用户名: 密码: 验证码:
棉花不成熟纤维突变基因(im)的定位及突变体纤维次生壁加厚期表达谱分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花是重要的经济作物。棉纤维是重要的天然纺织原料。它是由胚珠表皮细胞发育而来的单细胞绒毛。棉纤维的发育可以分为四个明显不同但略有重叠的阶段:纤维的分化和起始、细胞伸长、次生壁合成和纤维成熟。由于棉纤维在发育过程中表现出的优良特性,被认为是研究细胞伸长和细胞壁生物合成的理想模型。突变体是进行遗传研究和揭示重要基因分子机制的优良材料。不成熟纤维突变体im是棉花中一个特殊的纤维突变体,被认为引起次生壁发育缺陷。对im突变体的研究将有助于我们更好地理解纤维次生壁发育的复杂过程,揭示其分子调控机理,并为棉花纤维品质改良贮备一些优良基因。本研究以im突变体为研究材料,开展了棉花不成熟纤维突变基因对纤维主要品质和衣分性状影响研究,以及与其相关的棉纤维次生壁表达谱分析。主要研究结果如下:
     1.通过比较im突变体和2个陆地棉纤维发育正常品系TM-1和I4005的纤维表型,发现与对照材料相比,棉纤维在im突变体中不蓬松,仍紧缩在种子上。进一步配置im×TM-1和im×I4005杂交组合,发现所有的F1植株均表现正常蓬松的纤维表型,而F2群体中出现紧缩和正常蓬松2种纤维表型,分离比例符合孟德尔单基因遗传规律。证实im突变体是由一对隐性等位基因控制。
     2.利用6713对SSR引物对im突变体和I4005及TM-1进行全基因组扫描。在im突变体和I4005之间共找到257个多态性标记。其中186个SSR标记产生193个多态性位点,分布在31个连锁群上。im基因座和4个SSR标记NAU1190, DPL0170, NAU3995和NAU1197位于同一条连锁群上。该连锁群属于棉花3号染色体(A3),覆盖55.5cM,标记间平均距离为13.9cM。im基因座两侧最近的标记为DPL0170和NAU3995,分别相距21.8cM和32.5cM。 im突变体和TM-1之间仅发现3个位于A3染色体上的多态性标记,NAU3639, NAU1190和DPL0170,它们分别与im基因座相距10.2、24.3和23.3cM。
     3.为了进一步精细定位im基因,为图位克隆该基因奠定基础。利用以TM-1为背景携带海岛棉海7124A3染色体片段的3个染色体单片段代换系(CSILs),CSIL028、 CSIL030和CSIL031与im突变体杂交,构建了CSIL028×im F2, CSIL030×im F2和CSIL031×imF2作图群体。使用棉花公共遗传图谱A3连锁群上的SSR标记在这3个F2群体中分别检测到47、7和12个SSR多态性标记。其中,以CSIL028×imF2为作图群体构建的遗传图谱最为密集,47个SSR标记联同im基因座覆盖80.9cM,平均标记间距离1.8cM。im基因被定位于BNL2443和cgr6528标记之间,分别相距3.6和1.3cM。在以CSIL030×imF2和CSIL031×imF2为作图群体构建的遗传图谱中发现只有单侧标记与im基因座连锁,最近的标记NAU5444和NAU3479分别与im基因座相距30.3cM和40.0cM。同时连锁分析显示CSIL030和CSIL031中所导入的海7124A3染色体片段上不包含im等位基因。
     4.通过比较im突变体与14005、TM-1、CSIL028、CSIL030及CSIL031在纤维品质及衣分上的差异,发现除了短纤维指数im突变体显著高于其他5个材料外,在纤维长度、比强度、马克隆值、成熟度、整齐度和衣分等多个性状上,im突变体均显著的低于其他5个材料(P<0.001)。对5个F2:3群体的QTL分析显示,每个群体中均有多个性状相关的QTL成簇分布在im基因座周围,解释的表型变异从18.2%-82.03%。利用BioMercator v2.1对这5个群体QTL的meta分析显示,除了纤维比强度之外,和其他6个性状相关的成簇分布在im基因座周围的QTL均分别是一个一致性QTL。这6个一致性QTL被定位在一个很小的区间内,它们95%的置信区间分别为1.22、0.72、0.56、0.89、0.76和0.67cM,两侧最近的标记均为BNL2443和cgr6528,解释的平均表型变异为27.16%-69.61%。
     5.通过检测im突变体和TM-1在19、22、25、30、35、40DPA和成熟期7个纤维不同发育时期的纤维素含量,结果显示,在每个对应的发育时期,im突变体棉纤维中纤维素含量均显著低于TM-1。推测im突变体中纤维素的合成可能受到部分抑制。对两个材料13、19、25DPA及成熟纤维细胞壁厚度的比较发现,im突变体25DPA及成熟纤维的细胞壁厚度显著低于TM-1,表明im突变体次生壁发育缺陷,而细胞壁厚度减小可能是由于纤维素减少所导致的。对10、13、16、19、22、25、30、35、40DPA纤维中葡萄糖、果糖和蔗糖含量的分析发现,im突变体和TM-1中葡萄糖和果糖变化趋势非常相似,但在次生壁发育后期im突变体纤维中的葡萄糖和果糖含量更高。在25~35DPA期间TM-1纤维细胞中的蔗糖含量显著高于im突变体。这可能与im突变体和TM-1中不同的纤维素含量相关。推测在次生壁发育阶段,由mi基因突变影响了纤维细胞中正常的糖代谢过程,im突变体中分配进入纤维素合成途径的蔗糖可能少于TM-1。
     6.利用包含29,184个纤维发育相关探针的cDNA芯片对im突变体和TM-1在13、16、19、22和25DPA不同纤维发育时期以及材料间的表达谱进行比较分析。对相邻时间点的基因差异表达比较显示,13~16,16~19,19~22DPA相邻时间点中在TM-1中的差异表达基因(foldchange>2倍,FDR<0.05)数目均高于im突变体。特别是在纤维发育的13~16DPA阶段,在im突变体中仅检测到98个差异基因,而在TM-1中检测到494个。但在纤维发育22~25DPA中则刚好相反,在im突变体中检测到更多的差异表达基因。在im突变体中检测到236个差异表达基因,而在TM-1中仅检测到60个。表明两个材料在相同的发育阶段表现不同的基因表达变异水平,而im突变体前低后高的基因表达变异水平则暗示其可能存在纤维发育的延迟性。TM-1和im突变体之间基因表达水平变化最大的时期发生在16DPA,一共有1308个基因差异表达。表明16DPA是一个非常重要的纤维发育时期。进一步对差异表达基因的GO功能注释及富集分析显示,和im突变体相比TM-1更早的启动了纤维次生壁的合成,大致在16DPA,而im突变体则直到19DPA才开始启动次生壁的合成。在16和19DPA,次生壁合成的起始阶段,TM-1和im突变体间差异表达基因中富集到的GO大部分涉及糖代谢及细胞壁合成相关进程。涉及这些进程的部分基因与拟南芥中被证实是次生壁正常发育所需的基因相似。和im突变体相比,它们在这个阶段的TM-1纤维中具有更高的转录水平。然而在随后的纤维发育时期中,这些与糖代谢及细胞壁合成相关的进程没有被富集,暗示im基因可能更多的作用于次生壁发育的早期阶段,它很可能是一个参与调节细胞内碳流进入纤维素合成的调控基因。
     7.利用最近释放的棉花D基因组序列信息,结合im基因定位结果,在包含im基因的区域内预测到了155个基因。根据表达谱分析结果,155个基因中仅检测到8个在TM-1和im突变体之间差异表达,但基因表达水平差异并不很大。GO分析显示有73个基因参与到不同的生物进程,其中有20个基因参与到信号、生物调控、生长发育、再生及糖代谢相关进程。但这些基因并没有在芯片表达谱分析中检测到在TM-1和im突变体之间存在表达差异,这可能与芯片中代表的基因数有关。KEGG分析显示有18个基因参与到不同的代谢途径,其中糖代谢是最主要的代谢途径。这些基因在纤维发育中扮演的角色,确切的im基因的克隆及功能分析还需要进一步实验验证。
Cotton(Gossypium spp.) is an important economic crop and cotton fiber is leading natural textile fiber in the world. Cotton fiber is a unicellular hair originating from the seed epidermis. Fiber development consists of four overlapping stages:fiber initiation, fiber elongation, secondary cell wall deposition and maturation. Because of some unique characters of cotton fiber, cotton fiber is regarded as an ideal model for studies of plant cell elongation and cell wall biogenesis. Mutants are powerful tools to help us understand genetic and molecular mechanism of important genes. The immature fiber mutant (im) is a specific cotton fiber mutant, which regarded to result in defective secondry cell wall. The research work about im mutant will help us better understand the complex process of fiber secondary cell wall biogenesis and explore the molecular mechanism of gene regulation. It could also help us find some potential excellent genes for cotton gene engineering in improving fiber quality traits. In the present study, the inheritance analysis and mapping of the im mutant and QTL analysis for multiple fiber quality traits and lint percentage are performed. Also, the differential genes expression profiling of im mutant and TM-1during fiber secondary cell wall development is analyzed. The majory results are listed as following:
     1. The im mutant and two cotton lines, G hirsutum acc. TM-1and14005were compared for differences in fiber characteristics. The im mutant has no fluffy fibers like as in normal cotton lines and fibers in im mutant are still tightly matted around seeds, although the cotton bolls have opened. Two hybrid combination,(im×TM-1) and im×I4005) are developed by using im mutant corssing with TM-1and14005. All F1plants had nomal fiber characteristics. However, among all of the F2segregation populations, only two phenotypes, normal and matted fibers, were found. The data in each segregation population fit a Mendelian pattern of inheritance with a ratio of3:1(Table1), which reconfirmed that im was ahomozygous recessive gene.
     2. A total of6,713SSR primer pairs were screened to detect polymorphisms among im,14005and TM-1. Two hundred and fifty-seven polymorphic SSR markers were detected between im and14005. One hundred and ninty-three polymorphic loci from186SSR markers were mapped on31linkage groups, and the im locus and four SSR loci (NAU1190, DPL0170, NAU3995and NAU1197) were identified in a linkage group. According to previous mapping information, the linkage group was assigned on chromosome3(A3), which covered55.5cM, with an average distance of about13.9cM. The DPL0170and NAU3995loci were linked to the flanking the im locus, with a distance of21.8cM and32.5cM, respectively. However, only3polymorphic SSR markers were detected between im and TM-1and anchored on chromosome A3. They were NAU3639, NAU1190and DPL0170, and all were linkaged with im locus, with a distance of10.2,24.3and23.3cM, respectively.
