用户名: 密码: 验证码:
高产粮区冬小麦非充分灌溉节水高产技术研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是世界上严重缺水的国家之一,华北地区人均水资源量仅404m3,试区-桓台县作为华北平原高产粮区,传统栽培管理多次进行灌溉,造成小麦生产消耗大量水资源。本文在试验、示范及调查的基础上,就高产粮区冬小麦非充分灌溉节水高产技术进行了研究,主要内容包括:
     1.水浇地冬小麦不同灌水处理耗水分析。通过对鲁农116不同灌水处理分析认为,水浇地麦田,随着浇水次数的增加,冬小麦总耗水量增加;传统灌溉以灌水代替小麦需水,浇水次数过多,水资源浪费严重。减少灌水次数,进行限水灌溉,能迫使冬小麦更多地消耗土壤水及降水,是冬小麦生产节水的重要措施。
     2.限量灌水对水浇地冬小麦群体动态及产量的影响。本研究表明,在水浇地麦田,选用耐旱性较强、中多穗型的品种,改灌3水或5水的充分灌溉为非充分灌溉,可以控制小麦群体的合理动态发展、控制营养生长过旺、协调穗、粒、重三者关系而实现高产;限量灌水的麦田秆矮、叶型小,小麦植株株型紧凑,抗倒、抗逆性好,容穗量适中。这与节水就减产或以不降低产量为标准的传统节水观念是不同的。在本试验条件下,灌1水处理总耗水量为3213.4m3/hm2,产量为8130.0kg/hm2,水分生产率(WUE)达2.53kg/m3,比充分灌溉(浇5水处理)耗水量减少1436.6 m3/hm2,产量提高1155.0 kg/hm2,水分生产率高1.03kg/m3。充分说明了当前水浇地麦田节水与增产的潜力。
     3.水浇地冬小麦节水高产耗水规律的研究。2003-2004年度对3处未灌水麦田耗水情况进行了研究:3处麦田利用有效降水、0-2m土壤水实现小麦产量平均8123.1kg/hm2,与灌6水的处理产量6840 kg/hm2相比,提高18.76%;说明充分利用降水及土壤水(特别是1m以下)对于冬小麦节水高产非常重要。经过分析初步认为冬小麦单产8047.5 kg/hm2水平,经济耗水量2996.4 m3/hm2,水分生产率2.686 kg/m3。此经济耗水量值显著低于运用彭曼公式估算的试区小麦需水5360 m3/hm2的水平及其他研究结果。水分生产率也超过发达国家2.32kg/m3水平。2005-2006年度对足墒播种春灌1水麦田进行研究发现:其冬小麦阶段耗水规律是两头小中间大;与常规大田显著不同的是冬小麦生育前期(起身前)耗水显著降低,模系数仅占28.89%,抽穗至灌浆阶段显著增大,模系数占44.19%,需水强度峰值也出现在此期。综合几年来的分析,将土壤供水分为苗期供水层(0-60cm)、中期供水层(60-140cm)、后期供水层(140-230cm)、稳定供水层(230-300cm)对冬小麦非充分灌溉节水高产栽培更有指导意义。
     4.不同冬小麦品种对限量灌水适应性研究。综合几年来的试验示范,在限水灌溉的条件下,抗旱性品种鲁农116、石家庄8号丰产性表现较好;其特性是分蘖成穗率高,抗旱指数1.093-1.2,抗旱性2级或3级。
     5.冬小麦调亏灌溉及适宜土壤水分下限指标的研究。根据对2002-2003年度及2005-2006年度示范麦田土壤水分的调查分析认为:在选择抗耐旱冬小麦品种及前期限量灌水情况下,拔节期至成熟冬小麦土壤水分下限指标可由65%-70%(含水率14.9%-16.0%)调整为占田间持水量的55%-65%(含水率12.6%-14.9%);其中,灌浆中后期至成熟可为占田间持水量的60%(含水率13.7%)。
     6.关键水灌溉与节水施肥。本试区几年来的实践及研究认为:井灌区中等肥力麦田前期及后期控制灌水,中期适度灌水;小麦全生育期以苗为中心,以水控群体,以实现充足而适宜的穗数为目标,是确定关键水灌溉及达到节水、高产、抗到群体指标的关键。在选用抗耐旱品种、确保出苗齐全的基础上,以小麦拔节期前后灌水最为重要。可根据“三情”即苗情、墒情、降水情况来确定;也可根据农田水量平衡法以需水量、土壤供水及苗情、墒情进行及早预测确定。在限量灌水情况下,增施有机肥,化学肥料基肥一次性施足,养分随水分下渗减少,可为小麦全生育期调控灌水争取主动。
     7.适应水分亏缺的补偿栽培管理技术的研究。研究表明:试验区冬小麦播种期最佳播种期以10月2日至10月10日,比传统的播种时间要明显后推;在限量灌水的条件下,适期内晚播可以减少冬小麦前期耗水;确定高产节水的群体发展起点,应适当加大播种量,播种量以120-135kg/hm2,基本苗以240-270万/hm2为宜;同时,FA旱地龙拌种可促小麦根系生长,后期喷施可低御干热风等,有节水增产作用。适当晚播、适当加大播种量、FA旱地龙拌种是适应水分亏缺的3项补偿措施。
     8.节省灌水量的田间灌溉技术。研究表明:两水夹浇、短窄畦灌水和隔畦灌水是节省灌水量的3项田间灌溉技术措施。是在冬小麦节水高产推广应用中逐渐发展起来的,来源于群众的实践,对于大幅度降低田间灌水量效果明显,也对调整冬小麦调亏灌溉及确定冬小麦关键水灌溉适期有很大的帮助。
     9.冬小麦节水高产指标化栽培技术。总结分析了冬小麦非充分灌溉节水高产适宜的品种指标、群体动态指标、施肥指标、灌水指标及适宜的播期、播量等。
China is one of the countries with severe water shortage in the world .In North China, water resources per capita is only 404 m3. In Huantai county, as a high yield area in North China Plain, wheat production consumes a large amount of water resources duing to traditional management of cultivation needing irrigating time and again, On the base of the pilot study, demonstration and investigation, unsufficient irrigation and water saving techniques of winter wheat with high yield in the high yield area have been studied in this paper. The main results of the experiment as follows:
     1. Analysis of water consumption in different irrigation water treatment of winter wheat. Through the analysis of irrigating Lunong116 with different water amount, it is found that in the irrigated wheat field, the total water consumption climbs as the watering times and amount increase. The traditional way of irrigation supplies excessive water, resulting in water resources waste. When the times of irrigation being reduced and giving unsufficient irrigation the winter wheat can consume more soil water and rainfall. It is an important measure for the winter wheat to save water.
