用户名: 密码: 验证码:
介孔硅干凝胶组织修复生物材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用溶胶-凝胶法,以表面活性剂十六烷基三甲基溴化铵(CTAB)为致孔剂,合成了介孔硅干凝胶生物医用组织修复材料。研究了原料不同配比和烧结条件对介孔硅干凝胶材料性能的影响。结果表明:正硅酸乙酯(TEOS)及水的量分别固定为300mL和400mL时,当十六烷基三甲基溴化铵加入量为40g时,合成的介孔硅干凝胶(C40)具有良好的介孔结构和外观形貌,且介孔硅干凝胶是含有大量羟基基团和Si-O键的非晶材料。
     以表面活性剂三嵌段共聚物P123为模板剂,制备了含钙有序介孔硅干凝胶材料,该材料具有高的比表面积和均一的孔径。含钙介孔硅干凝胶在模拟体液里,其表面能够形成磷灰石,表明该材料具有很好的生物活性。用MC3T3-E1细胞与介孔硅干凝胶材料的联合培养,结果显示该材料能够促进细胞增殖,表明该材料具有良好的细胞相容性。含钙介孔干凝胶可以有效地促进血液凝结,随着材料用量和含钙量的增加,凝血效果增强,表明该材料具有很好的止血性能。
     制备了含铜及银的介孔硅干凝胶材料,这两种材料都具有良好的介孔结构,且铜元素的引入对材料的介孔结构无明显影响。含铜介孔材料可缓释出铜离子,且对大肠杆菌和金黄色葡萄球菌有很好的抗菌性,而含银抗菌材料对大肠杆菌也具有很明显的抗菌性。用含铜介孔材料治疗新西兰大白兔皮肤创伤,结果表明:含铜抗菌材料能够促进皮肤快速愈合。两种材料的抗菌效果对比说明,银元素具有比铜元素更强的抗菌能力。通过细胞实验,研究含银介孔硅干凝胶材料的细胞相容性,结果显示:当银含量降低到一定程度时,该材料无细胞毒性。
     合成了大孔径(大于15nm)结构的介孔材料PSX,其对牛血清蛋白具有强有效的吸附能力,且有很大的吸附量。用PSX与MC3T3-E1细胞联合培养,结果表明:材料对细胞没有毒性;不影响细胞的生长和粘附。因此,大孔径介孔材料具有优良的吸附和生物相容性。
In this study, mesoporous silica xerogels applied for tissue repair with disparities of ingredient ratio and heating rate were synthesized by a sol-gel method using surfactant CTAB as the pore-forming agent. It was demonstrated that C40 (prepared with 40 milligram CTAB when the amounts of TEOS and H2O were 300mL and 400mL, respectively) with excellent microscopical structure and surface morphology was non-crystal containing large amount of hydroxyl groups and Si-O bonds.
     Well ordered calcium-doped mesoporous silica xerogels (m-SXC) was synthesized using surfactant triblock copolymer (P123) as the template agent. Characterization results illustrated that m-SXC with high specific surface area and homogeneous pore size was bioactive. MC3T3-E1 cells culture with materials verified that m-SXC had great biocompatibility. In addition, m-SXC possessed the function to enhance blood clotting sharply promoted with the increase of Ca amounts in m-SXC and materials amount, respectively, which indicated the remarkable hemostatic activity.
     Copper and siliver-doped mesoporous silica xerogels with ideal microscopical structure were prepared, respectively. Furthermore, no apparent effect of copper element on materials' structure and composition was observed and copper ions could be released from copper-doped mesoporous silica xerogels. Mesoporous silica xerogels containing copper had significant antibacterial properties against E. coli and S. aureus, as well as those containing siliver against E. coli. Besides, we can come to the conclusion that, compared with copper ion, siliver ion performed more effectively antibacterial ability against E. coli. The goal that mesoporous silica xerogels containing siliver had no negative effect on cell viability could be achieved by reducing the siliver content in materials. In vivo wound healing experiment with New Zealand rabbits demonstrated that mesoporous silica xerogels containing copper element could promote the wound healing process.