     3. In order to lay a good foundation for future map based cloning of the im gene, fine mapping of the im gene was performed. Three F2mapping populations, CSIL028×im F2, CSIL030×im F2and CSIL031×im F2, were constructed by using im mutant respectively corssing with three different chromosome segment introgression lines (CSILs), which were characterized by carrying one homozygous chromosome3(A3) segment from G. barbadense cv Hai7124in the background of a genetic standard line of the upland cotton, TM-1. Molecular mapping showed that47,7and12polymorphic SSR loci were individually detected and anchored on the three selected overlapping CSILs on chromosome3(A3). Of these, the linkage map constructed based on (CSIL028×im) F2contained the most markers and covered80.9cM. with an average distance of1.8cM. The im gene was anchored between BNL2443and cgr6528loci with a distance4.6cM and1.3cM, respectively. The SSR markers linked to the im locus on the linkage map were detected based on (CSIL030×im) F2and (CSIL031×im) F2. The nearest marker to the im locus was NAU5444with a distance of30.3cM and NAU3479with a distance of40.0cM respectively. In addition, the linkage analysis showed that the introgression chromosome segment transferred from G. barbadense cv. Hai7124in the CSIL030and CSIL031lines might carry an im allelic locus not from Hai7124, but from TM-1.
     4. A comparison analysis was performed between im mutant and other five cotton lines,14005, TM-1, CSIL028, CSIL030and CSIL031for fiber quality traits and lint percentage. Except for short fiber index, TM-1had higher fiber quality index than im mutant on the tarits including fiber length, fiber strength, micronaire, fiber maturity, fiber uniformity ratio and lint percentage (P<0.001). The results of QTL analysis based on five populations showed that QTLs related to multi-traits in each population were clustered near the im locus with a high percentage of phenotypic variance, ranging from18.2%to82.03%. The meta-analysis for QTLs from five populations revealed some consensus QTLs by using BioMercator v2.1program. Except for fiber strength, QTLs for other six traits including fiber length, micronaire, fiber uniformity ratio, short fiber index, fiber maturity and lint percentage which clustered near by im locus were all regarded as on consensus QTL. They were located on a small interval, with95%confidence interval1.22,0.72,0.56,0.89,0.76and0.67cM, respectively. They shared same flanking markers, BNL2443and cgr6528and had mean of phenotypic variation that ranged from27.16%to69.61%.
     5. The cellulose content in fibers was measured at different fiber developmental stage including19,22,25,30,35and40DPA, and maturation both in im mutant and TM-1. The im mutant had significantly lower cellulose content in fibers than TM-1at each fiber developmental stage. The accumulation of cellulose in im might be propobably suppressed partially. The statistical analysis for thickness of fiber cell wall was also performed at13,19and25DPA and maturation developmental stage. There was no difference between two lines at13and19DPA, but im had thinner fiber cell wall (P<0.001) than TM-1at25DPA and maturity, suggesting the defect of the development of fiber secondary cell wall (SCW) in im mutant and thinner cell wall in im was most likely due to the reason for reduction of cellulose. The fructose, glucose and sucrose content in fibers at10,13,16,19,22,25,30,35, and40DPA were also measured. TM-1and im mutant shared similar changing trend. But the fructose and glucose content were higher in fibers of im mutant than that in TM-1during the later SCW development. During the developmental interval25~35DPA, higher sucrose content in fibers of TM-1was found than that in im mutant, which might be relative to different cellulose synthesis content between two accessions. A presumption was that the normal carbohydrate metabolism was affected in im mutant resulted from the im mutant gene, and sucrose distributed into the pathway of cellulose synthesis in im mutant was less than that in TM-1.
     6. In order to explore the mechanism of fiber development and reveal potential mutant candidate genes, we employed cotton cDNA microarray to evaluate the variation of transcription profiling within and between im and TM-1at13,16,19,22and25DPA. The comparison analysis for the variation of transcription profiling between adjacent time points during fiber development within two lines revealed that TM-1had more differentially expressed genes (DEGs) than im mutant (fold change>2, and FDR<0.05), during the fiber developmental interval13~16,16~19, and19~22DPA. In particular, during the fiber developmental interval13~16DPA, only98DEGs were detected in im mutant, whereas494DEGs were detected in TM-1at same fiber developmental interval. Conversely, more genes were differentially expressed in im mutant than that in TM-1between22and25DPA. There were236genes differentially expressed in im mutant but only60genes differentially expressed in TM-1. The results revealed different variation levels of transcription profiling within the two lines. And there was a putative delayed fiber developmental progress in im mutant. The maximum transcriptional variation between TM-1and im mutant occurred at16DPA and a total of1308genes altered their expression levels, which suggested that16DPA was a very important fiber developmental stage. The GO annotation for DEGs and enrichment analysis indicated that onset of secondary cell wall biosynthesis for fibers in TM-1approximately occurred at16DPA, whereas the same fiber developmental program in im was delayed until19DPA, suggesting an asynchronous fiber developmental program between TM-1and im mutant. At the some fiber developmental atage of SCW,16and19DPA, most enriched GO terms for DEGs between TM-1and im mutant were associated with carbohydrate metabolism and cell wall biogenesis progress. Many genes which have been confirmed to be required for normal development of SCW in Arabidopsis were included in these GO terms. The expression levels of these genes in TM-1were higher than that in im mutant at this fiber developmental stage. However, these GOs associated with carbohydrate metabolism and cell wall biogenesis progress were not over-represented at subsequent developmental stages, suggesting that im gene probably had a major effect on the early stage of secondary cell wall biosynthesis. The im gene might be an important regulatory gene that participated in regulating carbon flux into cellulose synthesis.
     7. Using the recently released cotton D genome sequence information as reference and combined with the im gene mapping results, one hundary and fifty-five genes were predicted to be as im candidate genes. However, only8genes were differentially expressed between TM-1and im mutant. But the difference of gene expression level was not large. The result of GO analysis indicated that73genes involved in different biological processes. Out of them, twenty genes involved in signaling, biological regulation, growth, developmental process, reproduction and carbohydrate metabolic process, respectively. But these genes did not show significant expression difference between TM-1and im mutant. This might also be related to the representative genes in the chip. The KEGG analysis for155genes showed that18genes participated in different pathways, and the carbohydrate metabolism was one of the major pathways. That the roles of these genes played during fiber development and the functional analysis of im candidate gene from these predicted genes required further experimental validation.
引文
1. 陈向东.海岛棉和陆地棉纤维发育的遗传基因组学研究[D].南京农业大学,2011.
    2. 董承光,丁业掌,郭旺珍等.海岛棉Gl2e显性无腺体基因的精细定位[J].科学通报,2007,(20):2374-2378.
    3. 胡凤萍,周兆华.陆地棉5个突变基因的标记与定位[J].分子植物育种,2006,4(5):680-684.
    4. 郝伟,金健,孙世勇等.覆盖野生稻基因组的染色体片段替换系的构建及其米质相关数量性状基因座位的鉴定[J].植物生理与分子生物学学报,2006,(3):354-362.
    5. 郭旺珍,王凯,张天真.利用SSR标记技术研究棉属A、D染色体组的进化[J].遗传学报,2003,(2):183-188.
    6. 韩志国,楚鹰,郭旺珍等.棉纤维发育重要基因FbL2A的SNPs研究及定位[J].农业生物技术学报,2006,(3):360-364.
    7. 蒋建雄和张天真.利用CTAB/酸酚法提取棉花组织总RNA [J].棉花学报,2003,15(03):166-167.
    8. 梅文倩,秦咏梅,朱玉贤.乙烯、超长链脂肪酸、活性氧、油菜素内酯和赤霉素相互作用调控棉纤维伸长发育的分子机制研究[J].生命科学,2010,(1):7-14.
    9. 潘家驹.棉花育种学[M].北京:中国农业出版社,1998.
    10.宋丽,郭旺珍,秦鸿德等.棉花光子基因N1和n2的遗传分析及染色体定位的分子证据[J].南京农业大学学报,2010,33(1):21-26.
    11.孙振元,郑湘如,徐楚年等.从棉胚珠衍生细胞培养纤维的研究[J].北京农业大学学报,1992a,(S1):143-146.
    12.孙振元,郑湘如,徐楚年等.吲哚乙酸和赤霉酸在离体棉花胚珠生长和纤维发育中的作用[J].北京农业大学学报,1992b,(S1):129-135.
    13.武耀廷,张天真,郭旺珍等.陆地棉品种SSR标记的多态性及用于杂交种纯度检测的研究[J].棉花学报,2001,13(3):131-133.
    14.徐楚年,张仪,余炳生等.棉花四个栽培种纤维发育早期扫描电镜的比较研究[J].北京农业大学学报,1987,3(13):255-262.
    15.杨泽茂,李骏智,李爱国等.利用高代回交和分子标记辅助选择构建棉花染色体片段代换系[J].分子植物育种,2009,(2):233-241.
    16.王立秋,赵永锋,薛亚东等.玉米衔接式单片段导入系群体的构建和评价[J].作物学报,2007,(04):663-668.
    17.王鹏.陆地棉TM-1背景的海岛棉染色体片段导入系的培育鉴定和纤维强度QTL精细定位[D].南京农业大学,2009.
    18.朱静,沈新莲,葛才林.棉属野生种G.klotzschianum基因组的渐渗及优质纤维基因的挖掘与定位[D].扬州大学,2007.
    19.张天真.棉花开放花蕾性状的遗传研究[J].中国棉花,1992,(3):12-14.
    20.朱亚娟.利用染色体片段导入系精细定位3个产量构成因素QTLs和海岛棉叶形、光滑茎基因[D].南京农业大学,2009.
    21. Abdurakhmonov I, Saha S, Jenkins J, et al. Linkage disequilibrium based association mapping of fiber quality traits in G. hirsutum L. variety germplasm [J]. Genetica,2009,136(3):401-417.
    22. Abdurakhmonov I Y, Buriev Z T, Shermatov S E, et al. Genetic Diversity in Gossypium genus [M]. Caliskan P M. Genetic Diversity in Plants. InTech.2012.
    23. Abdurakhmonov I Y, Kohel R J, Yu J Z, et al. Molecular diversity and association mapping of fiber quality traits in exotic G. hirsutum L. germplasm [J]. Genomics,2008,92(6):478-487.
