用户名: 密码: 验证码:
抵抗去同步攻击的鲁棒水印技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着数字媒体、因特网、云端计算等信息技术的迅猛发展以及廉价计算终端的快速普及,各种网络多媒体信息服务也得到了长足的发展。这些先进的信息技术为广大人民带来方便的同时,也给盗版者提供了便利,从而威胁版权所有者的合法权益。作为数字版权保护的技术手段之一,数字水印技术得到了学术界和工业界的广泛关注。
     随着数字水印技术的发展,针对水印的攻击技术也在不断发展,设计鲁棒的水印算法也变得越来越困难。尤其是去同步攻击,对数字水印是一巨大威胁。针对如何抵抗去同步攻击这一关键问题,本论文取得的创新性研究成果包括:
     为抵抗全局去同步攻击,本文利用具有全局不变性的几何不变区域进行水印重同步。首先,提出了一种几何不变区域的检测算法。然后,提出了一种鲁棒的扇形区域划分方法用于划分图像中的每个几何不变区域。水印的嵌入和提取过程都以扇形区域为参考,从而达到水印重同步的目的。大量的实验结果都验证了该算法的鲁棒性。
     为抵抗局部去同步攻击,本文提出了一种基于局部几何不变特征的水印重同步算法。首先,提出了一种具有局部几何不变性的特征变换LDFT (local daisy feature transform),将图像的所有像素点都变换到几何不变的LDFT特征空间。然后,通过构建BSP (binary space partitioning)树来划分LDFT特征空间。由于去同步攻击前后,像素点在BSP树上的位置不变,因此可以利用构造的BSP树来进行水印的重同步。最后,通过实验以及与相关算法的比较证明了该算法的鲁棒性。
     为抵抗不可逆的去同步攻击,本文首先提出了一种新的图像显著性检测模型。该模型有效地融合了图像的自底向上和自顶向下的特征。为验证该模型的有效性,在现有的两个最大的公开数据集上与13个现有模型进行了比较。定量和定性的实验都验证了本文所设计显著性检测模型的有效性。一般情况下,图像的显著区域在遭受目标重定位这种不可逆的去同步攻击后不会被删除,故可以作为水印嵌入和提取位置的重要参考。最后的实验也验证了本文所提算法对这种攻击的鲁棒性。
Digital media widely spread along with the booming development of computer sci-ence, Internet of Things, cloud computing and the Internet technology. However, unre-stricted reproduction and convenient manipulation of digital media cause considerable economic losses to the media creators and the content providers. Therefore, digital wa-termarking is introduced to prevent the above infringement.
     In the past ten years, attacks against image watermarking systems have become in-creasingly complicated with the development of watermarking techniques. Up to now, a watermarking scheme that is robust against desynchronization attacks is still a grand chal-lenge. Desynchronization attacks can be classified into three categories:global desyn-chronization attacks and local desynchronization attacks, and non-invertible desynchro-nization attacks. In order to resist this three kinds of desynchronization, we proposed three watermarking resynchronization schemes in this dissertation.
     In order to resist global desynchronization attacks, we proposed a new watermark-ing resynchronization scheme based on GIRs (geometric-invariant regions). First, we introduced a novel GIRs detection method that is implemented by robust edge contours extraction, robust corners detection, and the radius selection. Then, we designed a new sector-shaped partitioning method for GIR. The sector-shaped partitioning is invariable to geometric transforms, so the sequence of sectors will not be out-of-order under ge-ometric transforms. The GIRs and the divided sector discs are invariant to geometric transforms, so the watermarking method inherently has high robustness against global desynchronization attacks as shown in experiments.
     We presented a blind image watermarking resynchronization scheme against local transform attacks. Firstly, we propose a new feature transform named local daisy feature transform (LDFT), which is not only globally but also locally invariable. Then the binary space partitioning (BSP) tree is used to partition the geometrically invariant LDFT space. In the BSP tree, the location of each pixel is fixed under global transform, local transform, and cropping. Lastly, the watermarking sequence is embedded bit by bit into each leaf-node of the BSP tree by using the logarithmic quantization index modulation (LQIM) watermarking embedding method.
