用户名: 密码: 验证码:
大体积混凝土结构温度应力有限元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着基础建设的迅速发展,混凝土结构应用越来越多,混凝土在现代工程建设中已经占据了非常重要的地位,不论什么样的工程,大都是采用钢筋混凝土结构,因为这种建筑材料比起以往所用的砖石木结构价廉物美,施工方便,承载力大,可装饰强的特点,渐渐受到人们的欢迎。在我国不论是工业建筑还是民用建筑,钢筋混凝土的应用面可以说是无处不在。
     目前,对大体积混凝土的温度裂缝进行控制,主要是从尽量减少水泥用量这一点来考虑,但减少水泥用量也会使混凝土的抗拉性能降低。所以说这种方法对混凝土的温度裂缝控制不是太好。我们换一个角度,可以在其中加入一些粉煤灰,这样还可以保证混凝土中水泥的用量,然后再加入一些改性材料使拌好的混凝土具有一定的韧性,形成高性能混凝土,这样就可以解决大体积混凝土的温度裂缝问题。
     本文以实验为基础,对掺加粉煤灰、聚丙烯纤维和乳化沥青等改性材料混凝土的力学性能进行了分析研究,建立了大体积混凝土板的有限元分析模型,对试验结果与理论分析的结果进行了比较,验证了掺加改性材料混凝土自身抵抗温度应力的能力。主要进行了以下工作:
     ①在已有的研究成果的基础上,根据热传导基本原理及有限元方法,介绍了裂缝的成因和开裂机理,与此同时还考虑了徐变、干缩等一系列因素对大体积混凝土裂缝造成的影响。
     ②通过在混凝土里掺加不同成分和数量的改性材料,对这样拌合好的混凝土的力学性能进行了试验,得出了主要规律:掺加适量的粉煤灰和硅粉,可以降低水化热,提高强度和密度;加入聚丙烯纤维,可以有效的提高混凝土材料的极限拉伸变形和抗裂性能;加入适量的乳化沥青,可以改善和易性,还能起到减水作用。
     ③运用有限元分析软件MIDAS/gen,建立了某工程实例温度应力模型,研究了大体积混凝土温度及温度应力的分布规律,并与掺加改性材料的混凝土进行了对比,验证了新型多掺高性能混凝土在实际工程应用中的可行性。
With the fact that promptness that the basis builds develops, concrete structure application has been more and more many, the concrete has already occupied very important position in modern engineering construction, disregarding what project, is to adopt reinforced concrete structure mostly, because of this building material comparing with in the past what be used brick stone wooden structure is good and cheap, the force being under construction going to the lavatory, bearing the weight of is big, may decorate the strong characteristic, welcoming accepting people gradually. Be still civil architecture in our country disregarding being an industrial architecture, the armoured concrete application so to speak is nowhere absent face to face.
     At present, the concrete temperature rift is in progress to big volume the tensile property being that this thinks during the past one o'clock, but cutting down cement dosages also will be uses a concrete from trying one's best to cut down cement dosages mainly reduces under the control of. That the temperature to the concrete breaks with slot therefore saying this method is not very good under the control of. And then we change a angle, can add some fine coal ash among them, such returns back to the dosages being able to stick to middle cement of concrete, be adding the temperature rift problem that some change nature material makes stir and mix the good concrete having certain tenacity, concrete, this way forming high-performance with regard to being able to resolve big volume concretes.
     The main body of a book take experiment as basis, face to face adulterate add fine coal ash, pulpex P and emulsification pitch etc. change nature material the concrete Mechanics function has carried out analysis studying, has built big volume concrete slabs finite element method analysis model, has carried out comparison, verification on test result and the theoretical analysis result adulterate add change nature material concrete oneself fights against temperature strain ability. Have carried out the following job mainly:
     ①On already some research results basis, according to conduction of heat basal principle and finite element method method, the mechanism having introduced rift cause of formation and dehiscence, has thought that Xu a series of factor such as changing, airing shrinkage causes effects on big volume concrete rifts hereof at the same time.
     ②Change nature material by adulterating add a block of wood and constitutive sum quantity's within the concrete, the Mechanics function stirring and mixing the good concrete of small side door to such has carried out an experiment, has reached the main law:Fever of adulterating the fine coal ash and ganister sand adding appropriate amount, being able to reduce aquation, improves the intensity and density; Function adding pulpex P, being able to be an effective to improve concrete material limit stretcher strain and to resist to crack; Add the appropriate amount emulsification pitch, can improve peaceability, can play arrive at subtraction water role.
     ③Have applied finite element method to analyse software MIDAS/gen, have built some project example temperature strain models, have studied big volume concrete temperature and temperature strain distribution law, and and adulterate have added the concrete changing nature material have carried out contrast, have verified new model feasibility in adulterating the high-performance concrete much applying to actual project.