    24. Ahmed F E. Microarray RNA transcriptional profiling:part I. Platforms, experimental design and standardization [J]. Expert review of molecular diagnostics,2006,6(4):535-550.
    25. Al-Ghazi Y, Bourot S, Arioli T, et al. Transcript profiling during fiber development identifies pathways in secondary metabolism and cell wall structure that may contribute to cotton fiber quality [J]. Plant Cell Physiol,2009,50(7):1364-1381.
    26. Aleman L, Kitamura J, Abdel-mageed H, et al. Functional analysis of cotton orthologs of GA signal transduction factors GID1 and SLR1 [J]. Plant Mol. Biol., 2008,68(1):1-16.
    27. Amor Y, Haigler C H, Johnson S, et al. A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants [J]. Proc Natl Acad Sci U S A,1995, 92(20):9353-9357.
    28. An C, Saha S, Jenkins J N, et al. Transcriptome profiling, sequence characterization, and SNP-based chromosomal assignment of the EXPANSIN genes in cotton [J]. Mol Genet Genomics, 2007,278(5):539-533.
    29. Appenzeller L, Doblin M, Barreiro R, et al. Cellulose synthesis in maize:isolation and expression analysis of the cellulose synthase (CesA) gene family [J]. Cellulose,2004,11(3-4):287-299.
    30. Arcade A, Labourdette A, Falque M, et al. BioMercator:integrating genetic maps and QTL towards discovery of candidate genes [J]. Bioinformatics,2004,20(14):2324-2326.
    31. Arioli T, Peng L, Betzner A S, et al. Molecular analysis of cellulose biosynthesis in Arabidopsis [J]. Science,1998,279(5351):717-720.
    32. Arpat A B, Waugh M, Sullivan J P, et al. Functional genomics of cell elongation in developing cotton fibers [J]. Plant Mol Biol.2004.54(6):911-929.
    33. Aspeborg H, Schrader J, Coutinho P M, et al. Carbohydrate-Active Enzymes Involved in the Secondary Cell Wall Biogenesis in Hybrid Aspen [J]. Plant Physiol.,2005.137(3):983-997.
    34. Baskin T I. On the alignment of cellulose microfibrils by cortical microtubules:a review and a model [J]. Protoplasma,2001,215(1-4):150-171.
    35. Basra A S, Malik C. Development of the cotton fiber [J]. Int Rev Cytol,1984,89(1):65-113.
    36. Beasley C A. Hormonal regulation of growth in unfertilized cotton ovules [J]. Science,1973, 179(4077):1003-1005.
    37. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate-a Practical and Powerful Approach to Multiple Testing [J]. J Roy Stat Soc B Met,1995,57(1):289-300.
    38. Betancur L, Singh B, Rapp R A, et al. Phylogenetically distinct cellulose synthase genes support secondary wall thickening in arabidopsis shoot trichomes and cotton fiber [J]. J Integr Plant Biol, 2010,52(2):205-220.
    39. Bolek Y, El-Zik K M, Pepper A E, et al. Mapping of verticillium wilt resistance genes in cotton [J]. Plant Sci.,2005,168(6):1581-1590.
    40. Brazma A, Parkinson H, Sarkans U, et al. ArrayExpress-a public repository for microarray gene expression data at the EBI [J]. Nucleic Acids Res,2003,31(1):68-71.
    41. Brenner S, Johnson M, Bridgham J, et al. Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays [J]. Nat Biotechnol,2000,18(6):630-634.
    42. Brill E, van Thournout M, White R G, et al. A novel isoform of sucrose synthase is targeted to the cell wall during secondary cell wall synthesis in cotton fiber [J]. Plant Physiol,2011,157(1):40-54.
    43. Brown D M, Zeef L A, Ellis J, et al. Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics [J]. Plant Cell,2005, 17(8):2281-2295.
    44. Brown D M, Zhang Z, Stephens E, et al. Characterization of IRX10 and IRX10-like reveals an essential role in glucuronoxylan biosynthesis in Arabidopsis [J]. Plant J,2009,57(4):732-746.
    45. Brown R M. The biosynthesis of cellulose [J]. J Macromol Sci Pure,1996, A33(10):1345-1373.
    46. Brown R M, Jr., Montezinos D. Cellulose microfibrils:visualization of biosynthetic and orienting complexes in association with the plasma membrane [J]. Proc Natl Acad Sci U S A,1976,73(1): 143-147.
    47. Brubaker C L, Brown A H. The use of multiple alien chromosome addition aneuploids facilitates genetic linkage mapping of the Gossypium G genome [J]. Genome,2003,46(5):774-791.
    48. Brubaker C L, Paterson A H, Wendel J F. Comparative genetic mapping of allotetraploid cotton and its diploid progenitors [J]. Genome,1999,42(2):184-203.
    49. Brubaker C L, Wendel J F. Revaluting the origin of domesticated cotton(Gossypium hirsutum Malvaceae) using nuclear restriction fragment length polymorphisms RFLPs [J]. Am J Bot,1994, 81(10):1309-1326.
    50. Byers R L, Harker D B. Yourstone S M. et al. Development and mapping of SNP assays in allotetraploid cotton [J]. Theor Appl Genet.2012,124(7):1201-1214.
    51. Cantarel B L. Coutinho P M. Rancurel C. et al. The Carbohydrate-Active EnZymes database (CAZy):an expert resource for Glycogenomics [J]. Nucleic Acids Res.,2009,37(suppl 1): D233-D238.
    52. Carpita N C. Delmer D P. Concentration and metabolic turnover of UDP-glucose in developing cotton fibers [J]. J Biol Chem,1981,256(1):308-315.
    53. Chaudhary B, Hovav R, Rapp R, et al. Global analysis of gene expression in cotton fibers from wild and domesticated Gossypium barbadense [J]. Evol Dev,2008,10(5):567-582.
    54. Ching A, Dhugga K S, Appenzeller L, et al. Brittle stalk 2 encodes a putative glycosylphosphatidylinositol-anchored protein that affects mechanical strength of maize tissues by altering the composition and structure of secondary cell walls [J]. Planta,2006,224(5):1174-1184.
    55. Christianson J A, Llewellyn D J, Dennis E S, et al. Global gene expression responses to waterlogging in roots and leaves of cotton (Gossypium hirsutum L.) [J]. Plant Cell Physiol,2010, 51(1):21-37.
    56. Churchill G A, Doerge R W. Empirical threshold values for quantitative trait mapping [J]. Genetics, 1994,138(3):963-971.
    57. Claverie M, Souquet M, Jean J, et al. cDNA-AFLP-based genetical genomics in cotton fibers [J]. Theor Appl Genet,2012,124(4):665-683.
    58. Conesa A, Gotz S. Blast2GO:A comprehensive suite for functional analysis in plant genomics [J]. Int J Plant Genomics,2008,2008:619832.
    59. Dahiya P, Findlay K, Roberts K, et al. A fasciclin-domain containing gene, ZeFLA11, is expressed exclusively in xylem elements that have reticulate wall thickenings in the stem vascular system of Zinnia elegans cv Envy [J]. Planta,2006,223(6):1281-1291.
    60. Darvasi A. Soller M. A simple method to calculate resolving power and confidence interval of QTL map location [J]. Behav Genet,1997,27(2):125-132.
    61. Davidonis G H. Gibberllic acid-induced dell elongation in cotton suspension cultures [J]. J Plant Growth Regul,1990,9:243-264.
    62. DeBolt S, Scheible W R, Schrick K, et al. Mutations in UDP-Glucose:sterol glucosyltransferase in Arabidopsis cause transparent testa phenotype and suberization defect in seeds [J]. Plant Physiol, 2009,151(1):78-87.
    63. Delmer D P. CELLULOSE BIOSYNTHESIS:Exciting Times for A Difficult Field of Study [J]. Annu Rev Plant Physiol Plant Mol Biol,1999,50(1):245-276.
    64. Delmer D P, Pear J R, Andrawis A, et al. Genes encoding small GTP-binding proteins analogous to mammalian rac are preferentially expressed in developing cotton fibers [J]. Mol Gen Genet,1995, 248(1):43-51.
    65. Deng F, Tu L, Tan J, et al. GbPDF1 Is Involved in Cotton Fiber Initiation via the Core cis-Element HDZIP2ATATHB2 [J]. Plant Physiol,2012,158(2):890-904.
    66. Desai A, Chee P W, May O L, et al. Correspondence of Trichome Mutations in Diploid and Tetraploid Cottons [J]. J. Hered.,2008,99(2):182-186.
    67. Desai A, Chee P W, Rong J, et al. Chromosome structural changes in diploid and tetraploid A genomes of Gossypium [J]. Genome,2006,49(4):336-345.
    68. Doi K. Wata N, Yoshimura A. The construction of chromosome substitution lines of African rice (Oryza glaberrima Steud.) in the background of Japonica rice (O. saliva L.) [J]. Rice Genet Newsl. 1997,14:39-41.
    69. Ebitani T, Takeuchi Y, Nonoue Y, et al. Construction and evaluation of chromosome segment substitution lines carrying overlapping chromosome segments of indica rice cultivar'Kasalath'in a genetic background of japonica elite cultivar'Koshihikari'[J]. Breeding Science,2005,55(1): 65-73.
    70. Edgar R, Domrachev M, Lash A E. Gene Expression Omnibus:NCBI gene expression and hybridization array data repository [J]. Nucleic Acids Res,2002,30(1):207-210.
    71. Endler A, Persson S. Cellulose synthases and synthesis in Arabidopsis [J]. Mol Plant,2011,4(2): 199-211.
    72. Endrizzi J E, Turcotte E L, Kohel R J. Qualitative genetics, cytology, and cytogenetics. In:Cotton (Kohel RJ and Lewis CF, eds). [M]. Madison, WI:Agronomy Society of America,1985.
    73. Eshed Y, Zamir D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL [J]. Genetics,1995, 141(3):1147-1162.
    74. Feng C D, Stewart J M D, Zhang J F. STS markers linked to the Rf1 fertility restorer gene of cotton [J]. Theor Appl Genet,2005,110(2):237-243.
    75. Flagel L, Udall J, Nettleton D, et al. Duplicate gene expression in allopolyploid Gossypium reveals two temporally distinct phases of expression evolution [J]. BMC Biol,2008,6:16.
    76. Franz G. Soluble nucleotides in developing cotton hair [J]. Phytochemistry,1969,8(4):737-7'41.
    77. Frelichowski J E, Jr., Palmer M B, Main D, et al. Cotton genome mapping with new microsatellites from Acala'Maxxa' BAC-ends [J]. Mol Genet Genomics,2006,275(5):479-491.