     In order to resist non-invertible desynchronization attacks, we proposed a novel two- stage saliency detection model by fusing bottom-up and up-down features extracted from a single image in this dissertation. The evaluation of the proposed model has been carried out on two largest publicly available data sets. As indicated in the experimental results, the proposed model consistently outperforms13existing saliency detection methods with higher precision and better recall rates. The watermarking resynchronization scheme is proposed based on the salient region of the image. Because the salient region will not be cropped when the image is attacked by non-invertible desynchronization attacks (such as:image retargeting), the proposed the watermarking scheme is robust against the non-invertible desynchronization attack.
引文
[1]M. Barni, F. Bartolini. Data hiding for fighting piracy. IEEE Signal Processing Magazine, 2004,21(2):28-39.
    [2]M. Barni. What is the future for watermarking? (Part Ⅰ). IEEE Signal Processing Magazine, 2003,20(5):55-60.
    [3]M. Barni. What is the future for watermarking? (Part Ⅱ). IEEE Signal Processing Magazine, 2003,20(6):53-59.
    [4]孙圣和,陆哲明,牛夏牧.数字水印技术及应用.北京:科学出版社,2004.
    [5]A. Koz, C. Cigla, A. Alatan. Free-view watermarking for free-view television. Proceedings of 2006 IEEE International Conference on Image Processing,2006.1405-1408.
    [6]A. Koz, C. Cigla, A. Alatan. Watermarking of free-view video. IEEE Trans. Image Processing, 2010,19(7):1785-1797.
    [7]Y.-H. Lin, J.-L. Wu. A digital blind watermarking for depth-image-based rendering 3D images. IEEE Trans. Broadcasting,2011,57(2):602-611.
    [8]H. Tian, Z. Wang, Y. Zhao, et al. Spread spectrum-based multi-bit watermarking for free-view video. Proceedings of 10th International Workshop on Digital-forensics and Watermarking, 2011.
    [9]Y.-P. Wang, S.-M. Hu. A new watermarking method for 3d models based on integral invariants. IEEE Trans.'Visualization and Computer Graphics,2009,15(2):285-294.
    [10]A. Bors. Watermarking mesh-based representations of 3-D objects using local moments. IEEE Trans. Image Processing,2006,15(3):687-701.
    [11]I. Cox, J. Kilian, F. Leighton, et al. Secure spread spectrum watermarking for multimedia. Image Processing, IEEE Transactions on,1997,6(12):1673-1687.
    [12]W.-F. Hsieh, P.-Y. Lin. Imperceptible visible watermarking scheme using color distribution modulation. Proceedings of Ubiquitous Intelligence Computing and 9th International Con-ference on Autonomic Trusted Computing (UIC/ATC),2012 9th International Conference on, 2012.1002-1005.
    [13]C.-H. Huang, J.-L. Wu. Attacking visible watermarking schemes. Multimedia, IEEE Transac-tions on,2004,6(1):16-30.
    [14]S.-K. Yip, O. Au, C.-W. Ho, et al. Lossless visible watermarking. Proceedings of Multimedia and Expo,2006 IEEE International Conference on,2006.853-856.
    [15]Y. Hu, B. Jeon. Reversible visible watermarking and lossless recovery of original images. IEEE Trans. Circuits and Systems for Video Technology,,2006,16(11):1423-1429.
    [16]W. Song, X. Liu, G.-S. Yang, et al. Study on reversible visible watermarking scheme for digital images. Proceedings of Transportation, Mechanical, and Electrical Engineering (TMEE),2011 International Conference on,2011.2375-2378.
    [17]H. Yuan, X.-P. Zhang. Multiscale fragile watermarking based on the gaussian mixture model. Image Processing, IEEE Transactions on,2006,15(10):3189-3200.
    [18]F. Shih, Y.-T. Wu. A novel fragile watermarking technique. Proceedings of Multimedia and Expo,2004. ICME'04.2004 IEEE International Conference on, volume 2,2004.875-878.
    [19]S. Han, C.-H. Chu. Tamper detection in rfid-enabled supply chains using fragile watermarking. Proceedings of RFID,2008 IEEE International Conference on,2008.111-117.
    [20]H.-Y. Lin, H.-Y. Liao, C.-S. Lu, et al. Fragile watermarking for authenticating 3-D polygonal meshes. Multimedia, IEEE Transactions on,2005,7(6):997-1006.
    [21]C. Hernandez, C. Torres-Huitzi. A fragile watermarking scheme for image authentication in mobile devices. Proceedings of Electrical Engineering Computing Science and Automatic Control (CCE),2011 8th International Conference on,2011.1-6.