     2. Effects of the limited irrigation on the irrigated winter wheat groups dynamics and yield. The study shows that in the irrigated wheat field, by selecting wheat varieties with stronger drought tolerance and more spikes and reducing the times of irrigation from 5 or 3, it will help to control the dynamic development, restrict of vegetative growth and coordinate spikes with grain number and kernal weights to achieve high yield. Limited irrigation field is featured by dwarf straw, small leaf and compact stem with good property of straightness, resistance and large capacity of spikes.This is different from water-saving with output reduction or the traditional reduction or the traditonal concept of water-saving without output reduction. In the condition of this pilot study, the water consumption of winter wheat is 3213.4m2/hm2, the yield is 8130.0kg/hm2, the WUE is 2.53kg/hm2, with only one time irrigation, and the water consumption declines 1436.6m3/hm2, the yield is improved by 1155.0kg/hm2, and the water efficiency is increased by 1.03kg/hm2, compared with the field irrigated for 5 times.
     3. Research on water consumption law of water-saving irrigated winter wheat with high-yield. The water consumption of the three non-irrigation fields, referring to the sufficient irrigation field (irrigated for 6 times) have been studied. Average yield of the wheat in the three fields achieved 8123.1kg/hm2 by use of sufficient rainfall and 0-2m water soil.Compared with the fields irrigated for 6 times, the yield was improved by 18.76%. It showed that it was very important to make the best use of the rainfall and soil water for water-saving to achieve high yield of the winter wheat. Through the analysis we found that the per unit area yield of winter wheat was 8047.5kg/hm2, the economical water consumption was 2996.4m3/hm2, the water efficiency was 2.686kg/m3. This economical water consumption was obviously lower than the wheat water requirements estimating by Penman Formula and the results of other studies. The water efficiency was also higher than 2.32kg/hm2 of the developed country. Researching on the fields of enough moisture and sowing once in the spring of 2005-2006, it was found that the water consumption in the stage of winter wheat was lower at both sides and higher in the middle. The significantly lower declined water consumption was different from the general field in the stage of early growth of winter wheat .The mode conficient was only 28.89%. The water consumption raised from heading to the stage of mid and late filling, the mode conficient was 44.19%. The peak of the water demand intensity also appeared in this stage. In recent years, a comprehensive analysis of recent years showed that dividing the soil water supplying into seedling water layer (0-60cm), the mid-water layer (60-140cm), the post-water-layer (140-230cm) and the stable water layer(230-300cm) was more instructive in guiding the unsufficient irrigation and water saving winter wheat with high yield.