     Mesoporous silica xerogels with satisfactory BSA adsorption ability and large diameter (more than 15nm) were synthesized. It is verified that these materials had great biocompatibility without any negative impact on cell attachment and proliferation by MC3T3-E1 cells culture experiment.
引文
[1]王勃生,孟庆恩,高振英.生物材料的战略意义及近期发展方向.材料导报.1995,9(3):1-5
    [2]Ruetschi Paul. Alkaline Aqueous Electrolyte Cells for Biomedical Applications. J.EIectrochem Soc.1980,127(8):1667-1678
    [3]Hidalgo DA, Rekow A. A review of 60 consecutive fibula free flap mandible reconstruction. Plast Reconstr Surg.1995,96(1):585-590
    [4]De Bore H. The history of bone graft. Clin Orthop.1988,174:28-33
    [5]Motoki DS, Mulliken JB. The healing of bone and cartilage. Clin Plast Surg.1990, 17(3):527-535
    [6]Block JE, Poser J. Does xenogeneic demineralized bone matrix have clinical utility as a bone graft substitute. Med Hypotheses.1995,45(1):27-32
    [7]Sasso RC, Williams JI, Dimasi N. Postoperative drains at the donor site of iliac-crest bone graft. J Bone Joint Surg Am.1998,80(5):631-635
    [8]Harakas NK. Demineralized bone matrix induced osteogenesis. Clin Orthop.1984, 188:239-249
    [9]Cirelli JA,Marcantonio EJ. Evaluation of anionic collagen membranes in the treatment of class Ⅱ furcation lesions:a histometric analysis in dogs. Biomaterials.1997,18: 1227-1234
    [10]Caffesse RG, Smith BA, Castell WA. New attachment achieved by guided tissue regeneration in beagle dogs. J Periodontal.1988,59:589-597
    [11]张浩.引导性组织再生膜材料的研究进展.国外医学生物医学工程分册.1997,20:21-24
    [12]Minabe M, Kodama T. Different cross-linked types of collagen implanted in rat palatal gingival. J Periodontal.1989,60:35-43
    [13]Pfeifer J, Vanswol RL. Epithelial exclusion and tissue regeneration using a collagen membrane barrier in chronic periodontal defect.J Periodontal.1989,9:263-273)
    [14]Barboza EP. Clinical and histologic evaluation of the deminaralized freeze-dried bone membrane used for ridge augmentation. J Periodontic Restorative Dem.1999, 19(6):601-607
    [15]侯劲松,黄洪章.引导骨再生膜复合异体骨移植促进兔下颌骨缺损修复.中山医科大学学报.2000,21(4):265-270
    [16]Vaccaro AR, Kush S. The use of bioabsorbable implants in the spine. The Spine Journal. 2003, (3):227-237
    [17]Kent JN, Quinn JH, Zide MF. Alveolar ridge augmentation using norresorbable hydroxylapatite with or without autogenous cancellous bone. J Oral Maxillofac Surg. 1983,41(10):629-642
    [18]Daculsi G, Legeros RZ, Nery E. Specially prepared biphasic calcium phosphate macroporous ceramics.Journal of Biomedical Materials Research.1989,23:883-894
    [19]Martin P. Wound healing-Aiming for perfect skin regeneration. Science.1997, 276:75-81
    [20]Misra A, Nanchahal J. Use of gauze soakedin povidone iodine for dressing acute wounds. Plast Reconstr Surg.2003,111:2105-2107
