用户名: 密码: 验证码:
鼻咽癌候选转移相关基因Flotillin-2的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鼻咽癌(Nasopharyngeal carcinoma)是原发于鼻咽粘膜被覆上皮的恶性肿瘤,其病因涉及EB病毒感染、化学致癌物质作用及遗传变异或自发突变等多个因素,具有颈部淋巴结转移早,远处转移发生率高等特点。据最近数据显示70%的鼻咽癌患者在初诊时已经发生颈部淋巴结转移。虽然放射治疗水平和设备在不断改善,但由于个体对放疗敏感性存在差异,鼻咽癌治疗的5年生存率始终徘徊在60%-70%。远处转移和局部复发是导致鼻咽癌治疗失败的最主要原因。
     Flotillin-2(Flot-2)蛋白最先是从细胞膜上的caveolae/lipid raft富集区分离出来的,是组成细胞膜的重要成分,不仅参与跨膜物质转运和T、B淋巴细胞的激活,而且参与调控与细胞生长和恶性转化相关的多种下游信号传导通路,同时在维持表皮细胞的结构和粘附以及丝状伪足的形成方面起重要作用。研究表明,Flot-2具有促进黑色素瘤细胞侵袭和转移的潜能。
     本实验室前期工作利用抑制性消减杂交技术,以具有不同转移能力的两株鼻咽癌细胞5-8F和6-10B为材料,建立了两者间差异表达基因的消减cDNA文库并从中筛选出多个在高转移鼻咽癌细胞5-8F中的表达上调的基因。选取Flot-2并将其在5-8F细胞中进行RNA干扰后5-8F细胞生物学行为发生了一系列改变,如细胞停滞于G1期,增殖能力明显下降,侵袭能力和运动能力减弱等,提示Flot-2与鼻咽癌的转移可能有着密切联系。
     本研究在前期工作的基础上,通过基因转染实验使鼻咽癌细胞6-10B中Flot-2基因表达上调,并观察Flot-2基因表达上调对6-10B细胞生物学特性的影响,进一步明确Flot-2基因在促进鼻咽癌转移方面所起到的作用。实验结果如下:
     首先,我们采用RT-PCR方法从5-8F细胞中克隆Flot-2基因的开放阅读框序列,并将其克隆到pcDNA3.1(+)中,构建了Flot-2基因的真核表达载体(pcFlot-2)。利用脂质体转染技术将pcFlot-2导入6-10B细胞,经G418筛选获得抗性克隆,进一步采用RT-PCR检测Flot-2基因mRNA的表达,采用Western blotting检测Flot-2蛋白的表达,结果表明我们已成功地建立稳定转染pcFlot-2的6-10B细胞系(6-10B-Flot-2)。
     随后我们检测了Flot-2基因表达上调对6-10B细胞的生物学特性的影响。
     细胞形态学观察发现,细胞出现了较明显的变化,形态变得不规则,有些呈梭形,有些表现为神经元外形。细胞向外周伸展,形成明显的片状伪足,在片状伪足的边缘出现较多的膜皱褶(membraneruffles),细胞面积变大,细胞的核浆比变小。进一步用激光共聚焦显微镜观察发现细胞表面微丝增加,变致密,微丝发生了重新分布,微丝向细胞周边延伸,形成明显的片状伪足以及位于片状伪足边缘的膜皱褶结构。
     流式细胞分析结果表明,与对照组相比,转染组6-10B-Flot-2细胞G0-G1期的细胞比例明显减少(48.23%vs63.28%),S期细胞比例明显增多(35.95%vs21.10%)。
     平板克隆形成实验结果显示6-10B-Flot-2细胞的克隆形成能力明显高于对照组;MTT的结果表明6-10B-Flot-2细胞的增殖速度明显高于对照组。提示Flot-2基因表达上调导致6-10B细胞的克隆形成能力和增殖能力均显著增强。
     利用划痕实验、迁移实验和Matrigel侵袭实验证实,Flot-2表达上调后6-10B细胞的运动能力和侵袭能力均增强。裸鼠腹腔内接种后转移能力的比较分析结果进一步表明Flot-2表达上调后,6-10B细胞的转移能力明显增强。
     最后我们分析了Flot-2增强鼻咽癌细胞6-10B转移能力的可能原因,包括细胞表面微丝的增加、细胞骨架的重组、Cdc42基因表达的改变和伪足的形成等。
     本实验在前期工作的基础上,建立了稳定表达pcFlot-2的6-10B细胞系,成功的使Flot-2基因在6-10B细胞中表达上调;Flot-2基因表达上调后所引起的6-10B细胞一系列生物学特性的改变进一步证实Flot-2基因可作为鼻咽癌候选转移相关基因。
Nasopharyngeal carcinoma(NPC)is a malignancy derived from epithelium with characteristics of early cervical lymph node metastasis and high incidence rate of distant metastasis.Epstein-Barr virus(EBV) infection,chemical carcinogens,genetic variation or spontaneous mutation are closely associated with its occurrence and development. Current data indicate that about seventy percent of patients have developed cervical lymph node metastasis when they are first diagnosed. Although the level and equipment of radiotherapy have been improving, the 5-year survival rate of NPC patients always retains between 60%and 70%because of differential individual sensitivity to radiotherapy.Distant metastasis and local recurrence are main causes which result in the failure to cure NPC.