     4. Research on adaptation to limited irrigation of different winter wheat varieties. Based on pilot demonstrations in recent years, the drought resistance varieties-Lunong116 and Shijiazhuang 8 all post excellent performance in limited irrigation conditions. Their drought-tolerent index are 1. 093-1.2 while the drought resistance varies from level 2 to level 3.
     5. Winter wheat suitable for regulated deficit irrigation and the lower limit of soil moisture indicators. According to the surveys conducted in 2002-2003 and in 2005-2006, it is found that by selecting the strong drought-resistance winter wheat with limited irrigation, the lower limit of the soil moisture index from the jointing stage of wheat to maturity accounts for can be improve from 65%-70% to 55-65% of field capacity (moisture content 12.6%-14.9%), and the figure is 60% in the period of the stage of mid and late filling to maturity (moisture content 13.7%).
     6. Key period of irrigation, water saving and fertilization. Based on the practice and research in Huantai county in recent years, a conclusion can be reached that in well irrigation area, wheat field with medium fertility should be provided less water in prophase and anaphase and reasonably more water in metaphase. The key to achieve the goal of water-saving, high yield and anti-lodging lies in water control in the whole growth period of wheat which will ensure spikes. Apart from selecting drought resistant varieties and ensuring emergence complete, irrigation before and after the jointing period is the most important factor. The irrigation should be determined by seedling, moisture and precipitation, also it can be determined by water requirement, soil moisture and seedling, moisture. In the circumstance of limited irrigation, the organic fertilizer should be applied, and chemical fertilizers should be supplied during the irrigation, because the nutrient can infiltrate into the soil along with the water. Another important measure is that it can gain initiative for regulating and controlling irrigation during the whole growth period of wheat.
     7. Research on cultivation and management techniques of compensatory growth to adapt water shortage. The research shows that the best sowing time is from October 2 to October 10. It is obviously later than the traditional spring time. Under the circumstance of limited irrigation, to sow appropriately later can reduce water consumption of winter wheat. Appropriate later sowing, seeds should be increased in a bid to guarantee high yield and water saving. It is appropriate that rate of seeding to 120-135kg/hm2 and basic seedling to 2.40-2.70 million / hm2. Meanwhile, the seed dressing can promote the growth of the root. Post-spraying can help to withstand the dry hot wind. Seed dressing also have the impact of water saving with increasing output, which are the 3 remedial measures to adapt water deficit.
     8. Water-saving field irrigation technique. The study shows that two water pourings, short narrow furrow irrigation and every other folder furrow irrigation are the three technical measures of water-saving irrigation. It is the most popular and applicable irrigation measure derived from the practice of the masses. There are clear effects that it can drammtically decline the water consumption in the field. Also it is helpful to regulate deficit irrigation of winter wheat and to determine appropriate critical period for irrigation.
     9. Cultivation techniques of water-saving and high-yeild winter wheat. The paper summarizes and analyzes indicators of unsufficient irrigation and water saving winter wheat with high yield such as suitable varieties, collective dynamics, fertilizer, irrigation and appropriate time of planting, seeding rate and so on.
引文
1.程维新、赵家义、胡朝炳等,农田蒸发与作物耗水量研究[M] .北京:气象出版社,1994:13-136.
    2.冯广志,勇于开拓,扎实工作,把节水灌溉工作提高到新水平一节水灌溉“九五”回顾与“十五”工作思路[J].节水灌溉,2001,(1):1-13.
    3.郭相平、康绍忠,调亏灌溉—节水灌溉的新思路[J].西北水资源与水工程.,1998,9(4):35-40.
    4.胡毓骐,李英能.1995.华北地区节水型农业技术[M].北京:中国农业科技出版社, 4-19.