    [22]J. Xiao, Y. Wang. Semi-fragile watermarking based on image gradient. Proceedings of Com-putational Intelligence and Security,2008. CIS'08. International Conference on, volume 1, 2008.285-289.
    [23]H. Kourkchi, S. Ghaemmaghami. Improvement to a semi-fragile watermarking scheme against a proposed counterfeiting attack. Proceedings of Advanced Communication Technology,2009. ICACT 2009.11th International Conference on, volume 03,2009.1928-1932.
    [24]B. Ou, Y. Zhao, R. Ni. Reversible watermarking using optional prediction error histogram modification. Neurocomputing,2012,93(0):67-76.
    [25]Z.-C. Li, H. Wang, S. S. Y. Liao. Numerical algorithms for image geometric transformations and applications. IEEE Trans. Systems, Man, and Cybernetics, Part B:Cybernetics,2004, 34(1):132-149.
    [26]F. A. P. Petitcolas, R. J. Anderson. Evaluation of copyright marking systems. Proceedings of IEEE Multimedia Systems'99, volume 1,1999.574-579.
    [27]V. Licks, R. Jordan. Geometric attacks on image watermarking systems. IEEE Multimedia, 2005,12(3):68-78.
    [28]V. Licks, F. Ourique, R. Jordan, et al. The effect of the random jitter attack on the bit error rate performance of spatial domain image watermarking. Proceedings of IEEE International Conference Image Processing, volume 3,2003.455-458.
    [29]M. Barni, A. D'Angelo, N. Merhav. Expanding the class of watermak de-synchronization attacks. Proceedings of Proceedings of the 9th ACM Workshop on Multimedia and Security (MM-Sec'07), volume 1,2007.195-204.
    [30]A. D'Angelo, M. Barni, N. Merhav. Stochastic image warping for improved watermark desyn-chronization. EURASIP Journal on Information Security,2008,2008:Article ID 345184,14 pages.
    [31]M. Rubinstein, A. Shamir, S. Avidan. Improved seam carving for video retargeting. ACM Transactions on Graphics,2008,27(3):Article 16.
    [32]Y. Fang, Z. Chen, W. Lin, et al. Saliency detection in the compressed domain for adaptive image retargeting. IEEE Trans. Image Processing,2012,21(9):3888-3901.
    [33]田华伟,赵耀,倪蓉蓉.一种抵抗插值误差的数字水印方法.解放军理工大学学报:自然科学版,2009,10(3):242-247.
    [34]S. Xiang, H. J. Kim, J. Huang. Invariant image watermarking based on statistical features in the low-frequency domain. IEEE Trans. Circuits and Systems for Video Technology,2008, 18(6):777-790.
    [35]H.Tian, Y. Zhao, R.Ni, et al. Geometrically robust image watermarking by sector-shaped par-titioning of geometric-invariant regions. Optics Express,2009,17(24):21819-21836.
    [36]J. Dugelay, S. Roche, C. Rey, et al. Still-image watermarking robust to local geometric distor-tions. IEEE Trans. Image Processing,2006,15(9):2831-2842.
    [37]M. Barni. Effectiveness of exhaustive search and template matching against watermark desyn-chronization. IEEE Signal Process Letters,2005,12(2):158-161.
    [38]J. Ruanaidh, T. Pun. Rotation, scale and translation invariant spread spectrum digital image watermarking. Signal Processing,1998,66(3):303-317.
    [39]M. Alghoniemy, A. Tewfik. Image watermarking by moment invariants. Proceedings of Pro-ceedings of IEEE International Conference on Image Processing, volume 2,2000.73-76.
    [40]Y. Xin, S. Liao, M.Pawlak. Circularly orthogonal moments for geometrically robust image watermarking. Pattern Recognition,2007,40(12):3740-3752.
    [41]L. Zhang, G. Qian. Geometric distortions invariant blind second generation watermarking tech-nique based on tchebichef moment of original image. Journal of Software,2007,18(9):2283-2294.
    [42]S. Pereira, T. Pun. Robust template matching for affine resistant image watermarks. IEEE Trans. Image Processing,2000,9(6):1123-1129.
    [43]S. Pereira, T. Pun. An iterative template matching algorithm using the Chirp-Z transform for digital image watermarking. Pattern Recognition,2000,33(1):173-175.
    [44]P. Dong, J. G. Brankov, N. P. Galatsanos, et al. Digital watermarking robust to geometric distortions. IEEE Trans. Image Processing,2005,14(12):2140-2150.