    [21]Motta GJ, Milne CT, Corbett LQ. Impact ofantimicrobial gauze on bacterial colonies in wounds that require packing. Ostomy Wound Manag.2004,50:48-62
    [22]Fukunaga A, Naritaka H,Fukaya R, Tabuse M, Nakamura T. Our method of povidone-iodine and gauze dressings reduced catheter-related infection in serious cases. Dermatology.2006,212:47-52
    [23]Farstvedt E, Stashak TS, Othic A. Update on topical wound medications. Clin Tech Equine Pract.2004,3:164-172
    [24]Dealey C. Role of hydrocolloids in wound management. Br J Nurs.1993,2:358-362
    [25]Hudspith J, Rayatt S. ABC of burns, first aid and treatment of minor burns. Br Med J. 2004,328:1487-1489
    [26]Liao ZJ, Huan JN, Lv GZ, Shou YM, Wang ZY. Multi-centre clinical study of the effect of silver nitrate ointment on the partial thickness burn wounds. Zhonghua Shao Shang Za Zhi.2006,22:359-361
    [27]Jones VJ. The use of gauze:Will it ever change. Int Wound J.2006,3:79-86
    [28]Dinah F, Adhikari A. Gauze packing of open surgical wounds:Empirical or evidence-based practice?.Ann R Coll Surg Engl.2006,88:33-36
    [29]Harding K, Cutting K, Price P. The costeffectiveness of wound management protocols of care. Br J Nurs.2000,9:S6-S10
    [30]Chang KW, Alagoof S, Ong KT, Sim PH. Pressure ulcers-randomised controlled trial comparing hydrocolloid and saline gauze dressings. Med J Malaysia.1998,53:428-431)
    [31]Dealey C. Role of hydrocolloids in wound management. Br J Nurs.1993,2:358-362
    [32]Heenan A. Hydrocolloids:Frequently asked questions. World Wide Wounds.1998, 1:1-17
    [33]Koksal C, Bozkurt AK. Combination of hydrocolloid dressing and medical compression stocking versus Unn's boot for the treatment of venous leg ulcers. Swiss Med Wkly. 2003,133:364-368
    [34]Thomas S, Loveless PA. A comparative study of twelve hydrocolloid dressings. World Wide Wounds.1997,1:1-12
    [35]Thomas S. Hydrocolloids. J Wound Care.1992,1:27-30
    [36]Hoekstra MJ, Hermans MH,Richters CD, Dutrieux RP. A histological comparison of acute inflammatory responses with a hydrofibre or tulle gauze dressing. J Wound Care. 2002,11:113-117
    [37]Walker M, Hobot JA, Newman GR, Bowler PG. Scanning electron microscopic examination of bacterial immobilisation in a carboxymethylcellulose (AquacelR) and alginate dressings.Biomaterials.2003,24:883-890
    [38]Heenan A. Alginates:Frequently asked questions.World Wide Wounds.1998,1:1-7
    [39]Thomas S. Alginate dressings in surgery and woundmanagement-Part 1.JWound Care. 2000,9:56-60
    [40]Kuo CK, Ma PX. Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering:Part 1. Structure, gelation rate and mechanical properties. Biomaterials. 2001,22:511-521.