    78. Fujii S, Hayashi T, Mizuno K. Sucrose synthase is an integral component of the cellulose synthesis machinery [J]. Plant Cell Physiol,2010,51(2):294-301.
    79. Giovannoni J J. Breeding new life into plant metabolism [J]. Nat Biotech,2006,24(4):418-419.
    80. Glover B J. Differentiation in plant epidermal cells [J]. J Exp Bot,2000,51(344):497-505.
    81. Goffinet B, Gerber S. Quantitative trait loci:a meta-analysis [J]. Genetics,2000,155(1):463-473.
    82. Gokani S J, Kumar R, Thaker V S. Potential role of abscisic acid in cotton fiber and ovule development [J]. J Plant growth Regul,1998a,17:1-5.
    83. Gokani S J, Kumar R, Thaker V S. Potential Role of Abscisic Acid in Cotton Fiber and Ovule Development [J]. J. Plant Growth Regul.,1998b,17(1):1-5.
    84. Gou J Y, Wang L J, Chen S P, et al. Gene expression and metabolite profiles of cotton fiber during cell elongation and secondary cell wall synthesis [J]. Cell Res,2007,17(5):422-434.
    85. Goujon T. Minic Z. El Amrani A. et al. AtBXL1,a novel higher plant (Arabidopsis thaliana) putative beta-xylosidase gene, is involved in secondary cell wall metabolism and plant development [J]. Plant J,2003,33(4):677-690.
    86. Guan X, Lee J J, Pang M. et al. Activation of Arabidopsis seed hair development by cotton fiber-related genes [J]. PLoS One,2011.6(7):e21301.
    87. Guan X Y, Li Q J. Shan C M. et al. The HD-Zip IV gene GaHOX1 from cotton is a functional homologue of the Arabidopsis GLABRA2 [J]. Physiol Plant,2008,134(1):174-182.
    88. Guan X Y. Yu N, Shangguan X X, et al. Arabidopsis trichome research sheds light on cotton fiber development mechanisms [J]. Chin. Sci. Bull.,2007,52(13):1734-1741.
    89. Guillaumie S, Mzid R, Mechin V, et al. The grapevine transcription factor WRKY2 influences the lignin pathway and xylem development in tobacco [J]. Plant Mol Biol,2010,72(1-2):215-234.
    90. Guo W, Cai C, Wang C, et al. A microsatellite-based, gene-rich linkage map reveals genome structure, function and evolution in Gossypium [J]. Genetics,2007,176(1):527-541.
    91. Guo W, Cai C, Wang C, et al. A preliminary analysis of genome structure and composition in Gossypium hirsutum [J]. BMC Genomics,2008,9:314.
    92. Guo W Z, Ma G J, Zhu Y C, et al. Molecular tagging and mapping of quantitative trait loci for lint percentage and morphological marker genes in upland cotton [J]. J Integr Plant Biol,2006,48(3): 320-326.
    93. Guo W Z, Zhang T Z, Pan J J, et al. Identification of RAPD marker linked with fertility-restoring gene of cytoplasmic male sterile lines in upland cotton [J]. Chin. Sci. Bull.,1998,43(1):52-54.
    94. Haigler C H, Brown R M. Transport of rosettes from the golgi apparatus to the plasma membrane in isolated mesophyll cells of Zinnia elegans during differentiation to tracheary elements in suspension culture [J]. Protoplasma,1986,134(2):111-120.
    95. Han Z, Wang C, Song X, et al. Characteristics, development and mapping of Gossypium hirsutum derived EST-SSRs in allotetraploid cotton [J]. Theor Appl Genet,2006,112(3):430-439.
    96. Han Z G, Guo W Z, Song X L, et al. Genetic mapping of EST-derived microsatellites from the diploid Gossypium arboreum in allotetraploid cotton [J]. Mol Genet Genomics,2004,272(3): 308-327.
    97. Harpaz-Saad S, McFarlane H E, Xu S, et al. Cellulose synthesis via the FE12 RLK/SOS5 pathway and cellulose synthase 5 is required for the structure of seed coat mucilage in Arabidopsis [J]. Plant J,2011,68(6):941-953.
    98. He D-H, Lin Z-X, Zhang X-L, et al. QTL mapping for economic traits based on a dense genetic map of cotton with PCR-based markers using the interspecific cross of Gossypium hirsutum × Gossypium barbadense [J]. Euphytica,2007,153(1):181-197.
    99. Hinchliffe D J, Meredith W R, Yeater K M, et al. Near-isogenic cotton germplasm lines that differ in fiber-bundle strength have temporal differences in fiber gene expression patterns as revealed by comparative high-throughput profiling [J]. Theor Appl Genet,2010,120(7):1347-1366.
    100. Hovav R, Udall J A, Chaudhary B, et al. The evolution of spinnable cotton fiber entailed prolonged development and a novel metabolism [J]. PLoS Genet,2008a,4(2):e25.
    101. Hovav R, Udall J A. Chaudhary B, et al. Partitioned expression of duplicated genes during development and evolution of a single cell in a polyploid plant [J]. Proc Natl Acad Sci U S A, 2008b,105(16):6191-6195.
    102. Hovav R, Udall J A. Hovav E. et al. A majority of cotton genes are expressed in single-celled fiber [J]. Planta,2008c,227(2):319-329.
    103. Hsieh Y L, Hu X P, Wang A. Single Fiber Strength Variations of Developing Cotton Fibers-Strength and Structure of G. hirsutum and G. barbedense [J]. Textile Research Journal.2000, 70(8):682-690.
    104. Huang G Q, Xu W L, Gong S Y, et al. Characterization of 19 novel cotton FLA genes and their expression profiling in fiber development and in response to phytohormones and salt stress [J]. Physiol Plant,2008,134(2):348-359.
    105. Humphries J A, Walker A R, Timmis J N, et al. Two WD-repeat genes from cotton are functional homologues of the Arabidopsis thaliana TRANSPARENT TESTA GLABRA1 (TTG1) gene [J]. Plant Mol Biol,2005,57(1):67-81.
    106. Ikeo K, Ishi-i J, Tamura T, et al. CIBEX:center for information biology gene expression database [J]. C R Biol,2003,326(10-11):1079-1082.
    107. Iqbal M J, Reddy O U K, El-Zik K M, et al. A genetic bottleneck in the'evolution under domestication'of upland cotton Gossypium hirsutum L. examined using DNA fingerprinting [J]. Theor Appl Genet,2001,103(4):547-554.
    108. Jacob-Wilk D, Kurek I, Hogan P, et al. The cotton fiber zinc-binding domain of cellulose synthase A1 from Gossypium hirsutum displays rapid turnover in vitro and in vivo [J]. Proc Natl Acad Sci U S A,2006,103(32):12191-12196.
    109. Jansen R C, Nap J P. Genetical genomics:the added value from segregation [J]. Trends Genet,2001, 17(7):388-391.
    110. Jansen R C, Tesson B M, Fu J, et al. Defining gene and QTL networks [J]. Curr Opin Plant Biol, 2009,12(2):241-246.
    111. Ji S J, Lu Y C, Feng J X, et al. Isolation and analyses of genes preferentially expressed during early cotton fiber development by subtractive PCR and cDNA array [J]. Nucleic Acids Res.,2003,31(10): 2534.
    112. Kantartzi S K, Stewart J M. Association analysis of fibre traits in Gossypium arboreum accessions [J]. Plant Breeding,2008,127(2):173-179.
    113. Karaca M, Saha S, Jenkins J N, et al. Simple Sequence Repeat (SSR) Markers Linked to the Ligon Lintless(Li1) Mutant in Cotton [J]. J. Hered.,2002,93(3):221-224.
    114. Kearsey M J. The principles of QTL analysis (a minimal mathematics approach) [J]. J. Exp. Bot., 1998,49(327):1619-1623.
    115. Keurentjes J J B, Koornneef M, Vreugdenhil D. Quantitative genetics in the age of omics [J]. Curr. Opin. Plant Biol.,2008,11(2):123-128.
    116. Kim H, Williams M, Triplett B. A novel expression assay system for fiber-specific promoters in developing cotton fibers [J]. Plant Mol Biol Rep,2002,20(1):7-18.
    117. Kim H J, Triplett B A. Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis [J]. Plant Physiol,2001,127(4):1361-1366.
    118. Kim H J, Triplett B A. Characterization of GhRacl GTPase expressed in developing cotton (Gossypium hirsutum L.) fibers [J]. Biochim Biophys Acta,2004,1679(3):214-221.
    119. Kimura S, Laosinchai W, Itoh T, et al. Immunogold labeling of rosette terminal cellulose-synthesizing complexes in the vascular plant vigna angularis [J]. Plant Cell,1999,11(11): 2075-2086.
    120. Kishimoto K, Nishizawa Y, Tabei Y, et al. Detailed analysis of rice chitinase gene expression in transgenic cucumber plants showing different levels of disease resistance to gray mold(Botrytis cinerea) [J]. Plant Sci.,2002,162(5):655-662.
    121. Kohel R J. Linkage Tests in Upland Cotton, Gossypium hirsutum L. Ⅱ [J]. Crop Sci.,1972,12(1): 66-69.
    122. Kohel R J, McMichael S C. Immature fiber mutant of Upland cotton [J]. Crop Sci.,1990,30(2): 419-421.
    123. Kohel R J, Stelly D M, Yu J. Tests of six cotton (Gossypium hirsutum L.) mutants for association with aneuploids [J]. J Hered,2002,93(2):130-132.
    124. Kohel R J, Yu J, Park Y H, et al. Molecular mapping and characterization of traits controlling fiber quality in cotton [J]. Euphytica,2001,121(2):163-172.
    125. Kosambi D. The estimation of map distances from recombination values [J]. Ann Eugen,1944,12: 172-175.
    126. Koshino-Kimura Y, Wada T, Tachibana T, et al. Regulation of CAPRICE transcription by MYB proteins for root epidermis differentiation in Arabidopsis [J]. Plant Cell Physiol,2005,46(6): 817-826.
    127. Kubo T, Aida Y, Nakamura K, et al. Reciprocal chromosome segment substitution series derived from Japonica and Indica cross of rice(Oryza sativa L.) [J]. Breeding Science,2002,52(4): 319-325.