     Flotillin-2(Flot-2)was first isolated from the enriched domain of caveolae/lipid raft of cellular membrane.It is an important component of cellular membrane,and involved in various cellular processes such as membrane trafficking,T cell and B cell activation,regulation of several signaling pathways associated with cell growth and malignant transformation,maintaining the structure and adhesion of epidermal cells and formation of filopodia.According to recent researches,Flot-2 may be able to promote the invasion and metastasis of melanoma cells.
     In our previous work,by using 5-8F and 6-10B cell's cDNA, multiple genes up-regulated in 5-8F cells have been screened and identified through suppressive subtractive hybridization(SSH).A promising NPC metastasis-related gene,Flot-2,was chosen for further study.The expression of Flot-2 in 5-8F cells was inhibited by RNA interference and a serial of changes in biological characteristics of 5-8F cells were found.For example,cells are arrested in G1 phase,and exhibit a much lower proliferation,motility and invasion ability,suggesting that Flot-2 may be involved in the metastasis of NPC.
     Based on previous work,we up-regulated the expression of Flot-2 in 6-10B cells via gene transfection and the changes of biological characteristics of transfected 6-10B cells were examined for further elucidating the possible roles of Flot-2 in promoting metastasis of NPC. The exprimental results are as follows:
     Firstly,the open reading frame(ORF)sequence of Flot-2 was amplified from 5-8F cells by RT-PCR.Subsequently,the eukaryotic expression vector of Flot-2(designated pcFlot-2)was constructed by inserting the Flot-2 ORF into the pcDNA3.1(+)vector.Then the pcFlot-2 vector was transferred into 6-10B cells by Lipofectamine 2000.After G418 selection,we obtained several G418-resistant cell clones.It is demonstrated that the expression of Flot-2 in G418-resistant cell clones is stably up-regulated both at mRNA and protein levels when detected by RT-PCR and Western blotting respectively,showing that the 6-10B cell line stably expressing Flot-2 gene(named 6-10B-Flot-2)has been successfully established.
     Then we detected the various changes in biological characteristics of 6-10B cells after the expression of Flot-2 was up-regulated.
     The cellular morphology changed apparently.The appearance of cells became irregular,some of them got spindle shape,and some of them changed into a neural appearance.Cells spreaded obviously and formed visible lamellipodia,where membrane ruffles could be seen.Cells became larger,and the nucleoplasmic ratio decreased.Then cells were observed under a confocal laser-scanning microscope.It appeared that the number and density of microfilament on cell surface increased.It was likely that the microfilament redistributed and expanded around cells to form conspicuous lamellipodia and membrane ruffles.
     The flow cytometrical analysis showed that compared to the control group,the percentage of 6-10B-Flot-2 cells in G0-G1 phase decreased significantly(48.23%vs 63.28%),but the pencentage of cells in S phase increased apparently.
     The clonality and proliferation abilities of 6-10B-Flot-2 cells were measured by colony formation assay and MTT analysis,respectively. Compared with 6-10B cells transfected with blank vector,6-10B-Flot-2 cells have a much higher cloning efficiency and proliferated much more quickly(p<0.05),providing evidence that Flot-2 has an ability to enhance proliferation ability of 6-10B-Flot-2 cells.
     Wound healing assay,migration assay and matrigel invasion assay were performed to investigate the mobility and invasion ability of 6-10B-Flot-2 cells respectively.The results demonstrate that up-regulation of Flot-2 can increase the motility of 6-10B cells and enhance the invasion ability as well.In vivo,tumorigenic assay in nude mice indicate that up-regulation of Flot-2 can increase the metastatic ability of 6-10B cells.