    [41]Wang L, Shelton RM, Cooper PR, Lawson M, Triffitt JT, Barralet JE. Evaluation of sodium alginate for bone marrow cell tissue engineering. Biomaterials.2003,24: 3475-3481
    [42]Ichioka S, Harii K, Nakahara M, Sato Y. An experimental comparison of hydrocolloid and alginate dressings, and the effect of calcium ions on the behaviour of alginate gel. Scand J Plast Reconstr Surg Hand Surg.1998,32:311-316
    [43]Martin L, Wilson CG, Koosha F, Tetley L, Gray AI, Senel S, Uchegbu IF. The release of model macromolecules may be controlled by the hydrophobicity of palmitoyl glycol chitosan hydrogels. J Control Release.2002,80:87-100
    [44]Morgan DA. Wound management products in the drug tariff. Pharm J.1999, 263:820-825
    [45]Thomson T. Foam Composite.2006, US Patent 7048966
    [46]Marcia R-E-S, Castro MCR. New dressings, including tissue engineered living skin. Clin Dermatol.2002,20:715-723
    [47]Vermeulen H, Ubbink DT, Goossens A, de Vos R, Legemate DA. Systematic review of dressings and topical agents for surgical wounds healing by secondary intention. Br J Surg.2005,6:665-672
    [48]Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity.Pure and Applied Chemistry. 1985,57(4):603-192
    [49]Soler-Illia Galo, Sanchez Clement, Lebeau Benedicte, Patarin Joel. Chemical strategies to design textured materials:from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chemical reviews.2002,102(11):4093-4138
    [50]Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW. A new family of mesoporous molecular sieves prepared with liquid crystal templates.Journal of the American Chemical Society.1992, 114(27):10834-10843
    [51]V Chiola, JE Ritsko, CD Vanderpool.1971, US Patent 3556725
    [52]Peidong Yang, Tao Deng, Dongyuan Zhao, Pingyun Feng, David Pine, Bradley F, Chmelka, George M, Whitesides, Galen DS. Hierarchically Ordered Oxides. Science.1998,282(5397):2244-2246
    [53]Peidong Yang, Tao Deng, Dongyuan Zhao, Pingyun Feng, David Pine, Bradley F. Chmelka, George M. Whitesides, and Galen D. Stucky. Hierarchically Ordered Oxides. Science,1998,282(5397):2244-2246.
    [54]Yitsu Chan, Hongping Lin, Chungyuan Mou, Shiuh Tzung Liu. Ia3d Cubic mesoporous silicas using EO17MA23 diblock copolymers made from ATRP. Chemical Communications.2002, (23):2878-2879
    [55]Kleitz Freddy, Choi Shin Hei, Ryoo Ryong. Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes.Chemical Communications.2003, (17):2136-2137
    [56]Qisheng Huo, Leon Rosa, Petroff Pierre M, Stucky Galen D.Mesostructure design with gemini surfactants:supercage formation in a three-dimensional hexagonal array. Science. 1995,268(5215):1324-1327
    [57]Dongyuan Zhao, Qisheng Huo, Jianglin Feng, Chmelka BF, Stucky, Galen D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. Journal of the American Chemical Society.1998,120(24):6024-6036
    [58]Tanev, Peter T, Pinnavaia, Thomas J. A neutral templating route to mesoporous molecular sieves. Science.1995,267(5199):865-867
    [59]Ryoo, Ryong, Kim JM, Ko CH, Shin CH. Disordered Molecular Sieve with Branched Mesoporous Channel Network. Journal of Physical Chemistry.1996, 100(45):17718-17721
    [60]Bagshaw, Stephen A, Prouzet, Eric, Pinnavaia, Thomas J. Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants. Science.1995, 269(5228):1242-1244
    [61]Rajaram AP. Mesoporous Silicates Prepared Using Preorganized Templates in Supercritical Fluids. Science.2004,303:507-510
    [62]Radin S, Falaize S, Lee M H, Ducheyne P. In vitro bioactivity and degradation behavior
    of silica xerogels intended as controlled release materials. Biomaterials.2002, 23:3113-3122