    5.“华北平原作物水分胁迫与干旱研究”课题组,作物水分胁迫与干旱研究[M].郑州:河南科学技术出版社,1991.9.
    6.黄乾、赵蛟、谭媛媛等,北方农业雨水利用实践与发展前景展望[J].节水灌溉,2006, (4):22-25.
    7.贾大林,21世纪初期农业节水的目标和任务[J].节水灌溉,2002,(1):9-10.
    8.贾大林,农业高效用水模式[J].1997,(4):5-8.
    9.康绍忠主编.西北地区农业节水与水资源持续利用[M] .北京:中国农业出版社, 1999.
    10.兰林旺、周殿玺,小麦节水高产研究[M] ,北京:北京农业大学出版社,1995:137.
    11.刘芳、亓新华、赵吉平等,施肥对旱作冬小麦植株水分变化与光合生理特性的影响[J].作物学报,1997,23(5):615-619.
    12.刘文兆.作物生产、水分消耗与水分利用效率间的动态联系[J].自然资源学报,1998,(13):23-26.
    13.刘延涛、王家仁、巩本恒等,水浇地冬小麦节水高产高效栽培技术[J].山东农业科学,2004(6):38.
    14.刘延涛、于利华、王家仁,井灌区冬小麦节水高产指标化栽培实践与技术探讨[J].山东农业科学,2006(6):9-40.
    15.刘延涛、于利华、王家仁,限量灌水对水浇地冬小麦耗水及产量的影响[J].山东农业科学, 2007(2):46-47.
    16.刘延涛、于利华、王家仁等,特旱年足墒播种小麦春灌一水超高产试验研究[J].山东农业科学2008(3):58-60.
    17.马瑞昆,塞家利,刘淑贞,等.冬小麦推迟春季首次灌水后不同品种的产量及水分利率[J].华北农学报,1995,10(4):20-25.
    18.毛学森,刘昌明.2001.太行山山前平原地下水变化趋势与农业持续发展[J].水土保持研究,8(1):147-149.
    19.彭世彰、朱成立,节水灌溉的作物需水量试验研究[J].灌溉排水学报,2003,(2):21-24.
    20.荣云鹏朱保美等,气温变化对鲁西北冬小麦最佳适播期的影响[J].气象,2007,33(10)110-113.
    21.山东农业大学、山东省农业科学院编,小麦节水节肥高产栽培理论与技术[M].北京:中国农业科技出版社, 2001,3-78.
    22.山东省农业厅编著,山东小麦[M].北京:农业出版社, 1990,120-246.
    23.山仑,旱地农业中有限水高效利用的研究[J].水土保持研究,1996(01).
    24.山仑,我国节水农业现状与展望.人民网(http://www.people.com.cn/),2005.08.21.
    25.山仑、邓西平、黄占斌等,挖掘抗旱节水潜力[J].中国农业科技导报,2002,2(2):66-70
    26.山仑,我国节水农业发展中的科技问题[J].干旱地区农业研究,2003 (1):1-5.
    27.石元春,刘昌明,龚元石,节水农业应用基础研究进展[M] .北京:中国农业出版社, 1995 1-17.
    28.孙景生、刘祖国、肖俊夫等,冬小麦节水灌溉适宜土壤水分上下限指标研究[J].中国农村水利水电,1998,(9):18.
    29.孙雪峰、张建录、齐学斌,地下水开发利用研究与实践[M] .北京:中国农业科技出版社,1999,139-143.
    30.王法宏、李汉元、王旭清等,当前山东小麦生产中存在的主要问题及技术对策[J].山东农业科学,1998,(4):4-6.
    31.王和洲、张晓萍,调亏灌溉条件下的作物水分生态生理研究进展[J].灌溉排水,2001(4):73-75.
    32.王家仁、张罡、刘延涛等,冬小麦调亏灌溉节水高效技术指标试验初报[J].水问题论坛,2004,42(1):42-46.
    33.王家仁、马承新、周荣波等.冬小麦节水高产栽培技术体系[J].灌溉排水,2001, (4):43-46.
    34.王家仁、马承新、刘延涛等,特旱低温灾害年小麦节水高效栽培模式试验[J].中国农学报,2005(2):320-325.
    35.王家仁马承新等,晚播冬小麦限水灌溉对水分生产率的影响[J].灌溉排水学报,2008,27(4):51-54.