     At last we analyzed the possible reasons of the mestastasis-promoting ability of Flot-2 in 6-10B cells,which may include increasing of microfilament on cell surface,reorganization of the actin cytoskeleton,changes in the expression of Cdc42 gene and formation of filopodia,and so on.
     In summary,the stably transfected 6-10B cell lines with pcFlot-2 has been established and the expression of Flot-2 in 6-10B cells is up-regulated successfully.Based on the changes in biological characteristics of 6-10B-Flot-2 cells,we further comfirm that Flot-2 is a potential metastasis-associated gene in NPC.
引文
[1]姚开泰.鼻咽癌研究的回顾与展望.湖南医科大学学报,1995,20(2):99-102.
    [2]Meyer T,Hart IR.Mechanism of tumor metastasis.Eur J Cancer,1998,34(2):214-221.
    [3]Fidler I J.The organ microenvironment and cancer metastasis.Differentiation,2002,70(9-10):498-505.
    [4]Fidler I J.The pathogenesis of cancer metastasis:the 'seed and soil' hypothesis revisited.Nat Rev Cancer,2003,3(6):453-258.
    [5]Spaderna S,Schmalhofer O,Hlubek F,et al.Epithelial-mesenchymal and mesenchymal-epithelial transitions during cancer progression.Verh Dtsch Ges Pathol,2007,91:21-28.
    [6]Hugo H,Ackland ML,Blick T,et al.Epithelial-mesenchymal and mesenchymal-epithelial transitions in carcinoma progression.J Cell Physiol,2007,213(2):374-283.
    [7]Thiery JP,Sleeman JP.Complex networks orchestrate epithelial-mesenchymal transitions.Nat Rev Mol Cell Biol,2006,7(2):131-142.
    [8]Gavert N,Ben-Ze'ev A.Epithelial-mesenchymal transition and the invasive potential of tumors.Trends Mol Med,2008,14(5):199-209.
    [9]Guarino M.Epithelial-mesenchymal transition and tumour invasion.Int J Biochem Cell Biol,2007,39(12):2153-2160.
    [10]Peinado H,Olmeda D,Cano A.Snail,Zeb and bHLH factors in tumour progression:an alliance against the epithelial phenotype? Nat Rev Cancer,2007,7(6):415-428.
    [11]Yoshizaki T,Sato H,Murono S,et al.Matrix metalloproteinase 9 is induced by the Epstein-Barr virus BZLF1 transactivator.Clin Exp Metastasis,1999,17(5):431-436.
    [12]Yoshizaki T,Sato H,Furukawa M,et al.The expression of matrix metalloproteinase 9 is enhanced by Epstein-Ban" virus latent membrane protein 1.Proc Natl Acad Sci U S A,1998,95(7):3621-3626.
    [13]Shen ZH,Chen XY,Chert J.Impact of up-regulating Ezrin expression by Epstein-Barr virus latent membrane protein 1 on metastasis ability of nasopharyngeal carcinoma cells.Ai Zheng,2008,27(2):165-169.
    [14]Huang GW,Mo WN,Kuang GQ,et al.Expression ofpl6,nm23-H1,E-cadherin,and CD44 gene products and their significance in nasopharyngeal carcinoma.Laryngoscope,2001,111(8):1465-1471.
    [15]刘志雄,田勇泉,肖健云,等。人鼻咽癌中cD44v6蛋白产物的表达及临床意义.中国耳鼻喉颅底外科杂志,1999,5(3):129-123.
    [16]Lung HL,Leung Cheung AK,Xie D,et al.TSLC1 is a tumor suppressor gene associated with metastasis in nasopharyngeal carcinoma.Cancer Res,2006,66(19):9385-9392.
    [17]Peng S,Fan S,Li X,et al.The expression of ezrin in NPC and its interaction with NGX6,a novel candidate suppressor.Cancer Sci,2007,98(3):341-349.
    [18]Peng SP,Li XL,Wang L.The role of NGX6 and its deletion mutants in the proliferation,adhesion and migration of nasopharyngeal carcinoma 5-8F cells.Oncology,2006,71(3-4):273-381.