    [63]Brunauer S, Deming L S, Deming W E, Teller E. On a theory of the van der waals adsorption of gases. Journal of the American Chemical Society.1940,62:1723-1732
    [64]Zhao D F, Zhou J, Liu N. Preparation and characterization of Mingguang palygorskite supported with silver and copper for antibacterial behavior. Applied Clay Sci.2006, 33:161-170
    [65]Wang H, Lin C J, Hu R. Effects of structure and composition of the CaP composite coatings on apatite formation and bioactivity in simulated body fluid. Applied Surface Science.2009,255:4074-4081
    [66]Pecheva E, Petrov T, Lungu C, Montgomery P, Pramatarova L. Stimulated in vitro bone-like apatite formation by a novel laser processing technique.Chemical Engineering Journal.2008,137:144-153
    [67]Byon E, Jeong Y, Akari T, Masanobu K, Chikara O. Apatite-forming ability of micro-arc plasma oxidized layer of titanium in simulated body fluids. Surface&Coatings Technology.2007,201:5651-5654
    [68]Teoli D, Parisi L, Realdon N, Guglielmi M, Rosato A, Morpurgo M. Wet sol-gel derived silica for controlled release of proteins. Journal of controlled release.2006,116:295-303
    [69]Salinas A J, Martin A I, Vallet-Regi M. bioactivity of three CaO-P2O5-SiO2 sol-gel glasses. J. Biomed. Mater. Res.2002,61:524-532
    [70]Wu XH, Ye L, Liu K, Wang W, Wei J, Chen FP, Liu CS. Antibacterial properties of mesoporous copper-doped silica xerogels.Biomedical materials.2009,4:106-111
    [71]Oliveira P, Machado A, Ramos A M, Fonseca I, Braz Fernandes F M, Botelho do Rego A M, Vital J. MCM-41 anchored manganese salen complexes as catalysts for limonene oxidation. Microporous and Mesoporous Materials.2009,120:432-440
    [72]Ostomel TA, Shi QH, Stucky GD. Oxide Hemostatic Activity.Journal of the American Chemical Society.2006,128:8384-8385
    [73]Galownia J, Martin J, Davis ME. Aluminophosphate-based, microporous materials for blood clotting.Microporous and mesoporous materials.2006,92:61-63
    [74]Hoffman M. Remodeling the Blood Coagulation Cascade.Journal of Thrombosis and Thrombolysis.2003,16:17-20
    [75]Englehart MS, Cho SD, Tieu BH, Morris MS, Underwood SJ, Karahan A, Muller PJ, Differding JA, Farrell DH, Schreiber MA. A Novel Highly Porous Silica and Chitosan-Based Hemostatic Dressing Is Superior to HemCon and Gauze Sponges. Journal of Trauma-injury infection and critical care.2008,65:884-890
    [76]Thimm BW, Unger, Neumann HG, Kirkpatrick CJ. Biocompatibility studies of endothelial cells on a novel calcium phosphate/SiO2-xerogel composite for bone tissue engineering. Biomedical materials.2008,3:015007 (10pp)
    [77]Gerber T, Traykova T, Henkel KO. Development and in vivo Test of Sol-Gel Derived Bone Grafting Materials.Journal of Sol-Gel Science and Technology.2003, 26:1173-1178
    [78]Heinemann S, Heinemann C, Bernhardt R. Bioactive silica-collagen composite xerogels modified by calcium phosphate phases with adjustable mechanical properties for bone replacement. Acta Biomater.2009,5:1979-1990
    [79]Kokubo T, Ito S, Huang Z, Hayashi T, Sakka S,Kitsugi T, Yamamuro T. Ca-P-rich layer formed on high-strength bioactive glass-ceramic A-W. J.Biomed.Mater.Res.1990, 24:331-343
    [80]Wu CT, Chang J, Ni SY, Wang JY. In vitro bioactivity of akermanite ceramics. J.Biomed.Mater.Res Part A.2006,76A:73-80
    [81]Ostomel T A, Shi Q H, Tsung C K, Liang H J, Stucky G D. Spherical Bioactive Glass with Enhanced Rates of Hydroxyapatite Deposition and Hemostatic Activity. Small. 2006,2:1261-1265
    [82]Vallet-Regi M, Regel C V, Salinas A J. Glasses with Medical Applications. Eur.J. Inorg. Chem.2003,1029-1042