引文
[1]王铁梦.工程结构裂缝控制[M].北京:中国建筑工业出版社,1997
    [2]朱伯芳.大体积混凝土的温度应力和温度控制[M].北京:中国电力出版社,1998
    [3]北京金土木软件技术有限公司编.SAP000中文版使用指南[M].北京;人民交通出版社,2007
    [4]李彬彬.大体积混凝土温度应力有限元分析[D].西安:西安建筑科技大学硕士学位论文,2007
    [5]赵志缙,赵帆编著.高层建筑基础工程施工(第三版)[M].北京:中国建筑工业出版社,2005
    [6]李继业编著.新型混凝土技术与施工工艺[M].北京:中国建材工业出版社,2002.12
    [7]杨合礼.原材料对大体积混凝土裂缝的影响与控制[D].博士学位论文,武汉大学,2004.10
    [8]朱平华,陈华建.大体积混凝土优化设计的四功能准则[J].混凝土,2004(3):25-30
    [9]张奕,传热学[M].南京:东南大学出版社,2004
    [10]杨世铭,陶文铨.传热学(第三版)[M].北京:高等教育出版社,1998
    [11]章熙民,任泽霈,梅飞鸣.传热学[M].北京:中国建筑工业出版社,1985
    [12]刘兴法.混凝土结构的温度应力分析[M].北京:人民交通出版社,1991
    [13]彭诗明.大体积混凝土结构有限单元法应用研究[D].硕士学位论文,武汉:武汉大学,2005
    [14]屈涛.大体积混凝土温度应力及裂缝扩展的研究[D].硕士学位论文,武汉:武汉理工大学,2007
    [15]李祝龙,梁乃兴.乳化沥青改性水泥砂浆的试验研究[J].公路,2001,(11):117-119
    [16]李立权.混凝土配合比设手册[M].广州:华南理工大学出版社,2003
    [17]过镇海,时旭东.钢筋混凝土的原理和分析[M].北京:清华大学出版社,2004
    [18]中国建筑科学研究院主编.混凝土结构设计规范.北京:中国建筑工业出版社,2002
    [19]中华人民共和国建设部主编.普通混凝土力学性能试验方法.北京:中国建筑工业出版社,2003
    [20]陈昌礼.硅粉混凝土的基本性能与工程应用[J].新型建筑材料.2008(10):4346
    [21]廖波.小浪底泄洪工程高标号混凝土裂缝产生的原因及防治[J].水利学报,2001(7):47-50
    [22]邹必魁.外掺硅粉混凝土在飞来峡水利枢纽工程中的应用[J].西部探矿工程,2005(增刊):370-372
    [23]蒋耀.几种新型混凝土外加剂[J].新型建筑材料,1994.05
    [24]《混凝土泵送施工技术规程》(JGJ/T10-95),中国建筑工业出版社,1995
    [25]和雪峰.大体积混凝土分层分块浇筑全过程有限元仿真分析研究.浙江大学硕士论文,2001.
    [26]陈绪清等.超长大体积混凝土裂缝控制技术在兰州蓝宝石大厦工程中的应用[C].第十二届全国混凝土及预应力混凝土学术会议论文,2003:305-312
    [27]黄政宇主编.土木工程材料[M].高等教育出版社,2002.12
    [28]S.A.ssa, M.S.Islam, SPeeimen and Aggregate Size Eeffet on Conerete ComPressive Strength, Cement, Conerete and Aggregate, December.2000, Vo122, No2
    [29]刘珍.大体积微膨胀混凝土优化选型的研究.浙江大学硕士学位论文,2004.3
    [30]朱伯龙、董振祥.钢筋混凝土非线性分析.上海:同济大学出版社,1985
    [31]周福俊.大面积、大体积基础底板不设后浇带的混凝土施工技术[J].建筑技术,2003,28(2):97-98
    [32]江昔平、王社良.超大体积混凝土温度裂缝产生机理分析与抗裂控制新对策[J]混凝土,2007,(12):98-102
    [33]吴学礼,杨钱荣等.粉煤灰砼配合比设计的计算机系统.砼与水泥制品,2002:12-14.
    [34]王立波.超长结构混凝土无缝浇筑施工与质量控制[J].西部探矿工程,2003,15(10): 122-123
    [35]黄莘,陈谦应.路面砼配合比优化设计,公路交通科技,2000(3):1-5.
    [36]Valen.M. Using Fly Ash for Consurtetion, Mechanical Engineering,117(5)(1995), P.P82-86
    [37]中国工程院土木水利与建筑学部,砼结构耐久性设计与施工指南,北京:中国建筑工业出版社,2004
    [38]朱清时主编.高强高性能砼研制及开发,北京:中国建材工业出版社,1999
    [39]许文忠.大体积混凝土基础温度裂缝控制施工技术研究.同济大学硕士学位论文.2007
    [40]曹路.乳化沥青的应用.中国市政工程.2005
    [41]陈生建.大体积钢筋混凝土基础板温度收缩裂缝的控制研究.同济大学工程硕士论 文.2007
    [42]姚武,李杰等.聚丙烯纤维对混凝土抗拉强度的影响.混凝土.2001(10)
    [43]张云理,卡葆芝编.混凝土外加剂产品及应用手册(第一版)[M].北京:中国铁道出版社,1988
    [44]普通混凝土力学性能试验方法标准(GB/TSO081-2002),北京:中国建筑工业出版社,2003
    [45]朱柳沅.高层大体积混凝土工程施工技术研究.科技资讯.2008
    [46]王铁梦.抗放原理及其工程应用[J].广东土木与建筑,2001,3:3-5
    [47]Eric Ayotte, Bruno Massicotte, Modeling the thermal stresses at early ages in a concrete monolith, ACI material journal.1997. V94:P577-587.
    [48]C. E. Majorana, G Zavarise, M. Borsetto and M. Giuseppetti. Nonlinear analysis of thermal stresses in mass concrete castings [J]. Cement and Concrete Research, Vol.20, Issue 4,1990 (7):559-578
    [49]Wilson E.L. The Determination of Temperatures within Mass Structures[J]. Structures and Materials Research, Department of Civil Engineering. University of California, Berkeley, Dcc.1968.12:68-71

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700