    [19]Yuan Y,Zhou X,Song J,et al.Expression and clinical significance of epidermal growth factor receptor and type 1 insulin-like growth factor receptor in nasopharyngeal carcinoma.Ann Otol Rhinol Laryngol,2008,117(3):192-200.
    [20]Small JV.Lamellipodia architecture:actin filament turnover and the lateral flow of actin filaments during motility.Semin Cell Biol,1994,5(3):157-163.
    [21]Small JV,Stradal T,Vignal E,et al.The lamellipodium:where motility begins.Trends Cell Biol,2002,12(3):112-120.
    [22]Vasioukhin V,Bauer C,Yin M,et al.Directed actin polymerization is the driving force for epithelial cell-cell adhesion.Cell.,2000,100(2):209-219.
    [23]Zhang W,Alt-Holland A,Margulis A,et al.E-cadherin loss promotes the initiation of squamous cell carcinoma invasion through modulation of integrin-mediated adhesion.J Cell Sci,2006,119(Pt 2):283-291.
    [24]Frick M,Bright NA,Riento K,et al.Coassembly of flotillins induces formation of membrane microdomains,membrane curvature,and vesicle budding.Curr Biol,2007,17(13):1151-1156.
    [25]Solis GP,Hoegg M,Munderloh C,et al.Reggie/flotillin proteins are organized intostable tetramers in membrane microdomains.Biochem J,2007,403(2):313-322.
    [26]Neumann-Giesen C,Fernow I,Amaddii M,et al.Role of EGF-induced tyrosine phosphorylation of reggie-1/flotillin-2 in cell spreading and signaling to the actin cytoskeleton.J Cell Sci,2007,120(Pt 3):395-406.
    [27]高进,章静波主编,癌的侵袭与转移基础与临床,2003,科学出版社,16-18.
    [28]Gupton SL,Gertler FB.Filopodia:the fingers that do the walking.Sci STKE,2007,2007(400):re5.
    [29]Schroeder WT,Stewart-Galetka S,Mandavilli S,et al.Cloning and characterization of a novel epidermal cell surface antigen(ESA).J Biol Chem,1994,269(31):19983-19991.
    [30]Hazarika P,Dham N,Patel P,et al.Flotillin 2 is distinct from epidermal surface antigen(ESA)and is associated with filopodia formation.J Cell Biochem,1999,75(1):147-519.
    [31]Tavernarakis N,Driscoll M,Kyrpides NC.The SPFH domain:implicated in regulating targeted protein turnover in stomatins and other membrane-associated proteins.Trends Biochem Sci,1999,24(11):425-427.
    [32]Bickel PE,Scherer PE,Schnitzer JE,et al.Flotillin and epidermal surface antigen define a new family of caveolae-associated integral membrane proteins.J Biol Chem,1997,272(21):13793-13802.
    [33]Schulte T,Paschke KA,Laessing U,et al.Reggie-1 and reggie-2,two cell surface proteins expressed by retinal ganglion cells during axon regeneration.Development,1997,124(2):577-587.
    [34]Lang DM,Lommel S,Jung M,et al.Identification of reggie-1 and reggie-2 as plasma membrane-associated proteins which cocluster with activated GPI-anchored cell adhesion molecules in non-caveolar micropatches in neurons.J Neurobiol,1998,37(4):502-523.
    [35]Solomon S,Masilamani M,Rajendran L,et al.The lipid raft microdomain-associated protein reggie-1/flotillin-2 is expressed in human B cells and localized at the plasma membrane and centrosome in PBMCs.Immunobiology,2002,205(1):108-119.
    [36]Slaughter N,Laux I,Tu X,et al.The flotillins are integral membrane proteins in lipid rafts that contain TCR-associated signaling components:implications for T-cell activation.Clin Immunol,2003,108(2):138-151.
    [37]Neumann-Giesen C,Falkenbach B,Beicht P,et al.Membrane and raft association of reggie-1/flotillin-2:role of myristoylation,palmitoylation and oligomerization and induction of filopodia by overexpression.Biochem J,2004,78(Pt 2):509-518.
    [38]Ho CC,Huang PH,Huang HY,et al.Up-regulated caveolin-1 accentuates the metastasis capability of lung adenocarcinoma by inducing filopodia formation.Am J Pathol,2002,161(5):1647-1656.
    [39]Hazarika P,McCarty MF,Prieto VG,et al.Up-regulation of Flotillin-2 is associated with melanoma progression and modulates expression of the thrombin receptor protease activated receptor 1.Cancer Res,2004,64(20):7361-7369.
