用户名: 密码: 验证码:
异型薄壁罐气压胀形数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
异型罐气压胀形是一种先进的加工技术,由于容易满足异型罐产品降低成本、减少工序、减轻重量和无残留胀形介质腐蚀等优点,异型罐气压胀形加工在近年来得到大力的发展和应用。本文详细介绍了胀形的机理及力学特点,深入阐述了板料数值模拟技术,总结出了适合异型罐气压胀形数值模拟技术的关键参数。采用板料成形仿真软件对异型罐的胀压成形过程做数值模拟,目的是为生产工艺参数设定和模具设计提供理论上的指导。
     本文主要在以下几个方面做了研究:
     1.通过理论公式计算和数值模拟相结合的方法,近似求取A、B两种罐型在T2BA、T2.5BA、T3和T4CA等四种材料情况下的胀压成形临界力,为生产选用经济适用的超高压设备提供理论依据;
     2.讨论罐体壁厚不同对胀压成形极限的影响;
     3.通过对五种与B型罐类似的异型罐做模拟,分析胀形系数不同对成形的影响;
     4.通过对三种与A型罐类似的异型罐做模拟分析,探讨了摩擦系数的变化对壁厚分布的影响;
     5.分析胀形载荷变化与胀形载荷加载速率变化对成形过程中褶皱的消除和壁厚分布的影响;
     6.对类B型罐T3材料的两种罐型,通过改变其上下凸肚连接处的过渡圆角半径的大小做模拟分析,总结模具的过渡圆角半径变化对壁厚分布的影响。
Bulging shaped can by pneumatic pressure is a kind of advanced process technology, apt to lower costs, simply process , lighten weight, and without residue corrode. It has get a flying development and application in recent years . Mechanism and mechanics in this paper has been detailed. Through elaborating the sheet metal forming numerical simulation technology, the key parameter that suit technology of numerical simulation of shaped can bulging by pneumatic pressure is been summarized. And turn the engineering stress-strain curve of the parameters into the true stress-strain curve. Sheet metal forming software is adopted to simulate the processing of shaped can bulging by pneumatic pressure, and the purpose is to offer the guidance for the production processing and mold designing in theory.The main contents of this paper include following parts:1. Gets the critical loads of A ,B style can made of T2BA、T2.5BA、T3 and T4CA by theoretical computing and numerical simulation, which offer theoretical foundation for selecting the economical superpressure equipment ;2. The effect of shaped can wall thickness changing on limit of bulge forming is discussed;
     3. The effect of bulge coefficient on forming of five kinds of shaped can which similar to Model B have been analyzed by simulation;
     4. Through making simulation analysis of three kinds of shaped can similar to Model A can, we have studied the thickness distributed of the wall according to the coefficient of friction changing;
     5. It is analysed that the forming load change and the forming load velocity change which influence elimination of the fold and thickness of the wall in course of taking shape;
     6. Summarized the effect of the changing radius of transition round of the two protruding junction on the thickness distributed of the wall, by simulation of two kinds of shaped can (materials: T3) which similar to Model B.
引文
[1] 张俊华.气雾剂将拿什么吸引顾客[J].中国包装业,2005,2:25—27
    [2] 刘筱霞编著.金属包装容器[M].化学工业出版社,2004.10:129-139
    [3] Muammer Koc, Taylan Altan. An overall review of the tube hydroforming(THF) technology[J]. Journal of Processing Technology 108(2001): 384-393
    [4] 周磊.薄壁管液压胀形成形理论及试验研究[硕士论文].秦皇岛:燕山大学,2002
    [5] J.P.Abrantes, A.Szabo-Ponce, G..F.Batalha. Experimental and Numerical simulation of tube hydroforming(THF) [J]. Journal of Materials Processing Technology 164-165(2005): 1140—1147
    [6] M.Imaninejad, G..subhash, A.Loukus. Experimental and Numerical investigation of free-bulge formation during hydroforming of aluminum extrusions[J]. J.Mater.process.Technol. 147 (2004): 247—254
    [7] K.-i. Manabe, M. Amino. Effects of process and material properties on deformation process in tube hydroforming[J]. Journal of Materials Processing Technology 123 (2002): 285-291
    [8] W. Rimkus, H. Bauer, M.J.A. Mihsein. Design of load-curves for hydroforming applications[J]. Journal of Materials Processing Technology 108 (2000): 97-105.