    128. Kurata T, Kawabata-Awai C, Sakuradani E, et al. The YORE-YORE gene regulates multiple aspects of epidermal cell differentiation in Arabidopsis [J]. Plant J,2003,36(1):55-66.
    129. Kurek I, Kawagoe Y, Jacob-Wilk D, et al. Dimerization of cotton fiber cellulose synthase catalytic subunits occurs via oxidation of the zinc-binding domains [J]. Proc Natl Acad Sci U S A,2002, 99(17):11109-11114.
    130. Kwak P B, Wang Q Q, Chen X S, et al. Enrichment of a set of microRNAs during the cotton fiber development [J]. BMC Genomics,2009,10:457.
    131. Lacape J-M, Llewellyn D, Jacobs J, et al. Meta-analysis of cotton fiber quality QTLs across diverse environments in a Gossypium hirsutum x G. barbadense RIL population [J]. BMC Plant Biol.,2010, 10(1):132.
    132. Lacape J M, Jacobs J, Arioli T, et al. A new interspecific, Gossypium hirsutum x G. barbadense, RIL population:towards a unified consensus linkage map of tetraploid cotton [J]. Theor Appl Genet, 2009,119(2):281-292.
    133. Lacape J M, Nguyen T B. Mapping quantitative trait loci associated with leaf and stem pubescence in cotton [J]. J Hered,2005,96(4):441-444.
    134. Lacape J M, Nguyen T B, Thibivilliers S, et al. A combined RFLP-SSR-AFLP map of tetraploid cotton based on a Gossypium hirsutum x Gossypium barbadense backcross population [J]. Genome. 2003,46(4):612-626.
    135. Lafarguette F, Leple J-C, Dejardin A. et al. Poplar genes encoding fasciclin-like arabinogalactan proteins are highly expressed in tension wood [J]. New Phytol.,2004,164(1):107-121.
    136. Lander E S. The New Genomics:Global Views of Biology [J]. Science,1996,274(5287):536-539.
    137. Larkin J C, Oppenheimer D G, Lloyd A M, et al. Roles of the GLABROUS1 and TRANSPARENT TESTA GLABRA Genes in Arabidopsis Trichome Development [J]. Plant Cell,1994,6(8): 1065-1076.
    138. Lee C, Zhong R, Richardson E A, et al. The PARVUS gene is expressed in cells undergoing secondary wall thickening and is essential for glucuronoxylan biosynthesis [J]. Plant Cell Physiol, 2007a,48(12):1659-1672.
    139. Lee C H, O'Neill M A, Tsumuraya Y, et al. The irregular xylem9 mutant is deficient in xylan xylosyltransferase activity [J]. Plant and Cell Physiology,2007b,48(11):1624-1634.
    140. Lee J, Burns T H, Light G, et al. Xyloglucan endotransglycosylase/hydrolase genes in cotton and their role in fiber elongation [J]. Planta,2010,232(5):1191-1205.
    141. Lee J J, Hassan O S, Gao W, et al. Developmental and gene expression analyses of a cotton naked seed mutant [J]. Planta,2006,223(3):418-432.
    142. Lee J J, Woodward A W, Chen Z J. Gene expression changes and early events in cotton fibre development [J]. Ann Bot,2007c,100(7):1391-1401.
    143. Lee S K, Jeon J S, Bornke F, et al. Loss of cytosolic fructose-1,6-bisphosphatase limits photosynthetic sucrose synthesis and causes severe growth retardations in rice(Oryza sativa) [J]. Plant Cell Environ,2008,31(12):1851-1863.
    144. Li C H, Zhu Y Q, Meng Y L, et al. Isolation of genes preferentially expressed in cotton fibers by cDNA filter arrays and RT-PCR [J]. Plant Sci.,2002,163(6):1113-1120.
    145. Li H, Deng H. Systems genetics, bioinformatics and eQTL mapping [J]. Genetica,2010,138(9): 915-924.
    146. Li H B, Qin Y M, Pang Y, et al. A cotton ascorbate peroxidase is involved in hydrogen peroxide homeostasis during fibre cell development [J]. The New phytologist,2007,175(3):462-471.
    147. Li X B, Fan X P, Wang X L, et al. The cotton ACTIN1 gene is functionally expressed in fibers and participates in fiber elongation [J]. Plant Cell,2005,17(3):859-875.
    148. Li Y, Jones L, McQueen-Mason S. Expansins and cell growth [J]. Curr Opin Plant Biol,2003,6(6): 603-610.
    149. Lin Z, He D, Zhang X, et al. Linkage map construction and mapping QTL for cotton fibre quality using SRAP, SSR and RAPD [J]. Plant Breeding,2005,124(2):180-187.
    150. Lin Z, Zhang X. Nie Y. et al. Construction of a genetic linkage map for cotton based on SRAP [J]. Chin. Sci. Bull.,2003, (19):2063-2067.
    151. Lin Z X, Zhang Y X, Zhang X L, et al. A high-density integrative linkage map for Gossypium hirsutum [J]. Euphytica.2009.166(1):35-45.
    152. Liu D, Guo X, Lin Z, et al. Genetic diversity of Asian cotton (Gossypium arboreum L.) in China evaluated by microsatellite analysis [J]. Genet. Resour. Crop Evol.,2006a,53(6):1145-1152.
    153. Liu D, Tu L, Li Y, et al. Genes Encoding Fasciclin-Like Arabinogalactan Proteins are Specifically Expressed During Cotton Fiber Development [J]. Plant Mol Biol Rep,2008,26(2):98-113.
    154. Liu D, Zhang X, Tu L, et al. Isolation by suppression-subtractive hybridization of genes preferentially expressed during early and late fiber development stages in cotton [J]. Mol. Biol., 2006b,40(5):741-749.
    155. Liu H W, Wang X F, Pan Y X, et al. Mining cotton fiber strength candidate genes based on transcriptome mapping [J]. Chin. Sci. Bull.,2009,54(24):4651-4657.
    156. Liu L, Guo W, Zhu X, et al. Inheritance and fine mapping of fertility restoration for cytoplasmic male sterility in Gossypium hirsutum L [J]. Theor Appl Genet,2003,106(3):461-469.
    157. Liu R Z, Wang B H, Guo W Z, et al. Differential gene expression and associated QTL mapping for cotton yield based on a cDNA-AFLP transcriptome map in an immortalized F2 [J]. Theor Appl Genet,2011,123(3):439-454.
    158. Liu S, Cantrell R, McCarty J, et al. Simple Sequence Repeat-Based Assessment of Genetic Diversity in Cotton Race Stock Accessions [J]. Crop Sci.,2000,40(5):1459-1469.
    159. Lu S, Li L, Yi X, et al. Differential expression of three eucalyptus secondary cell wall-related cellulose synthase genes in response to tension stress [J]. J Exp Bot,2008,59(3):681-695.
    160. Luo M, Tan K, Xiao Z, et al. Cloning and expression of two sterol C-24 methyltransferase genes from upland cotton(Gossypium hirsuturm L.) [J]. J Genet Genomics,2008,35(6):357-363.
    161. Luo M, Xiao Y, Li X, et al. GhDET2, a steroid 5alpha-reductase, plays an important role in cotton fiber cell initiation and elongation [J]. Plant J,2007,51(3):419-430.
    162. Ma X X, Zhou B L, Lu Y H, et al. Simple sequence repeat genetic linkage maps of A-genome diploid cotton(Gossypium arboreum) [J]. J Integr Plant Biol,2008,50(4):491-502.
    163. Mackay I, Powell W. Methods for linkage disequilibrium mapping in crops [J]. Trends Plant Sci., 2007,12(2):57-63.
    164. MacMillan C P, Mansfield S D, Stachurski Z H, et al. Fasciclin-like arabinogalactan proteins: specialization for stem biomechanics and cell wall architecture in Arabidopsis and Eucalyptus [J]. Plant J,2010,62(4):689-703.
    165. Martin C, Bhatt K, Baumann K. Shaping in plant cells [J]. Curr. Opin. Plant Biol.,2001,4(6): 540-549.
    166. Maxam A M, Gilbert W. A new method for sequencing DNA [J]. Proc Natl Acad Sci U S A,1977, 74(2):560-564.
    167. McCouch S R, Cho Y G, Yano M, et al. Report on QTL nomenclature [J]. Rice Genet Newsl,1997, 14:11-13.
    168. Mei M, Syed N H, Gao W, et al. Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium) [J]. Theor Appl Genet,2004,108(2):280-291.
    169. Mei W, Qin Y, Song W, et al. Cotton GhPOX1 encoding plant class III peroxidase may be responsible for the high level of reactive oxygen species production that is related to cotton fiber elongation [J]. J Genet Genomics.2009.36(3):141-150.
    170. Meinert M C, Delmer D P. Changes in biochemical composition of the cell wall of the cotton fiber during development [J]. Plant Physiol,1977,59(6):1088-1097.
    171.Metzker M L. Sequencing technologies-the next generation [J]. Nat Rev Genet,2010,11(1): 31-46.
    172. Mittler R, Vanderauwera S, Gollery M, et al. Reactive oxygen gene network of plants [J]. Trends Plant Sci.,2004,9(10):490-498.
    173. Monforte A J, Tanksley S D. Development of a set of near isogenic and backcross recombinant inbred lines containing most of the Lycopersicon hirsutum genome in a L. esculentum genetic background:a tool for gene mapping and gene discovery [J]. Genome,2000,43(5):803-813.
    174. Mouille G, Robin S, Lecomte M, et al. Classification and identification of Arabidopsis cell wall mutants using Fourier-Transform InfraRed (FT-IR) microspectroscopy [J]. Plant J,2003,35(3): 393-404.
    175. Muniz Garcia M, Pais S, Tellez-Inon M, et al. Characterization of StPPI1, a proton pump interactor from Solanum tuberosum L. that is up-regulated during tuber development and by abiotic stress [J]. Planta,2011,233(4):661-674.
    176. Mueller S C, Brown R M, Jr. Evidence for an intramembrane component associated with a cellulose microfibril-synthesizing complex in higher plants [J]. J Cell Biol,1980,84(2):315-326.
    177. Musaev D A, Abzalov M M. Some questions concerning the inheritance of fuzzy in cotton seeds (G. hirsutum L.) [J]. Genetika,1972,8:7-16.
    178. Narbuth E V, Kohel R J. Inheritance and linkage analysis of a new fiber mutant in cotton [J]. J. Hered.,1990,81(2):131-133.
    179. Nguyen T B, Giband M, Brottier P, et al. Wide coverage of the tetraploid cotton genome using newly developed microsatellite markers [J]. Theor Appl Genet,2004,109(1):167-175.