    [40]Doherty SD,Prieto VG,George S,et al.High flotillin-2 expression is associated with lymph node metastasis and Breslow depth in melanoma.Melanoma Res,2006,16(5):461-463.
    [41]Yang XY,Ren CP,Wang L,et al.Identification of differentially expressed genes in metastatic and non-metastatic nasopharyngeal carcinoma cells by suppression subtractive hybridization.Cell Oncol,2005,27(4):215-223.
    [42]宋立兵,汪慧民,曾木圣等。鼻咽癌细胞株SUNE-1异质性研究.1998,17(5):324-327.
    [43]杨旭宇.不同转移能力鼻咽癌细胞问差异表达基因的筛选及功能初步研究.博士学位论文.
    [44]余鹰,周鸣,曹利,等.pcDNA3.1表达载体转染对细胞生长的影响。生物技术,2001,11(1):1-3.
    [45]Hrglund AS,Karlsson R,Arro E,et al.Visualization of the peripheral weave of microfilaments in glia cells.J Muscle Res Cell Motil,1980,1(2):127-146.
    [46]Mellstrom K,Hoglund AS,Nistér M,et al.The effect of platelet-derived growth factor on morphology and motility of human glial cells.J Muscle Res Cell Motil,1983,4(5):589-609.
    [47]Pollard TD,Borisy GG.Cellular motility driven by assembly and disassembly of actin filaments.Cell,2003,112(4):453-465.
    [48]Loisel TP,Boujemaa R,Pantaloni D,et al.Reconstitution of actin-based motility of Listeria and Shigella using pure proteins.Nature,1999,401(6753):613-616.
    [49]Yamazaki D,Kurisu S,Takenawa T.Regulation of cancer cell motility through actin reorganization.Cancer Sci,2005,96(7):379-386.
    [50]Langhorst MF,Solis GP,Hannbeck S,et al.Linking membrane microdomains to the cytoskeleton:regulation of the lateral mobility of reggie-1/flotillin-2 by interaction with actin.FEBS Lett,2007,581(24):4697-4703.
    [51]Barrallo-Gimeno A,Nieto MA.The Snail genes as inducers of cell movement and survival:implications in development and cancer.Development,2005,132(14): 3151-3161.
    [52]Batlle E, Sancho E, Franci C, et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol, 2000, 2(2): 84-89.
    [53]Cano A, Perez-Moreno MA, Rodrigo I, et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol, 2000,2(2): 76-83.
    [54]Nieto MA.The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol, 2002,3(3): 155-166.
    [55] De Craene B, van Roy F, Berx G. Unraveling signalling cascades for the Snail family of transcription factors. Cell Signal, 2005,17(5): 535-547.
    [56]Hajra KM, Chen DY, Fearon ER. The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res, 2002, 62(6): 1613-1618.
    [57]Comijn J, Berx G, Vermassen P, et al. The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell, 2001, 7(6): 1267-1278.
    [58]Olmeda D, Moreno-Bueno G, Flores JM, et al. SNAI1 is required for tumor growth and lymph node metastasis of human breast carcinoma MDA-MB-231 cells. Cancer Res, 2007, 67(24): 11721 -11731.
    [59]Higashikawa K, Yoneda S, Taki M, et al. Gene expression profiling to identify genes associated with high-invasiveness in human squamous cell carcinoma with epithelial-to-mesenchymal transition. Cancer Lett, 2008, 264(2): 256-264.
    [60]Horikawa T, Yang J, Kondo S, et al. Twist and epithelial-mesenchymal transition are induced by the EBV oncoprotein latent membrane protein 1 and are associated with metastatic nasopharyngeal carcinoma. Cancer Res, 2007, 67(5): 1970-1978.
    [61]Korpal M, Lee ES, Hu G, et al. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem, 2008 Apr 14. [Epub ahead of print].
    [62]Onder TT, Gupta PB, Mani SA, et al. Loss of E-Cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res, 2008, 68(10): 3645-3654.
    [63]Burk U, Schubert J, Wellner U,et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep, 2008 May 16. [Epub ahead of print].
    [64]Sahlgren C, Gustafsson MV, Jin S, et al. Notch signaling mediates hypoxia-induced tumor cell migration and invasion. Proc Natl Acad Sci U S A, 2008,105(17):6392-6397.