    [45]P. Bas, J. Chassery, B.Macq. Geometrically invariant watermarking using feature points. IEEE Trans. Image Processing,2002,11(9):1014-1028.
    [46]C. Tang, H. Hang. A feature-based robust digital image watermarking scheme. IEEE Trans. Signal Processing,2003,51(4):950-959.
    [47]M. Kutter, S. K. Bhattacharjee, T. Ebrahimi. Towards second generation watermarking schemes. Proceedings of Image Processing (ICIP),1999 IEEE Conference on,1999.320-323.
    [48]C. Schmid, R. Mohr, C. Bauckhage. Evaluation of interest point detectors. International Journal of Computer Vision,2000,37(2):151-172.
    [49]H. Lee, I. Kang, H. Lee, et al. Evaluation of feature extraction techniques for robust water-marking. Proceedings of The 4th International Workshop on Digital Watermarking, volume 1, 2005.418-431.
    [50]S. S. Jin, D. Y. Chang. Localized image watermarking based on feature points of scale-space representation. Pattern Recognition,2004,37(7):1365-1375.
    [51]S. S. Jin, D. Y. Chang. Image watermarking based on invariant regions of scale-space repre-sentation. IEEE Trans. Signal Processing,2006,54(4):1537-1549.
    [52]X. Wang, J. Wu, P. Niu. A new digital image watermarking algorithm resilient to desynchro-nization attacks. IEEE Trans. Information Forensics and Security,2007,2(4):655-663.
    [53]X. Gao, C. Deng, X. Li, et al. Geometric distortion insensitive image watermarking in affine covariant regions. IEEE Trans. Systems, Man, and Cybernetics-Part C:Applications and Reviews,2010,40(3):151-172.
    [54]C.-C. Tsai, H.-Y. Lin, J. Taur, et al. Iris recognition using possibilistic fuzzy matching on local features. IEEE Trans. Systems, Man, and Cybernetics, Part B:Cybernetics,2012,42(1):150-162.
    [55]T. Tuytelaars, K. Mikolajczyk. Local invariant feature detectors:A survey. Foundations and Trends in Computer Graphics and Vision,2008,3(3):177-280.
    [56]J.-S. Tsai, W.-B. Huang, Y.-H. Kuo. On the selection of optimal feature region set for robust digital image watermarking. IEEE Trans. Image Processing,2011,20(3):735-743.
    [57]X. Qi, J. Qi. A robust content-based digital image watermarking scheme. Signal Processing, 2007,87(6):1264-1280.
    [58]X. Zhang, M. Lei, D. Yang, et al. Multi-scale curvature product for robust image corner detec-tion in curvature scale space. Pattern Recognition Letters,2007,28(5):545-554.
    [59]K. Mikolajczyk, C. Schmid. Scale & affine invariant interest point detectors. International Journal of Computer Vision,2004,60(1):63-86.
    [60]B.Chen, G.W.Wornell. Preprocessed and postprocessed quantization index modulation meth-ods for digital watermarking. Proceedings of in Proc. SPIE:Security and Watermarking of Multimedia Contents 2, San Jose,CA,USA,2000.48-59.
    [61]R. C. Gonzalez, R. E. Woods, S. L. Eddins. Digital image processing using MATLAB. Pub-lishing House of Electronics Industry,2004.
    [62]F. Mokhtarian, A. Mackworth. A theory of multiscale, curvature-based shape representation for planar curves. IEEE Tran. Pattern Analysis and Machine Intelligence,1992,14(8):789-805.
    [63]B. Chen, G. W. Wornell. Quantization Index Modulation:A class of provably good methods for digital watermarking and information embedding. IEEE Trans. Information Theory,2001, 47(4):1423-1443.
    [64]R.M.Haralick, K. Shanmugam, I. Dinstein. Textural features for image classification. IEEE Trans. Systems, Man and Cybernetics.,1973,3(6):610-620.
    [65]A. Tinku, K. Ajoy. Image processing principles and applications. John Wiley and Sons Inc., 2005.
    [66]M.-S. Hsieh, D.-C. Tseng. Perceptual digital watermarking for image authentication in elec-tronic commerce. Electronic Commerce Research,2004,4(1-2):157-170.
    [67]N. K. Kalantari, S. M. Ahadi. A logarithmic quantization index modulation for perceptually better data hiding. IEEE Trans. Image Processing,2010,19(6):1504-1517.