    [83]Yan XX, Huang XH, Yu CZ, Deng HX, Wang Y, Zhang ZD, Qiao SZ, Lu GQ, Zhao DY. The in-vitro bioactivity of mesoporous bioactive glasses. Biomaterials.2006, 27:3396-3403
    [84]Ostomel TA, Shi QH, Tsung CK, Liang HJ, Stucky GD. Spherical Bioactive Glass with Enhanced Rates of Hydroxyapatite Deposition and Hemostatic Activity. Small.2006, 2:1261-1265
    [85]Zhang W, Zhang YH, Ji JH, Zhao J, Yan Q, Chu PK. Antimicrobial properties of copper plasma-modified polyethylene. Polymer.2006,47:7441-7445
    [86]Oliveira P, Machado A, Ramos AM, Fonseca I, Braz Fernandes FM, Botelho do Rego AM, Vital J. MCM-41 anchored manganese salen complexes as catalysts for limonene oxidation. Microporous Mesoporous Mater.2009,120:432-440
    [87]Hsieh YP, Chen JW, Liang CT, Chen YF, Wang AQ, Mou CY. Influence of the incorporation of metals on the optical properties of MCM-41. J. Lumin.2008, 128:553-558
    [88]Zhang W, Chu PK, Ji JH, Zhang YH, Ricky KYF, Yan Q. Antibacterial properties of plasma-modified and triclosan or bronopol coated polyethylene. Polymer.2006, 47:931-936
    [89]Wang J, Huang N, Yang P, Leng YX, Sun H, Liu ZY, Chu PK. The effects of amorphous
    carbon films deposited on polyethylene terephthalate on bacterial adhesion. Biomaterials. 2004,25:3163-3170
    [90]Vuong C, Otto M. Staphylococcus epidermidis infections.Microbes infect.2002, 4:481-489
    [91]Nichols RL, Raad Ⅱ. Management of bacterial complications in critically I11 Patients: Surgical Wound and Catheter-Related Infections.Diagn microbial infect dis.1999, 33:121-130
    [92]Xia MS, Hu CH, Xu ZR, Ye Y, Zhou YH, Xiong L. Effects of copper bearing montmorillonite (Cu- MMT) on Escherichia coli and diarrhea on weanling pigs. Asian-Aust J Anim Sci.2004,17:1712-1716
    [93]Zhou YH, Xia MS, Ye Y, Hu CH. Antimicrobial ability of Cu2+-montmorillonite. Applied clay Sci.2004,27:215-218
    [94]Xia MS, Hu CH, Xu ZR. Effects of copper-bearing montmorillonite on growth performance, digestive enzyme activities, and intestinal microflora and morphology of male broilers. Poultr Sci.2004,83:1868-1875
    [95]Kim JH, Cho H, Ryu SE, Choi MU. Effects of metal ions on the activity of protein tyrosine phosphatase VHR:highly potent and reversible oxidative inactivation by Cu2+ ion. Arch Biochem Biophys.2000,382:72-80
    [96]Stohs SJ, Bagchi D. Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med.1995,18:321-336
    [97]Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomaterialia.2008, 4:707-716
    [98]Strodtbeck F. Physiology of wound healing.New Inf Nurs Rev.2001,1:43-52
    [99]Russell L. Understanding physiology of wound healing and how dressings help. Br J Nurs.1999,9:10-21
    [100]Mast BA.Wound healing:Biochemical and clinical aspects. Philadelphia, PA:Saunders. 1999, pp 344-355
    [101]Schultz GS. Molecular regulation of wound healing. In:Bryant RA, editor. Acute and chronic wounds:Nursing management.2nd edition. St.Louis, MO:Mosby.1999, pp 413-429
    [102]Grill V, Sandrucci MA, Lenarda RD, Cadenaro M, Narducci P, Bareggi R, Martelli AM. Biocompatibility evaluation of dental metal alloys in vitro:Expression of extracellular matrix molecules and its relationship to cell proliferation rates. J. Biomed. Mater. Res.2000,52:479-487
    [103]Heidenau F, Mittelmeier W, Detsch R, Haenle M, Stenzel F. Novel antibacterial titania coating:Metal ion toxicity and in vitro surface colonization. J. Mater. Sci. Mater. Med. 2005,16:883-888
    [104]Zhang W, Chu PK. Enhancement of antibacterial properties and biocompatibility of polyethylene by silver and copper plasma immersion ion implantation. Surf Coat Tech. 2008,203:909-912)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700