini M, Harris CC, Croce CM. A microRNA expression signature of human solidtumors defines cancer gene targets. Proc Natl Acad Sci USA,2006,103(7):2257-2261.
    [17] Guo JM, Miao Y, Xiao BX, Huan R, Jiang Z, Meng D, Wang Y. Diferentialexpression of microRNA species in human gastric cancer vel'sUS non-tumoroustissues. J Gastroenterol Hepatol,2009,24(4):652-657.
    [18] Ueda T, Volinia S, Okumura H, Shimizu M, Taccioli C, Rossi S, Alder H, LiuCG, Oue N, Yasui W, Yoshida K, Sasaki H, Nomura S, Seto Y, Kaminishi M, CalinGA, Croce CM. Relation between microRNA expression and progression andprognosis of gastric cancer: a microRNA expression analysis. Lancet Oncol,2010,11(2):136-146.
    [19] Viala J, Chaput C, Boneca IG, Cardona A, Girardin SE, Moran AP, AthmanR, Mémet S, Huerre MR, Coyle AJ, DiStefano PS, Sansonetti PJ, Labigne A, Bertin J,Philpott DJ, Ferrero RL. Nodl responds to peptidogly can delivered by theHelicobacter pylori cag pathogenicity island. Nat Immunol,2004,5(11):1166-1174.
    [20] Ferrero R. Innate immune recognition of the extracellular mucosa1pathogen,Helicobacter priori, Mol Immunol,2005,42(8):879-885.
    [21] Zhang Z, Li Z, Gao C, Chen P, Chen J, Liu W, Xiao S, Lu H. miR-21playspivotal role in gastric cancer pathogenesis and progression. Lab Invest,2008,88(12):l358-l366.
    [22] Kim DN, Chae HS, Oh ST, Kang JH, Park CH, Park WS, Takada K, LeeJM, Lee WK, Lee SK. Expression of viral microRNAs in Epstein-Barrvirus-associated gastric carcinoma. J ViM.2007,81(2):1033-1036.
    [23] Wu Q, Jin H, Yang Z, Luo G, Lu Y, Li K, Ren G, Su T, Pan Y, Feng B, XueZ, Wang X, Fan D. MiR-150promotes gastric cancer proliferation by negativelyregulating the pro-apoptotic gene EGR2. Biochem Biophys Res Commun.2010,392(3):340-345.
    [24] Lai KW, Koh KX, Loh M, Tada K, Subramaniam MM, Lim XY, VaithilingamA, Salto-Tellez M, Iacopetta B, Ito Y, Soong R. MicroRNA-130b regulates the tmoursuppressor RUNX3in gastric cancer. European Journal of Cancer,2010,46(8):1456-1463.
    [25] Petrocca F, Visone R, Onelli MR, Shah MH, Nicoloso MS, de Martino I,Iliopoulos D, Pilozzi E, Liu CG, Negrini M, Cavazzini L, Volinia S, Alder H, RucoLP,Baldassarre G, Croce CM, Vecchione A. E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell,2008,13(3):272-286.
    [26] Negrini M, Nicoloso MS, Calin GA. MicroRNAs and cancer-new paradigms inmolecular oneology. Curr Opin Cell Biol,2009,21(3):470-479.
    [27] Sun T, Wang C, Xing J, Wu D. miR-429Modulates the expression of c-myc inhuman gastric carcinoma cells. Eur J Cancer,2011,47(17):2552-2559.
    [28] Tie J, Pan Y, Zhao L, Wu K, Liu J, Sun S, Guo X, Wang B, Gang Y, Zhang Y,Li Q, Qiao T, Zhao Q, Nie Y, Fan D. MiR-218inhibits invasion and metastasis ofgastric cancer by targeting the Robol receptor. PLOS Genet,2010,6(3):e1000879.
    [29] Motoyama K, Inoue H, Nakamura Y, Uetake H, Sugihara K, Mori M. Clinicalsignificance of high mobility group A2in human gastric cancer and its relationship tolet-7microRNA family. Clin Cancer Res,2008,14(8):2334-2340.