    180. O'Kelley J C. The Use of C in Locating Growth Regions in the Cell Walls of Elongating Cotton Fibers [J]. Plant Physiol,1953,28(2):281-286.
    181. Ohashi Y, Oka A, Ruberti I, et al. Entopically additive expression of GLABRA2 alters the frequency and spacing of trichome initiation [J]. Plant J,2002,29(3):359-369.
    182. Oraguzie N C, Wilcox P L. An Overview of Association Mapping. Oraguzie N C, Rikkerink E H A, Gardiner S E, et al. Association Mapping in Plants [M]. Springer New York.2007:1-9.
    183. Orford S J, Timmis J N. Specific expression of an expansin gene during elongation of cotton fibres [J]. Biochim Biophys Acta,1998,1398(3):342-346.
    184. Padmalatha K V, Dhandapani G, Kanakachari M, et al. Genome-wide transcriptomic analysis of cotton under drought stress reveal significant down-regulation of genes and pathways involved in fibre elongation and up-regulation of defense responsive genes [J]. Plant Mol Biol.2012.78(3): 223-246.
    185. Pan Y. Ma J. Zhang G. et al. cDNA-AFLP profiling for the fiber development stage of secondary cell wall synthesis and transcriptome mapping in cotton [J]. Chin. Sci. Bull..2007,52(17): 2358-2364.
    186. Pang C Y, Wang H, Pang Y. et al. Comparative proteomics indicates that biosynthesis of pectic precursors is important for cotton fiber and Arabidopsis root hair elongation [J]. Mol Cell Proteomics,2010,9(9):2019-2033.
    187. Pang M, Woodward A W, Agarwal V, et al. Genome-wide analysis reveals rapid and dynamic changes in miRNA and siRNA sequence and expression during ovule and fiber development in allotetraploid cotton(Gossypium hirsutum L.) [J]. Genome Biol,2009,10(11):R122.
    188. Paredez A R, Somerville C R, Ehrhardt D W. Visualization of cellulose synthase demonstrates functional association with microtubules [J]. Science,2006,312(5779):1491-1495.
    189. Park Y H, Alabady M S, Ulloa M, et al. Genetic mapping of new cotton fiber loci using EST-derived microsatellites in an interspecific recombinant inbred line cotton population [J]. Mol Genet Genomics,2005,274(4):428-441.
    190. Pasapula V, Shen G, Kuppu S, et al. Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) in cotton improves drought- and salt tolerance and increases fibre yield in the field conditions [J]. Plant Biotechnol J,2011,9(1):88-99.
    191. Paterson A. DOE Joint Genome Institute:Cotton D V2.0 [M]. Phytozome.2012.
    192. Paterson A H, Brubaker C L, Wendel J F. A rapid method for extraction of cotton(Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis [J]. Plant Mol Biol Rep,1993,11(2):122-127.
    193. Paterson A H, Saranga Y, Menz M, et al. QTL analysis of genotype x environment interactions affecting cotton fiber quality [J]. Theor Appl Genet,2003,106(3):384-396.
    194. Pear J R, Kawagoe Y, Schreckengost W E, et al. Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase [J]. Proc Natl Acad Sci U S A,1996, 93(22):12637-12642.
    195. Peng L, Kawagoe Y, Hogan P, et al. Sitosterol-beta-glucoside as Primer for Cellulose Synthesis in Plants [J]. Science,2002,295(5552):147-150.
    196. Percival A E. The national collection of Gossypium germplasm [M]. South Coop Ser Bull 321. 1987.
    197. Percy R G, Kohel R J. Qualitative genetics. In:Cotton:origin, history, technology, and production (Smith CW and Cothren JT, eds) [M]. New York:John Wiley & Sons,1999.
    198. Persson S, Wei H, Milne J, et al. Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets [J]. Proc Natl Acad Sci U S A,2005,102(24): 8633-8638.
    199. Peter S D, Muralidharan V, Vaman Bhat M. Fuzzless-lintless mutant of MCU 5 cotton [J]. Cotton Dev,1984,14:43.
    200. Pfaffl M W. A new mathematical model for relative quantification in real-time RT-PCR [J]. Nucleic Acids Res,2001,29(9):e45.
    201. Pillay M, Myers G O. Genetic Diversity in Cotton Assessed by Variation in Ribosomal RNA Genes and AFLP Markers [J]. Crop Sci.,1999.39(6):1881-1886.
    202. Potikha T S, Collins C C. Johnson D I, et al. The involvement of hydrogen peroxide in the differentiation of secondary walls in cotton fibers [J]. Plant Physiol,1999,119(3):849-858.
    203. Qian N, Zhang X-W, Guo W-Z, et al. Fine mapping of open-bud duplicate genes in homoelogous chromosomes of tetraploid cotton [J]. Euphytica,2009,165(2):325-331.
    204. Qin H, Guo W, Zhang Y M, et al. QTL mapping of yield and fiber traits based on a four-way cross population in Gossypium hirsutum L [J]. Theor Appl Genet,2008a,117(6):883-894.
    205. Qin Y M, Hu C Y, Pang Y, et al. Saturated very-long-chain fatty acids promote cotton fiber and Arabidopsis cell elongation by activating ethylene biosynthesis [J]. Plant Cell,2007,19(11): 3692-3704.
    206. Qin Y M, Hu C Y, Zhu Y X. The ascorbate peroxidase regulated by H2O2 and ethylene is involved in cotton fiber cell elongation by modulating ROS homeostasis [J]. Plant Signal Behav,2008b,3(3): 194-196.
    207. Qin Y M, Zhu Y X. How cotton fibers elongate:a tale of linear cell-growth mode [J]. Curr Opin Plant Biol,2011,14(1):106-111.
    208. Rapp R A, Haigler C H, Flagel L, et al. Gene expression in developing fibres of Upland cotton (Gossypium hirsutum L.) was massively altered by domestication [J]. BMC Biol,2010,8:139.
    209. Read S M, Bacic T. PLANT BIOLOGY:Prime Time for Cellulose [J]. Science,2002,295(5552): 59-60.
    210. Reinisch A J, Dong J M, Brubaker C L, et al. A detailed RFLP map of cotton, Gossypium hirsutum x Gossypium barbadense:chromosome organization and evolution in a disomic polyploid genome [J]. Genetics,1994,138(3):829-847.
    211. Richmond T. Higher plant cellulose synthases [J]. Genome Biol,2000,1(4):REVIEWS3001.
    212. Rodriguez-Uribe L, Higbie S M, Stewart J M, et al. Identification of salt responsive genes using comparative microarray analysis in Upland cotton(Gossypium hirsutum L.) [J]. Plant Sci.,2011, 180(3):461-469.
    213. Rong J. Abbey C, Bowers J E, et al. A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton(Gossypium) [J]. Genetics,2004,166(1):389-417.
    214. Rong J, Pierce G J, Waghmare V N, et al. Genetic mapping and comparative analysis of seven mutants related to seed fiber development in cotton [J]. Theor Appl Genet,2005,111(6): 1137-1146.
    215. Rong J K, Feltus F A, Waghmare V N, et al. Meta-analysis of polyploid cotton QTL shows unequal contributions of subgenomes to a complex network of genes and gene clusters implicated in lint fiber development [J]. Genetics.2007.176(4):2577-2588.
    216. Ruan Y L. Goldacre paper:Rapid cell expansion and cellulose synthesis regulated by plasmodesmata and sugar:insights from the single-celled cotton fibre [J]. Funct. Plant Biol.,2007, 34(1):1-10.
    217. Ruan Y L. Chourey P S. Delmer D P. et al. The Differential Expression of Sucrose Synthase in Relation to Diverse Patterns of Carbon Partitioning in Developing Cotton Seed [J]. Plant Physiol, 1997,115(2):375-385.
    218. Ruan Y L, Llewellyn D J, Furbank R T. The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and K+ transporters and expansin [J]. Plant Cell,2001,13(1):47-60.
    219. Ruan Y L, Llewellyn D J, Furbank R T. Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development [J]. Plant Cell,2003,15(4):952-964.
    220. Ruan Y L, Xu S M, White R, et al. Genotypic and developmental evidence for the role of plasmodesmatal regulation in cotton fiber elongation mediated by callose turnover [J]. Plant Physiol, 2004,136(4):4104-4113.
    221. Rungis D, Llewellyn D, Dennis E S, et al. Simple sequence repeat (SSR) markers reveal low levels of polymorphism between cotton(Gossypium hirsutum L.) cultivars [J]. Aust. J. Agric. Res.,2005, 56(3):301-307.
    222. Salnikov V V, Grimson M J, Delmer D P, et al. Sucrose synthase localizes to cellulose synthesis sites in tracheary elements [J]. Phytochemistry,2001,57(6):823-833.
    223. Samuel Yang S, Cheung F, Lee J J, et al. Accumulation of genome-specific transcripts, transcription factors and phytohormonal regulators during early stages of fiber cell development in allotetraploid cotton [J]. Plant J,2006,47(5):761-775.
    224. Sanger F, Nicklen S, Coulson A R. DNA sequencing with chain-terminating inhibitors [J]. Proc Natl Acad Sci U S A,1977,74(12):5463-5467.
    225. Sato K, Suzuki R, Nishikubo N, et al. Isolation of a novel cell wall architecture mutant of rice with defective Arabidopsis COBL4 ortholog BC1 required for regulated deposition of secondary cell wall components [J]. Planta,2010,232(1):257-270.
    226. Saxena I M, Lin F C, Brown R M, Jr. Cloning and sequencing of the cellulose synthase catalytic subunit gene of Acetobacter xylinum [J]. Plant Mol Biol,1990,15(5):673-683.
    227. Schauer N, Semel Y, Roessner U, et al. Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement [J]. Nat Biotech,2006,24(4):447-454.
    228. Scheible W R, Pauly M. Glycosyltransferases and cell wall biosynthesis:novel players and insights [J]. Curr Opin Plant Biol,2004,7(3):285-295.
    229. Schrick K, Fujioka S, Takatsuto S, et al. A link between sterol biosynthesis, the cell wall, and cellulose in Arabidopsis [J]. Plant J,2004,38(2):227-243.
    230. Schubert A M, Benedict C R, Berlin J D, et al. Cotton Fiber Development-Kinetics of Cell Elongation and Secondary Wall Thickening [J]. Crop Sci.,1973,13(6):704-709.