    [68]E. Tola, V. Lepetit, P. Fua. DAISY:An efficient dense descriptor applied to wide-baseline stereo. IEEE Trans. Pattern Analysis and Machine Intelligence,2010,32(5):815-830.
    [69]N. Dalal, B. Triggs. Histograms of oriented gradients for human detection. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, volume 1, 2005.886-893.
    [70]A. Baraldi, P. Blonda. A survey of fuzzy clustering algorithms for pattern recognitionn-Part I. IEEE Trans. Systems, Man, and Cybernetics, Part B:Cybernetics,1999,29(6):778-785.
    [71]H. Xiong, J. Wu, J. Chen. K-means clustering versus validation measures:A data-distribution perspective. IEEE Trans. Systems, Man, and Cybernetics, Part B:Cybernetics,2009, 39(2):318-331.
    [72]T. Tuytelaars, C. Schmid. Vector quantizing feature space with a regular lattice. Proceedings of IEEE 11th International Conference on Computer Vision, volume 1,2007.1-8.
    [73]H. Tian, Y. Zhao, R. Ni, et al. Geometrically invariant image watermarking using scale-invariant feature transform and K-means clustering. Proceedings of International Conference on Computational Collective Intelligence, Technologies and Applications, volume 1,2010. 128-135.
    [74]M. Abrash. BSP Trees. Dr. Dobbs Sourcebook,1995,20(14):49-52.
    [75]J. Han, K. Ngan, M. Li, et al. Unsupervised extraction of visual attention objects in color images. IEEE Trans. Circuits and Systems for Video Technology,2006,16(1):141-145.
    [76]U. Rutishauser, D. Walther, C. Koch, et al. Is bottom-up attention useful for object recognition? Proceedings of Computer Vision and Pattern Recognition (CVPR),2004 IEEE Conference on, volume 2,2004.11-37-44.
    [77]M. Ding, R.-F. Tong. Content-aware copying and pasting in images. Vis. Comput.,2010, 26(6-8):721-729.
    [78]H. Wu, Y.-S. Wang, K.-C. Feng, et al. Resizing by symmetry-summarization. Proceedings of ACM SIGGRAPH Asia 2010 papers,2010.159:1-159:10.
    [79]T. Chen, M.-M. Cheng, P. Tan, et al. Sketch2Photo:internet image montage. ACM Trans. Graph.,2009,28(5):124:1-124:10.
    [80]X. Hou, J. Harel, C. Koch. Image signature:highlighting sparse salient regions. IEEE Trans. Pattern Analysis and Machine Intelligence,2012,34(1):194-201.
    [81]A. Borji, L. Itti. State-of-the-art in visual attention modeling. IEEE Trans. Pattern Analysis and Machine Intelligence,2012..
    [82]A. Treisman. Preattentive processing in vision. Computer Vision, Graphics, and Image Pro-cessing,1985,31(2):156-177.
    [83]A. Treisman, S. Gormican. Feature analysis in early vision:Evidence from search asymmetries. Psychological Review,1988,95(1):15-48.
    [84]J. M. Wolfe. Integrated models of cognitive systems.2007:99-119.
    [85]J. M. Wolfe, T. S. Horowitz. What attributes guide the deployment of visual attention and how do they do it? Nature Reviews Neuroscience,2004,5:495-501.
    [86]A. Thiele, G. Stoner. Neuronal synchrony does not correlate with motion coherence in cortical area MT. Nature,2003,421(6921):366-370.
    [87]P. Fries, S. Neuenschwander, A. K. Engel, et al. Rapid feature selective neuronal synchroniza-tion through correlated latency shifting. Nature Neuroscience,2001,4(2):495-501.
    [88]A. Treisman. The binding problem. Current Opinion in Neurobiology,1996,6(2):171-178.
    [89]J. W. Bisley, M. E. Goldberg. Attention, intention, and priority in the parietal lobe. Annual Review of Neuroscience,2010,33(1):1-21.
    [90]D. Kahneman, A. Treisman, B. Gibbs. The reviewing of object files:object-specific integration of information. Cognitive Psychology,1992,24(2):175-219.
    [91]X. Hou, L. Zhang. Saliency detection:A spectral residual approach. Proceedings of Computer Vision and Pattern Recognition (CVPR),2007 IEEE Conference on,2007.1-8.
    [92]Y.-F. Ma, H.-J. Zhang. Contrast-based image attention analysis by using fuzzy growing. Pro-ceedings of ACM Multimedia 2003,2003.374-381.