    [30] Wang HJ, Ruan HJ, He XJ, Ma YY, Jiang XT, Xia YJ, Ye ZY, Tao HQ.MicroRNA-101is down-regulated in gastric cancer and involved in cell migrationand invasion. Eur J Cancer,2010,46(12):2295-2303.
    [31] Lang N, Liu M, Tang QL, Chen X, Liu Z, Bi F. Effects of microRNA-29familymembers on proliferation and invasion of gastric cancer cell lines. Chin J Cancer,2010,29(6):603-610.
    [32] Shen R, Pan S, Qi S, Lin X, Cheng S. Epigenetic repression of microRNA-129-2leads to overexpression of SOX4in gastric cancer. Biochem Biophys Res Commun,2010,394(4):1047-1052.
    [33] Tsukamoto Y, Nakada C, Noguchi T, Tanigawa M, Nguyen LT, Uchida T,Hijiya N, Matsuura K, Fujioka T, Seto M, Moriyama M. MicroRNA-375is down-regulated in gastric carcinomas and regulates cell survival by targeting PDK1and14-3-3zeta. Cancer Res,2010,70(6):2339-2349.
    [34] Zhang ZY, Li ZJ, Gao CP, Chen P, Chen J, Liu W, Xiao S, Lu H. miR-21playsa pivotal role in gastric cancer pathogenesis and progression. Lab Invest,2008,88(12):1358-1366.
    [35] Tseng CW, Lin CC, Chen CN, Huang HC, Juan HF. Integrative network analysisreveals active microRNAs and their functions in gastric cancer. BMC Syst Biol.2011,5:99.
    [36] Feng L, Xie Y, Zhang H, Wu Y. MiR-107targets cyclin-dependent kinase6expression, induces cell cycle G1arrest and inhibits invasion in gastric cancer cells.Med Oncol,2012,29(2):856-863.
    [37] Li Z, Zhan W, Wang Z, Zhu B, He Y, Peng J, Cai S, Ma J. Inhibition of PRL-3gene expression in gastric cancer cell line SGC7901via microRNA suppressedreduces peritoneal metastasis. Biochem Biophys Res Commun,2006,348(1):229-237.
    [38]蔡世荣,陈创奇,王昭,何裕隆,崔冀,吴晖,詹文华.促肝再生磷酸酶-3在胃癌患者组织中的表达及其对胃癌细胞生长的影响.中华医学杂志,2008,88(33):2326-2330.
    [39] Zhou H, Guo JM, Lou YR, Zhang XJ, Zhong FD, Jiang Z, Cheng J, Xiao BX.Detection of circulating tumor cells in peripheral blood from patients with gastriccancer using microRNA as a marker. J Mol Med(Berl),2010,88(7):709-717.
    [40] Tsujiura M, Ichikawa D, Komatsu S, Shiozaki A, Takeshita H, Kosuga T,Konishi H, Morimura R, Deguchi K, Fujiwara H, Okamoto K, Otsuji E. CirculatingmicroRNAs in plasma of patients with gastric cancers. Br J Cancer,2010,102(7):1174-1179.
    [41] Liu R, Zhang C, Hu Z, Li G, Wang C, Yang C, Huang D, Chen X, Zhang H,Zhuang R, Deng T, Liu H, Yin J, Wang S, Zen K, Ba Y, Zhang CY. A five-mircoRNA signature identified from genome-wide serum microRNA expression profilingserves as a fingerprint for gastric cancer diagnosis. Eur J cancer,2011,47(5):784-791.
    [42] Zhou J, Yu L, Gao X, Hu J, Wang J, Dai Z, Wang JF, Zhang Z, Lu S, HuangX, Wang Z, Qiu S, Wang X, Yang G, Sun H, Tang Z, Wu Y, Zhu H, Fan J. PlasmamicroRNA panel to dignose hepatitis B virus-related hepatocellular carcinoma. J ClinOncol,2011,29(36):4781-4788.
    [43] Du Y, Xu Y, Ding L, Yao H, Yu H, Zhou T, Si J. Down-regulation of miR-141in gastric cancer and its involvement in cell growth. J Gastroenterol.2009,44(6):556-561.
    [44] Katada T, Ishiguro H, Kuwabara Y, Kimura M, Mitui A, Mori Y, Ogawa R,Harata K, Fujii Y. microRNA expression profile in undifierentiated gastric cancer. IntJ Oncol,2009,34(2):537-542.