    231. Seagull R W. The Effects of Microtubule and Microfilament Disrupting Agents on Cytoskeletal Arrays and Wall Deposition in Developing Cotton Fibers [J]. Protoplasma,1990,159(1):44-59.
    232. Shangguan X X, Xu B, Yu Z X, et al. Promoter of a cotton fibre MYB gene functional in trichomes ofArabidopsis and glandular trichomes of tobacco [J]. J Exp Bot,2008,59(13):3533-3542.
    233. Shappley Z W. Restriction Fragment Length Polymorphisms in Cotton(Gossypium hirsutum L.): Feasibility of Use, Diversity Among Plants Within a Line and Establishment of Molecular Markers and Linkage Groups Among Two F2 Populations [M]. Mississippi State University. Department of Plant and Soil Sciences..1994.
    234. Shappley Z W. Construction of RFLP Linkage Groups and Mapping of Quantitative Trait Loci in Upland Cotton(Gossypium hirsutum Leaves) [M]. Mississippi State University. Department of Plant and Soil Sciences.,1996.
    235. Shappley Z W, Jenkins J N, Meredith W R, et al. An RFLP linkage map of Upland cotton, Gossypium hirsutum L. [J]. Theor Appl Genet,1998,97(5-6):756-761.
    236. Shen X L, Guo W Z, Lu Q X, et al. Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in Upland cotton [J]. Euphytica,2007,155(3):371-380.
    237. Shen X L, Guo W Z, Zhu X F, et al. Molecular mapping of QTLs for fiber qualities in three diverse lines in Upland cotton using SSR markers [J]. Mol. Breed.,2005,15(2):169-181.
    238. Shen X L, ZHANG T Z, Guo W Z, et al. Mapping Fiber and Yield QTLs with Main, Epistatic, and QTL × Environment Interaction Effects in Recombinant Inbred Lines of Upland Cotton [J]. Crop Sci.,2006,46(1):61.
    239. Shewry P R, Napier J A, Tatham A S. Seed storage proteins:structures and biosynthesis [J]. Plant Cell,1995,7(7):945-956.
    240. Shi Y H, Zhu S W, Mao X Z, et al. Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation [J]. Plant Cell,2006,18(3): 651-664.
    241. Shimizu Y, Aotsuka S. Hasegawa O, et al. Changes in levels of mRNAs for cell wall-related enzymes in growing cotton fiber cells [J]. Plant Cell Physiol,1997,38(3):375-378.
    242. Singh B, Cheek H, Haigler C. A synthetic auxin (NAA) suppresses secondary wall cellulose synthesis and enhances elongation in cultured cotton fiber [J]. Plant Cell Rep.,2009,28(7): 1023-1032.
    243. Smyth G K. Linear models and empirical bayes methods for assessing differential expression in microarray experiments [J]. Stat Appl Genet Mol Biol,2004,3(1):Article3.
    244. Smyth G K. Limma:linear models for microarray data. Gentleman R, Carey V, Dudoit S, et al. Bioinformatics and Computational Biology Solutions Using R and Bioconductor [M]. Springer, New York.2005:397-420.
    245. Somerville C. Cellulose synthesis in higher plants [J]. Annu Rev Cell Dev Biol,2006,22:53-78.
    246. Song X, Wang K, Guo W, et al. A comparison of genetic maps constructed from haploid and BC1 mapping populations from the same crossing between Gossypium hirsutum L. and Gossypium barbadense L [J]. Genome.2005,48(3):378-390.
    247. Strand A, Zrenner R. Trevanion S. et al. Decreased expression of two key enzymes in the sucrose biosynthesis pathway, cytosolic fructose-1.6-bisphosphatase and sucrose phosphate synthase. has remarkably different consequences for photosynthetic carbon metabolism in transgenic Arabidopsis thaliana [J]. Plant J.,2000.23(6):759-770.
    248. Sun Y, Fokar M, Asami T, et al. Characterization of the brassinosteroid insensitive 1 genes of cotton [J]. Plant Mol Biol.2004.54(2):221-232.
    249. Szalma S J, Hostert B M, Ledeaux J R. et al. QTL mapping with near-isogenic lines in maize [J]. TheorAppl Genet,2007,114(7):1211-1228.
    250. Takai T, Nonoue Y, Yamamoto S-i, et al. Development of Chromosome Segment Substitution Lines Derived from Backcross between indica Donor Rice Cultivar'Nona Bokra' and japonica Recipient Cultivar'Koshihikari'[J]. Breeding Science,2007,57(3):257-261.
    251. Taliercio E W, Boykin D. Analysis of gene expression in cotton fiber initials [J]. BMC Plant Biol, 2007,7:22.
    252. Tanaka K, Murata K, Yamazaki M, et al. Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall [J]. Plant Physiol,2003,133(1):73-83.
    253. Taylor N G. Cellulose biosynthesis and deposition in higher plants [J]. The New phytologist,2008, 178(2):239-252.
    254. Taylor N G, Gardiner J C, Whiteman R, et al. Cellulose synthesis in the Arabidopsis secondary cell wall [J]. Cellulose,2004,11(3):329-338.
    255. Taylor N G, Howells R M, Huttly A K, et al. Interactions among three distinct CesA proteins essential for cellulose synthesis [J]. Proc Natl Acad Sci U S A,2003,100(3):1450-1455.
    256. Tiwari S C, Wilkins T A. Cotton (Gossypium hirsutum) Seed Trichomes Expand Via Diffuse Growing Mechanism [J]. Can J Bot,1995,73(5):746-757.
    257. Tu L L, Zhang X L, Liang S G, et al. Genes expression analyses of sea-island cotton (Gossypium barbadense L.) during fiber development [J]. Plant Cell Rep,2007,26(8):1309-1320.
    258. Turley R B. Registration of MD 17 fiberless upland cotton as a genetic stock [J]. Crop Sci.,2002, 42(3):994-995.
    259. Udall J A, Flagel L E, Cheung F, et al. Spotted cotton oligonucleotide microarrays for gene expression analysis [J]. BMC Genomics,2007,8:81.
    260. Udall J A, Swanson J M, Haller K, et al. A global assembly of cotton ESTs [J]. Genome Res,2006, 16(3):441-450.
    261. Ulloa M, Brubaker C, Chee P. Cotton. Kole C. Technical Crops Genome Mapping and Molecular Breeding in Plants [M]. Springer Berlin Heidelberg.2007:1-49.
    262. Ulloa M, Meredith W R, Jr. Genetic Linkage Map and QTL Analysis of Agronomic and Fiber Quality Traits in an Intraspecific Population [J]. Journal of cotton science,2000,4:161-170.
    263. Ulloa M, Meredith W R, Jr., Shappley Z W, et al. RFLP genetic linkage maps from four F(2.3) populations and a joinmap of Gossypium hirsutum L. [J]. Theor Appl Genet,2002,104(2-3): 200-208.
    264. Ulloa M, Saha S, Jenkins J N, et al. Chromosomal assignment of RFLP linkage groups harboring important QTLs on an intraspecific cotton (Gossypium hirsutum L.) Joinmap [J]. J Hered,2005, 96(2):132-144.
    265. Van Deynze A, Stoffel K. Lee M, et al. Sampling nucleotide diversity in cotton [J]. BMC Plant Biol, 2009,9:125.
    266. Van Ooijen J, Voorrips R. JoinMap(?) 3.0. Software for the calculation of genetic linkage maps [M]. Plant Research International. Wageningen, The Netherlands.2001.
    267. Velculescu V E, Zhang L. Vogelstein B, et al. Serial analysis of gene expression [J]. Science,1995, 270(5235):484-487.
    268. von Korff M, Wang H, Leon J, et al. Development of candidate introgression lines using an exotic barley accession (Hordeum vulgare ssp. spontaneum) as donor [J]. Theor Appl Genet,2004,109(8): 1736-1745.
    269. Voorips R E. Mapchart Version 2.2:Windows Software for the Graphical Presentation of the Linkage Maps and QTL [M]. Plant Research International. Wageningen, the Netherlands 2006.
    270. Waghmare V N, Rong J, Rogers C J, et al. Genetic mapping of a cross between Gossypium hirsutum (cotton) and the Hawaiian endemic, Gossypium tomentosum [J]. Theor Appl Genet,2005, 111(4):665-676.
    271. Walford S A, Wu Y, Llewellyn D J, et al. GhMYB25-like:a key factor in early cotton fibre development [J]. Plant J,2011,65(5):785-797.
    272. Walker A R, Davison P A, Bolognesi-Winfield A C, et al. The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein [J]. Plant Cell,1999,11(7):1337-1350.
    273. Wan Q, Zhang Z, Hu M, et al. T1 locus in cotton is the candidate gene affecting lint percentage, fiber quality and spiny bollworm (Earias spp.) resistance [J]. Euphytica,2007,158(1-2):241-247.
    274. Wang B, Guo W, Zhu X, et al. QTL mapping of yield and yield components for elite hybrid derived-RILs in upland cotton [J]. J Genet Genomics,2007a,34(1):35-45.
    275. Wang C, Ulloa M, Roberts P A. Identification and mapping of microsatellite markers linked to a root-knot nematode resistance gene (rknl) in Acala NemX cotton (Gossypium hirsutum L.) [J]. Theor Appl Genet,2006,112(4):770-777.
    276. Wang F, Stewart J M, Zhang J. Molecular markers linked to the Rfl fertility restorer gene in cotton [J]. Genome,2007b,50(9):818-824.
    277. Wang H, Guo Y, Lv F, et al. The essential role of GhPEL gene, encoding a pectate lyase, in cell wall loosening by depolymerization of the de-esterified pectin during fiber elongation in cotton [J]. Plant Mol Biol,2010a,72(4-5):397-406.
    278. Wang H Y, Wang J, Gao P, et al. Down-regulation of GhADF1 gene expression affects cotton fibre properties [J]. Plant Biotechnol J,2009,7(1):13-23.
    279. Wang H Y, Yu Y, Chen Z L, et al. Functional characterization of Gossypium hirsutum profilin 1 gene (GhPFNl) in tobacco suspension cells. Characterization of in vivo functions of a cotton profilin gene [J]. Planta,2005,222(4):594-603.
    280. Wang J, Wang H Y, Zhao P M, et al. Overexpression of a profilin(GhPFN2) promotes the progression of developmental phases in cotton fibers [J]. Plant Cell Physiol,2010b,51(8): 1276-1290.
    281. Wang P, Ding Y Z, Lu Q X, et al. Development of Gossypium barbadense chromosome segment substitution lines in the genetic standard line TM-1 of Gossypium hirsutum [J]. Chin. Sci. Bull., 2008,53(10):1512-1517.