    [93]Y. Zhai, M. Shah. Visual attention detection in video sequences using spatiotemporal cues. Proceedings of ACM Multimedia 2006,2006.815-824.
    [94]L. Itti, C. Koch, E. Niebur. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Analysis and Machine Intelligence,1998,20(11):1254-1259.
    [95]J. Harel, C. Koch, P. Perona. Graph-based visual saliency. Proceedings of NIPS 2006,2006. 545-552.
    [96]R. Achanta, F. Estrada, P. Wils, et al. Salient region detection and segmentation. Proceedings of Proceedings of the 6th International Conference on Computer Vision Systems,2008.66-75.
    [97]S. Goferman, L. Zelnik-Manor, A. Tal. Context-aware saliency detection. Proceedings of Computer Vision and Pattern Recognition (CVPR),2010 IEEE Conference on,2010.2376-2383.
    [98]R. Achanta, S. Hemami, F. Estrada, et al. Frequency-tuned salient region detection. Proceed-ings of Computer Vision and Pattern Recognition (CVPR),2009 IEEE Conference on,2009. 1597-1604.
    [99]M.-M. Cheng, G.-X. Zhang, N. Mitra, et al. Global contrast based salient region detection. Proceedings of Computer Vision and Pattern Recognition (CVPR),2011 IEEE Conference on, 2011.409-416.
    [100]F. Perazzi, P. Krahenbuhl, Y. Pritch, et al. Saliency filters:Contrast based filtering for salient region detection. Proceedings of Computer Vision and Pattern Recognition (CVPR),2012 IEEE Conference on,2012.733-740.
    [101]X. Shen, Y. Wu. A unified approach to salient object detection via low rank matrix recovery. Proceedings of Computer Vision and Pattern Recognition (CVPR),2012 IEEE Conference on, 2012.853-860.
    [102]T. Liu, J. Sun, N.-N. Zheng, et al. Learning to detect a salient object. Proceedings of Computer Vision and Pattern Recognition (CVPR),2007 IEEE Conference on,2007.1-8.
    [103]T. Liu, Z. Yuan, J. Sun, et al. Learning to detect a salient object. IEEE Trans. Pattern Analysis and Machine Intelligence,2011,33(2):353-367.
    [104]V. Gopalakrishnan, Y. Hu, D. Raj an. Salient region detection by modeling distributions of color and orientation. IEEE Trans. Multimedia,2009,11(5):892-905.
    [105]L. Elazary, L. Itti. Interesting objects are visually salient. Journal of Vision,2008,8(3):3.1-3.15.
    [106]C. Guo, L. Zhang. A novel multiresolution spatiotemporal saliency detection model and its applications in image and video compression. IEEE Trans. Image Processing,2010,19(1):185-198.
    [107]A. Borji. Boosting bottom-up and top-down visual features for saliency estimation. Proceed-ings of Computer Vision and Pattern Recognition (CVPR),2012 IEEE Conference on,2012. 438-445.
    [108]A. Pentland, T. Darrell, M. Turk, et al. A simple, real-time range camera. Proceedings of Computer Vision and Pattern Recognition (CVPR),1989 IEEE Computer Society Conference on,1989.256-261.
    [109]J. Elder, S. Zucker. Local scale control for edge detection and blur estimation. IEEE Trans. Pattern Analysis and Machine Intelligence,,1998,20(7):699-716.
    [110]S. Zhuo, T. Sim. Defocus map estimation from a single image. Pattern Recognition,2011, 44(9):1852-1858.
    [111]S. Wu, W. Lin, S. Xie, et al. Blind blur assessment for vision-based applications. Journal of Visual Communication and Image Representation,2009,20(4):231-241.
    [112]M.-K. Hu. Visual pattern recognition by moment invariants. IRE Trans. Information Theory, 1962,8(2):179-187.
    [113]J. Dolson, B. Jongmin, C. Plagemann, et al. Upsampling range data in dynamic environments. Proceedings of Computer Vision and Pattern Recognition (CVPR),2010 IEEE Conference on, 2010.1141-1148.
    [114]程明明.图像内容的显著性与相似性研究[D].清华大学,三月,2012年.
    [115]C. Rother, V. Kolmogorov, A. Blake. "GrabCut":interactive foreground extraction using iter-ated graph cuts. ACM Transactions on Graphics (TOG)-Proceedings of ACM SIGGRAPH 2004,2004,23(3):309-314.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700