    [65]Zheng Z, Pan J, Chu B, et al. Downregulation and abnormal expression of E-cadherin and beta-catenin in nasopharyngeal carcinoma: close association with advanced disease stage and lymph node metastasis. Hum Pathol, 1999, 30(4): 458-466.
    [66] Li Z, Ren Y, Lin SX, et al. Association of E-cadherin and beta-catenin with metastasis in nasopharyngeal carcinoma. Chin Med J, 2004,117(8): 1232-1329.
    [67]Krishna SM, Kattoor J, Balaram P. Down regulation of adhesion protein E-cadherin in Epstein-Barr virus infected nasopharyngeal carcinomas. Cancer Biomark, 2005,1(6): 271-277.
    [68]Wicki A, Lehembre F, Wick N, et al. Tumor invasion in the absence of epithelial-mesenchymal transition: podoplanin-mediated remodeling of the actin cytoskeleton. Cancer Cell, 2006, 9(4): 261-272.
    [69]Raftopoulou M, Hall A. Cell migration: Rho GTPases lead the way. Dev Biol, 2004,265(1): 23-32.
    [70] Wheeler AP, Ridley AJ.Why three Rho proteins? RhoA, RhoB, RhoC, and cell motility. Exp Cell Res, 2004, 301(1): 43-49.
    [71]Burridge K, Wennerberg K. Rho and Rac take center stage. Cell, 2004, 116(2):167-179.
    [72]Bustelo XR, Sauzeau V, Berenjeno IM. GTP-binding proteins of the Rho/Rac family: regulation, effectors and functions in vivo. Bioessays, 2007, 29(4): 356-704.
    [73]Gravdal K, Halvorsen OJ, Haukaas SA, et al. A switch from E-cadherin to N-cadherin expression indicates epithelial to mesenchymal transition and is of strong and independent importance for the progress of prostate cancer. Clin Cancer Res, 2007,13(23): 7003-7011.
    [74]Moreau V, Tatin F, Varon C, et al. Actin can reorganize into podosomes in aortic endothelial cells, a process controlled by Cdc42 and RhoA. Mol Cell Biol, 2003, 23(19): 6809-6822.
    [75]Nobes CD, Hall A.Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell, 1995, 81(1): 53-62.
    
    [76] Lai SY, Ziober AF, Lee MN, et al. Activated Vav2 modulates cellular invasion through Racl and Cdc42 in oral squamous cell carcinoma. Oral Oncol, 2007, Nov 8 [Epub ahead of print].
    [1] Schroeder W T, Stewart-Galetka S, Mandavilli S, et al. Cloning and characterization of a novel epidermal cell surface antigen (ESA). J.Biol. Chem, 1994,269:19983-19991.
    [2] Hazarika P, Dham N, Patel P, et al. Flotillin 2 is distinct from epidermal surface antigen (ESA) and is associated with filopodia formation. J. Cell. Biochem, 1999,75:147-159.
    [3] Schulte T, Paschke K A., Laessing U, et al. Reggie-1 and reggie-2, two cell surface proteins expressed by retinal ganglion cells during axon regeneration. Development, 1997,124: 577-587.
    [4] Lang D M, Lommel S, Jung M, et al. Identification of reggie-1 and reggie-2 as plasmamembrane-associated proteins which cocluster with activated GPI-anchored cell adhesion molecules in non-caveolar micropatches in neurons. J. Neurobiol, 1998, 37: 502-523.
    [5] Borner G H, Sherrier D J, Weimar T, et al. Analysis of detergent-resistant membranes in Arabidopsis. Evidence for plasma membrane lipid rafts. Plant Physiol, 2005,137(1): 104-116.
    [6] Rivera-Milla E, Stuermer CA, Malaga-Trillo E. Ancient origin of reggie (flotillin),reggie-like, and other lipid-raft proteins: convergent evolution of the SPFH domain. Cell Mol Life Sci, 2006, 63(3): 343-357.
    [7] Schulte T, Paschke KA, Laessing U, et al.Reggie-1 and reggie-2, two cell surface proteins expressed by retinal ganglion cells during axon regeneration. Development, 1997,124(2): 577-587.
    [8] Galbiati F, Volonte D, Goltz J S, et al. Identification, sequence and developmental expression of invertebrate flotillins from Drosophila melanogaster. Gene. 1998, 210(2): 229-237.
    [9] Tavernarakis N, Driscoll M, Kyrpides NC. The SPFH domain: implicated in regulating targeted protein turnover in stomatins and other membrane-associated proteins. Trends Biochem Sci, 1999, 24(11): 425-427.