    282. Wang P, Zhu Y, Song X, et al. Inheritance of long staple fiber quality traits of Gossypium barbadense in G. hirsutum background using CSILs [J]. Theor Appl Genet,2012,124(8): 1415-1428.
    283. Wang Q Q, Liu F, Chen X S, et al. Transcriptome profiling of early developing cotton fiber by deep-sequencing reveals significantly differential expression of genes in a fuzzless/lintless mutant [J]. Genomics,2010c,96(6):369-376.
    284. Wang S, Basten C J, Zeng Z B. Windows QTL Cartographer 2.5 [M]. Department of Statistics, North Carolina State University, Raleigh, NC.2011.
    285. Wang S, Wang J W, Yu N, et al. Control of plant trichome development by a cotton fiber MYB gene [J]. Plant Cell,2004,16(9):2323-2334.
    286. Wendel J F. New World tetraploid cottons contain Old World cytoplasm [J]. Proc Natl Acad Sci U S A,1989,86(11):4132-4136.
    287. Wendel J F, Brubaker C, Alvarez I, et al. Evolution and Natural History of the Cotton Genus.2009: 1-20.
    288. Wendel J F, Brubaker C L, Percival A E. Genetic diversity in Gossypiun hirsutum and the origin of upland cotton [J]. Am. J. Bot.,1992,79(11):1291-1310.
    289. Wilhelm J A. Next-generation DNA sequencing techniques [J]. New Biotechnology,2009,25(4): 195-203.
    290. Wilkins T A, Arpat A B. The cotton fiber transcriptome [J]. Physiol. Plant.,2005,124(3):295-300.
    291. Wind J, Smeekens S, Hanson J. Sucrose:metabolite and signaling molecule [J]. Phytochemistry, 2010,71(14-15):1610-1614.
    292. Wong H C, Fear A L, Calhoon R D, et al. Genetic organization of the cellulose synthase operon in Acetobacter xylinum [J]. Proc Natl Acad Sci U S A,1990,87(20):8130-8134.
    293. Wong M L, Medrano J F. Real-time PCR for mRNA quantitation [J]. BioTechniques,2005,39(1): 75-85.
    294. Wu A-M, Hornblad E, Voxeur A, et al. Analysis of the Arabidopsis IRX9/IRX9-L and IRX14/IRX14-L Pairs of Glycosyltransferase Genes Reveals Critical Contributions to Biosynthesis of the Hemicellulose Glucuronoxylan [J]. Plant Physiol.,2010,153(2):542-554.
    295. Wu A-M, Rihouey C, Seveno M, et al. The Arabidopsis IRX10 and IRX10-LIKE glycosyltransferases are critical for glucuronoxylan biosynthesis during secondary cell wall formation [J]. Plant J,2009,57(4):718-731.
    296. Wu Y, Llewellyn D J, White R, et al. Laser capture microdissection and cDNA microarrays used to generate gene expression profiles of the rapidly expanding fibre initial cells on the surface of cotton ovules [J]. Planta,2007,226(6):1475-1490.
    297. Wu Y, Machado A C, White R G, et al. Expression profiling identifies genes expressed early during lint fibre initiation in cotton [J]. Plant Cell Physiol,2006.47(1):107-127.
    298. Xiao J. Wu K, Fang D D, et al. New SSR Markers for Use in Cotton (Gossypium spp.) Improvement [J]. J Cott Sci.2009,13:75-157.
    299. Xiao Y-H, Li D-M, Yin M-H, et al. Gibberellin 20-oxidase promotes initiation and elongation of cotton fibers by regulating gibberellin synthesis [J]. J. Plant Physiol.,2010,167(10):829-837.
    300. Xie F, Sun G, Stiller J W, et al. Genome-wide functional analysis of the cotton transcriptome by creating an integrated EST database [J]. PLoS One,2011,6(11):e26980.
    301. Yang Y H, Dudoit S, Luu P, et al. Normalization for cDNA microarray data:a robust composite method addressing single and multiple slide systematic variation [J]. Nucleic Acids Res,2002, 30(4):e15.
    302. Yang Y H, Thorne N P. Normalization for two-color cDNA microarray data. Goldstein D R. Science and Statistics:A Festschrift for Terry Speed [M]. Institute of Mathematical Statistics Lecture Notes-Monograph Series.2003:403-418.
    303. Yang Y M, Xu C N, Wang B M, et al. Effects of plant growth regulators on secondary wall thickening of cotton fibres [J]. Plant Growth Regul,2001,35(3):233-237.
    304. Yao D, Zhang X, Zhao X, et al. Transcriptome analysis reveals salt-stress-regulated biological processes and key pathways in roots of cotton(Gossypium hirsutum L.) [J]. Genomics,2011,98(1): 47-55.
    305. Yin J, Guo W, Yang L, et al. Physical mapping of the Rfl fertility-restoring gene to a 100 kb region in cotton [J]. Theor Appl Genet,2006,112(7):1318-1325.
    306. Yu J, Kohel R J, Dong J, et al. Toward positional cloning of a major glandless gene in cotton [M]. Proceeding of Beltwide Cotton Conferences. National Cotton Council, Memphis, TN.2000: 516-517.
    307. Yu J, Kohel R J, Smith C W. The construction of a tetraploid cotton genome wide comprehensive reference map [J]. Genomics,2010,95(4):230-240.
    308. Yu J, Park Y, Lazo G R, et al. Molecular mapping of the cotton genome:QTL analysis of fiber quality characteristics [M]. Proceeding of Plant and Animal Genome VI, the International Conference on the Status of Plant and Animal Genome Research. San Diego, Califormia.1998: 352.
    309. Yu J W, Yu S X, Lu C R, et al. High-density linkage map of cultivated allotetraploid cotton based on SSR, TRAP, SRAP and AFLP markers [J]. Journal of Integrative Plant Biology,2007,49(5): 716-724.
    310. Yu Y, Yuan D, Liang S, et al. Genome structure of cotton revealed by a genome-wide SSR genetic map constructed from a BC1 population between gossypium hirsutum and G. barbadense [J]. BMC Genomics,2011,12(1):15.
    311. Zeng L. Meredith W R. Associations among Lint Yield, Yield Components, and Fiber Properties in an Introgressed Population of Cotton [J]. Crop Sci., 2009.49(5):1647-1654.
    312. Zeng L. Meredith W R. Jr.. Gutierrez O A. et al. Identification of associations between SSR markers and fiber traits in an exotic germplasm derived from multiple crosses among Gossypium tetraploid species [J]. Theor Appl Genet.2009,119(1):93-103.
    313. Zeng Z B. Precision mapping of quantitative trait loci [J]. Genetics.1994,136(4):1457-1468.
    314. Zhang D, Hrmova M, Wan C H. et al. Members of a new group of chitinase-like genes are expressed preferentially in cotton cells with secondary walls [J]. Plant Mol Biol,2004,54(3): 353-372.
    315. Zhang F, Zuo K, Zhang J, et al. An LI box binding protein, GbML1, interacts with GbMYB25 to control cotton fibre development [J]. J. Exp. Bot.,2010,61(13):3599-3613.
    316. Zhang J, Guo W, Zhang T. Molecular linkage map of allotetraploid cotton(Gossypium hirsutum L. x Gossypium barbadense L.) with a haploid population [J]. Theor Appl Genet,2002,105(8): 1166-1174.
    317. Zhang J F, Stewart J M. Identification of molecular markers linked to the fertility restorer genes for CMS-D8 in cotton [J]. Crop Sci.,2004,44(4):1209-1217.
    318. Zhang K, Zhang J, Ma J, et al. Genetic mapping and quantitative trait locus analysis of fiber quality traits using a three-parent composite population in upland cotton (Gossypium hirsutum L.) [J]. Mol. Breed.,2011,29(2):335-348.
    319. Zhang T Z, Pan J J. Genetic analysis of a fuzzless-lintless mutant in Gossypium hirsutum L [J]. Jiangsu J Agric Sci,1991,7(3):13-16.
    320. Zhang T Z, Yuan Y L, Yu J, et al. Molecular tagging of a major QTL for fiber strength in Upland cotton and its marker-assisted selection [J]. Theor Appl Genet,2003,106(2):262-268.
    321. Zhang Y, Lin Z, Xia Q, et al. Characteristics and analysis of simple sequence repeats in the cotton genome based on a linkage map constructed from a BC1 population between Gossypium hirsutum and G. barbadense [J]. Genome,2008,51(7):534-546.
    322. Zhang Z-S, Hu M-C, Zhang J, et al. Construction of a comprehensive PCR-based marker linkage map and QTL mapping for fiber quality traits in upland cotton (Gossypium hirsutum L.) [J]. Mol. Breed.,2009,24(1):49-61.
    323. Zhang Z S, Xiao Y H, Luo M, et al. Construction of a genetic linkage map and QTL analysis of fiber-related traits in upland cotton (Gossypium hirsutum L.) [J]. Euphytica,2005,144(1-2):91-99.
    324. Zhao L, Cai C, Zhang T, et al. Fine mapping of the red plant gene R1 in upland cotton (Gossypium hirsutum) [J]. Chinese Sci Bull,2009,54(9):1529-1533.
    325. Zhong R, Lee C, Ye Z H. Evolutionary conservation of the transcriptional network regulating secondary cell wall biosynthesis [J]. Trends Plant Sci,2010,15(11):625-632.
    326. Zhong R Q, Pena M J, Zhou G K, et al. Arabidopsis fragile fiber8, which encodes a putative glucuronyltransferase, is essential for normal secondary wall synthesis [J]. Plant Cell,2005,17(12): 3390-3408.
    327. Zhou L, Chen L, Jiang L, et al. Fine mapping of the grain chalkiness QTL qPGWC-7 in rice (Oryza sativa L.) [J]. Theor Appl Genet,2009,118(3):581-590.
    328. Zhu W Y, Lin J, Yang D W, et al. Development of Chromosome Segment Substitution Lines Derived from Backcross between Two Sequenced Rice Cultivars. Indica Recipient 93-11 and Japonica Donor Nipponbare [J]. Plant Mol Biol Rep.2009.27(2):126-131.
    329. Zrenner R, Krause K P. Apel P, et al. Reduction of the cytosolic fructose-1.6-bisphosphatase in transgenic potato plants limits photosynthetic sucrose biosynthesis with no impact on plant growth and tuber yield [J]. Plant J,1996,9(5):671-681.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700