    36.王家仁、马承新、刘延涛等.冬小麦抗旱新品种试验与关键水灌溉[J].干旱地区农业研究. 2002,20(3):1-7.
    37.王璞,鲁来清,王润正,于国建,卢布和王树安. 2000.河北吴桥小麦-玉米一年两作超高产探索[J].中国农业科技导报,2(3) 12-15.
    38.王仰仁孙小平,山西农业节水理论与作物高效用水模式[M].北京:中国科学技术出版社,2003.
    39.王月福、于振文、潘庆民等,不同小麦品种经济合理肥水指标探讨[J].山东农业科学, 1998(4):7-10.
    40.吴海卿,段爱旺,杨传福.冬小麦对不同土壤水分的生理和形态响应[J].华北农学报,2000,15(l):92-96.
    41.余松烈等,冬小麦精播高产栽培[M].北京:农业出版社,1987.
    42.翟凤林.超高产节水小麦育种及其进展与展望[J].北京农业科学,1999,17(l):9-14.
    43.张建华等,节水农业技术的现状[J].西南农业学报,2001Vo14(增刊):113-116.
    44.张明庆刘桂莲,我国近40年气温变化地域类型的研究[J].气象,1999,25(4):10-14.
    45.张薇,司徒淞,王和洲.节水农业的土壤水分调控与标准研究[J].农业工程学报,1996,12 (2):23-27.
    46.张永强,刘昌明和沈彦俊. 2001.太行山山前平原浅层地下水位动态分析关—以河北省架城县为例[J].中国生态农业学报,9(2):38-40.
    47.张正斌,作物抗旱节水的生理遗传育种基础[M].北京:科学出版社,2003, 3-11.
    48.张忠学、吴文良,冬小麦节水增产灌溉模式试验研究[J].灌溉排水,2001,(3):20-24.
    49.张忠学、于贵瑞,华北高产粮区农用水资源持续利用研究——以山东省桓台县为例[J].资源科学,2002,24(1): 68-71.
    50.张忠学、于贵瑞,不同灌水处理对冬小麦生长及水分利用效率的影响[J].灌溉排水学报,2003,22(2):1-4.
    51.Chen, X., 2003. Optimization of the N fertilizer management of a winter wheat / summer maize rotation system in the Northern China Plain. Ph. D. Dissertation, University of Hohenheim, Stuttgart,Germany. 123pp.
    52.Kang,S.Z.,Zhang,L.,Liang,Y.L.et al Effects of limited irrigation on yield and water use Efficiency of winter wheat in the Loess PIatcau of China , Agric.Water management,2002,55: 203-216.
    53.Kitaya,Y.Yabuki,K.Kiyota,M.et al.Gas exchange and exygen concentration in pneumatophores and prop roots of four mangrove species,Trees,2002,16:155-158.
    54.Neeru M,Sawhney S K,Veena S.Frricyanide restores nitrate reductase activity in leaf extracts of water stress wheat seeding[J].Plant Physiol,1998,52(4):577-579.
    55.Nilsen E.T.Stem Photosynthesis extent patterns and Role in plant carbon economy.In:Gartner , B.(ed.):PlantStem-physiology and functional morphology ,223-240,Academic Press,San Diego.
    56.Sadeh,A.,Ravina,1.,Relationships between yield and irrigation with low-quantity water-a system approach,Agrie.Syst.,2000,64:99-113.
    57.TumerN.C.Crop water defieits:A decade of Progress.Advanees in Agronomy,1989,39:l-51.
    58.Wang zhi-Min,Wei Ai-Li. Photosynthetic characteristics of non-lef organs of winter cultivars Differing in ear type and their relationship with grain weight per ear.Photosynthetiea,2001,39 (2):239-244.
    59.Weiss,D.Schonfeld,M.Halevy,A.H.,Photosynthetic activities in the Petunia corolla,plant Physiol.1988,87:666-670.
    60.Yadav R S,Sharwa R L,Pandey U K,etal.Effects of various water potential treatment on nitrogen reductase activity in wheat genotypes[J].Agricultural Science Digest,1998,18(2):73-75.
    61.Zhang,H.,Wang,X.,You M.Z.et al.Water-yield relations and water use efficiency of winter wheat in the North China Plain,Irrigation Science,1999,19:37-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700