    [9] J.-B. Yang, B.-H. Jeon, S.-I. Oh. Design sensitivity analysis and optimization of the hydroforming process[J]. Journal of Materials Processing Technology 113 (2001): 666-672.
    [10] K.-J. Farm, R-Y. Hsiao. Optimization of loading conditions for tube hydroforming[J]. Journal of Materials Processing Technology 140 (2003) 520-524.
    [11] Y. Aue-U-Lan, G. Ngaile, T. Altan. Optimizing tube hydroforming using process simulation and experimental verification[J]. Journal of Materials Processing Technology 146(2004) 137-143.
    [12] M.Imaninejad, G. subhash, A.Loukus. Loading path optimization of tube hydroforming process[J]. International Journal of Machine Tools & Manufacture 45(2005): 1504-1514
    [13] M.Plancak, F.Vollertsen, J.Woitschig. Analysis finite element simulation and experimental investigation of friction in tube hydroforming[J]. Journal of Materials Processing Technology 170(2005): 220—228
    [14] Hyundo Shim, Dong Yol Yang. A simple method to determine pressure curve for sheet hydro-forming and experimental verification[J]. Journal of Materials Processing Technology 169(2005): 134—142
    [15] Oyane M, Sato T, Okimoto K. Criteria for ductile fracture and their applications[J]. Journal of Mechanical Working Technology 1980, 4:65—81
    [16] Takuda H, Mori K, Hatta N. The application of some criteria for ductile fracture to the prediction fo the forming limit of sheet metals[J]. Journal of Materials Processing Technology, 1999, 95: 119—121
    [17] Takuda H, Mori K, Fujimoto H. Prediction of forming limit in bore-expanding of sheet metals using ductile fracture criterion[J]. Journal of Materials Processing Technology, 1999, 92: 433—438
    [18] Takuda H, Moil K, Yamaguchi Y. Finite element analysis of limit strains in biaxial stretching of sheet metals allowing for ductile fracture[J]. International Journal of Mechanical Sciences, 2000, 42: 785—798
    [19] 王同海编著.管材塑性加工技术[M].机械工业出版社,1998年7月
    [20] 王仲仁.球形容器整体成形新工艺[J].压力容器,1988,5(1):78-81
    [21] Z. R. Wang, T. Wang, D. C. Kang. The technology of the hydrobulging of whole spherical vessels and experimental analysis[J]. Journal of Mechanical Working Technology, 1989, 18 (1): 85-94
    [22] S. H. Zhang, Z. R. Wang. The stress distribution and plastic hastening-sphere efect in the integral hydrobulge forming of spherical vessels[J]. International Journal of Materials and Product Technology, 1990, 5:293-300
    [23] 王仲仁,曾元松,苑世剑.椭球壳体液压成形的塑性变形规律的研究[J].固体力学学报,1998,19(3):259-264
    [24] 王仲仁,苑世剑,曾元松.无模胀球的原理与研究进展[J].机械工程学报,1999,35(4):64-66
    [25] J. L. Dong, Z. R. Wang, C. D. Liu. Single-curvature polyhedron hydrobuilding technology for manufacturing spherical vessels[A]. Proceedings of the 7th International Conference on Pressure Vessel Technology[C], 1999: 128-134
    [26] 张士宏,许沂,王忠堂.板材零件成对液压成形新技术[J].哈尔滨工业大学学报,2000,32(4):7-9
    [27] 赵长财,张涛,刘国晖.有限长薄壁管胀形研究[J].塑性工程学报,1997,40(1):36-41
    [28] 赵长财.薄壁管在内压、轴力作用下的初始屈服[J].塑性工程学报,2000,8(3):29-31
    [29] 赵长财,周磊,张庆.薄壁管液压胀形加载路径研究[J].中国机械工程,2003,14(13):1087—1089
    [30] 李新军,周贤宾,K.Suter.薄壁管轴压胀形的加载与控制[A].中国机械工程学会锻压学会编.第七届全国锻压学术年会论文集[C].北京:航空工业出版社,1999年10月:256—260
    [31] 李新军,周贤宾,李敏.计算机仿真技术在饭料冲压成形中的应用[J].航空制造工程,1998,3:24—26
    [32] 王敏,杨振恒.LF3防锈铝合金板超塑气压成形的研究.锻压技术[J].1996,2:32—35
    [33] 张凌云.改善超塑性气压胀形零件壁厚分布的工艺方法[J].金属成形工艺,2002,20(4):40—42
    [34] 林高用,王春荣,宋海龙.ZnAl22合金超塑性气压胀形加压规律的研究[J].金属成形工艺,1997,15(3):30-33
    [35] 侯德政.L4纯铝零件的超塑性气压成形[J].锻压机械,2001,1:18—19
    [36] 马岳峰,韩建保.润滑对薄板成形性和冲压力的影响[J].材料工艺设备,2002,(1):23—25.