    [45] Kota J, Chivukula RR, O’Donnell KA, Wentzel EA, Montgomery CL, HwangHW, Chang TC, Vivekanandan P, Torbenson M, Clark KR, Mendell JR, Mendell JT.Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancermodel. Cell,2009,137(6):1005-1017.
    [46] Shi SJ, Zhong ZR, Liu J, Zhang ZR, Sun X, Gong T. Solid lipid nanoparticlesloaded with anti-microRNA oligonucleotides(AMOs) for suppression of microRNA-21functions in human lung cancer cells. Pharm Res,2012,29(1):97-109.
    [47] Pan W, Zhu S, Yuan M, Cui H, Wang L, Luo X, Li J, Zhou H, Tang Y, Shen N.MicroRNA-21and microRNA-148a contribute to DNA hypomethylation in lupusCD4+T cells by directly and indirectly targeting DNA methyltransferase1. JImmunol,2010,184(12):6773-6781.
    [48] Li Z, Zhan W, Wang Z, Zhu B, He Y, Peng J, Cai S, Ma J. Inhibition of PRL-3gene expression in gastric cancer cell line SGC7901via microRNA suppressedreduces peritoneal metastasis. Biochem Biophys Res Commun,2006,348(1):229-237.
    [49] Takei Y, Takigahira M, Mihara K, Tarumi Y, Yanagihara K. The metastasis-associated microRNA miR-516a-3p is a novel therapeutic target for inhibitingperitoneal dissemination of human scirrhous gastric cancer. Cancer Res,2011,71(14):1442-1453.
    [50] Zhu Y, Zhong Z, Liu Z. Lentiviral vector-mediated upregulation of let-7ainhibits gastric carcinoma cell growth in vitro and in vivo. Scand J Gastroenterol,2011,46(1):53-59.
    [51] Su H, Yang JR, Xu T, Huang J, Xu L, Yuan Y, Zhuang SM. MicroRNA-101,down-regulated in hepatocellular carcinoma, promotes apoptosis and suppressestumorigenicity. Cancer Res,2009,69(3):1135-1142.
    [52] Xia L, Zhang D, Du R, Pan Y, Zhao L, Sun S, Hong L, Liu J, Fan D. miR-15band miR-16modulate multidrug resistance by targeting BCL2in human gastriccancer cells. Int J Cancer,2008,123(2):372-379.
    [53] Ji Q, Hao X, Meng Y, Zhang M, Desano J, Fan D, Xu L. Restoration of tumorsuppressor miR-34inhibits human p53-mutant gastric cancer tumorspheres. BMCCancer,2008,8:266.doi:10.1186/1471-2407-8-266.
    [54] Chun-Zhi Z, Lei H, An-Ling Z, Yan-Chao F, Xiao Y, Guang-Xiu W, Zhi-FanJ, Pei-Yu P, Qing-Yu Z, Chun-Sheng K. MicroRNA-221and microRNA-222regulate gastric carcinoma cell proliferation and radioresistance by targeting PTEN.BMCCancer,2010,10:367. doi:10.1186/1471-2407-10-367.
    [55] Bandres E, Bitarte N, Arias F, Agorreta J, Fortes P, Agirre X, Zarate R, Diaz-Gonzalez JA, Ramirez N, Sola JJ, Jimenez P, Rodriguez J, Garcia-Foncillas J.MicroRNA-451regulates macrophage migration inhibitory factor production andproliferation of gastrointestinal cancer cells. Clin Cancer Res,2009,15(7):2281-2290.
    [56] Tanaka T, Haneda S, Imakawa K, Sakai S, Nagaoka K. A microRNA, miR-101a,controls mammary gland development by regulating cyclooxygenase-2expression.Differentiation,2009,77(2):181-187.
    [57] Hao Y, Gu X, Zhao Y, Greene S, Sha W, Smoot DT, Califano J, Wu TC, Pang X.Enforced expression of miR-101inhibits prostate cancer cell growth by modulatingthe COX-2pathway in vivo. Cancer Prev Res (Phila).2011,4(7):1073-1083.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700