    [10]Snyers L, Umlauf E, Prohaska R. et al. Oligomeric nature of the integral membrane protein stomatin. J Biol Chem, 1998,273(27): 17221-17226.
    [11]Huber TB, Simons M, Hartleben B, et al. Molecular basis of the functional podocin-nephrin complex: mutations in the NPHS2 gene disrupt nephrin targeting to lipid raft microdomains. Hum Mol Genet, 2003,12(24): 3397-3405.
    [12]Neumann-Giesen C, Falkenbach B, Beicht P, et al. Membrane and raft association of reggie- 1/flotillin-2: role of myristoylation, palmitoylation and oligomerization and induction of filopodia by overexpression. Biochem J,2004,78(Pt 2): 509-518.
    [13]Langhorst MF, Solis GP, Hannbeck S,et al. Linking membrane microdomains to the cytoskeleton: regulation of the lateral mobility of reggie-1/flotillin-2 by interaction with actin. FEBS Lett, 2007, 581(24): 4697-4703.
    [14] Back JW, Sanz MA, De Jong L, et al. A structure for the yeast prohibitin complex: Structure prediction and evidence from chemical crosslinking and mass spectrometry. Protein Sci, 2002, 11(10): 2471-2478.
    [15]Tatsuta T, Model K, Langer T. Formation of membrane-bound ring complexes by prohibitins in mitochondria. Mol Biol Cell, 2005, 16(1): 248-259.
    [16]Stuermer A, Lang D M., Kirsch F, et al. Glycosylphosphatidylinositol-anchored proteins and fyn kinase assemble in noncaveolarplasma membrane microdomains defined by reggil and -2. Mol Biol Cell, 2001, 12: 3031-3045.
    [17]Neumann-Giesen C, Fernow I, Amaddii M, et al. Role of EGF-induced tyrosine phosphorylation of reggie-1/flotillin-2 in cell spreading and signaling to the actin cytoskeleton. J Cell Sci, 2007,120(Pt 3): 395-406.
    [18]Evans WE, Coyer RL, Sandusky MF, et al. Characterization of membrane rafts isolated from rat sertoli cell cultures: caveolin and flotillin-1 content. J Androl. 2003,24(6): 812-821.
    [19]Volonte D, Galbiati F, Li S, et al.Flotillins/cavatellins are differentially expressed in cells and tissues and form a hetero-oligomeric complex with caveolins in vivo. Characterization and epitope-mapping of a novel flotillin-1 monoclonal antibody probe. J Biol Chem, 1999,274(18): 12702-12709.
    [20] Slaughter N, Laux I, Tu X, et al. The flotillins are integral membrane proteins in lipid rafts that contain TCR-associated signaling components: implications for T-cell activation. Clin Immunol, 2003, 108(2): 138-151.
    [21] Ho CC, Huang PH, Huang HY, et al . Up-regulated caveolin-1 accentuates themetastasis capability of lung adenocarcinoma by inducing filopodia formation. Am J Pathol, 2002,161(5): 1647-1656.
    [22]Hazarika P, McCarty MF, Prieto VG, et al.Up-regulation of Flotillin-2 is associated with melanoma progression and modulates expression of the thrombin receptor protease activated receptor 1. Cancer Res, 2004, 64(20): 7361-7369.
    [23]Doherty SD,Prieto VG;George S,et al.High flotillin-2 expression is associated with lymph node metastasis and Breslow depth in melanoma.Melanoma Res,2006,16(5):461-463.
    [24]Yang XY,Ren CP,Wang L,et al.Identification of differentially expressed genes in metastatic and non-metastatic nasopharyngeal carcinoma cells by suppression subtractive hybridization.Cell Oncol,2005,27(4):215-223.
    [25]杨旭宇.不同转移能力鼻咽癌细胞间差异表达基因的筛选及功能初步研究.博士学位论文.
    [26]Sasaki Y,Oshima Y,Koyama R,et al.Identification of flotillin-2,a major protein on lipid rafts,as a novel target of p53 family members.Mol Cancer Res,2008,6(3):395-406.
    [27]Schneider A,Rajendran L,Honsho M,et al.Flotillin-dependent clustering of the amyloid precursor protein regulates its endocytosis and amyloidogenic processing in neurons.J Neurosci,2008,28(11):2874-2882.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700