    [37] 邱晓刚.摩擦系数和材料参数对薄钢板胀形成形的影响[J].金属成形工艺,2004,22(3):23—25
    [38] 邱宏扬,黄亚娟.摩擦对薄板冲压件成形性能的影响[J].模具工业,2005,(1):14-17.
    [39] Wang N M. Large plastic deformation of a circular sheet caused by punch stretching. Trans of ASME, J of Applied Mechanics, 1970, 37:430-440.
    [40] Gerdeen J C. Analysis of axisymmetric sheet metal forming. In: Proceeding of NAMRC—Ⅱ, 1974. 350-361.
    [41] Wifi A S. An incremental complete solution of the stretch-forming and deep-drawing of a circular blank using a hemispherical punch[J]. International J of Mechanical Science, 1976, 18 (1): 23—31.
    [42] Tang S C. Chappuis L B. Evaluation of sheet metal forming process design by simple models[J]. Materials in Manufacturing Processes, MD 8, ASME, 1988: 19—26.
    [43] WangN M, Tang S C. Analysis of bending effects in sheet forming operation. In: Proceeding of NUMIFORM'86, Rotterdam, 1986.77-86.
    [44] 熊火轮.计算机辅助板料成形分析模拟系统[博士论文].北京:北京航空航天大学,1990
    [45] 董湘怀.轴对称及三维金属板料成形过程的有限元模拟[博士论文].武汉:华中理工大学,1991.
    [46] 张凯峰.超塑性成形的有限元分析及模具型腔超塑性成形的研究[博士论文].哈尔滨:哈尔滨工业大学,1990.
    [47] 李光耀.三维板料成形的显式有限元分析[J].计算结构力学及其应用.1996,13(3):253—267.
    [48] 王勖成,常明亮.运动硬化材料的本构关系的精确积分及其推广应用[J].力学学报.1986,10(3):226—234.
    [49] 胡平.弹塑性有限变形的拟流动理论[J].力学学报,1994,26(3):275—283.
    [50] 柳玉启.板材成形塑性流动规律及起皱回弹的数值研究[博士论文].长春:吉林工业大学,1996.
    [51] 胡平.KMAS软件及其应用事例[J].现代制造,2004(9):54—55.
    [52] 苑世剑,郎利辉,王仲仁.内高压成形缺陷产生及失效分析.塑性工程学报.2001,8(4):30
    [53] 彭颖红.金属塑性成形仿真技术[M].上海:上海交通大学出版社,1999,4
    [54] John O. Hallquist. LS—DYNA theoretical manual[M]. Livemore software technology corporation, May 1998.
    [55] 雷正保.汽车覆盖件冲压成形CAE技术[M].长沙:国防科技大学出版社,2003,5
    [56] 罗子健.金属塑性加工理论与工艺[M].西安:西北工业大学出版社,1994,12
    [57] 林忠钦.车身覆盖件冲压成形仿真[M].北京:机械工业出版社,2005,1
    [58] 陈文亮.板料成形CAE分析教程[M].北京:机械工业出版社,2005,3
    [59] 钟志华.李光耀.薄板冲压成型过程的计算机仿真与应用[M].北京:北京理工大学出版社,1998,6
    [60] 陈立亮主编.材料加工CAD/CAM/CAE技术基础[M].北京:机械工业出版社,2006,1
    [61] 郭成,储家佑主编.现代冲压技术手册[M].北京:中国标准出版社,2005,10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700