用户名: 密码: 验证码:
Er~(3+)/Yb~(3+)双掺C12A7单晶的生长及其上转换荧光性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Ca12Al14O33是一种拥有特殊笼状结构的透明导电氧化物,如果将笼状结构内部离子进行替换,其结构、光学性能和电学性能也会随之改变。通过氧化还原反应和离子注入等多种方式可以直接或间接的取代笼状结构内部O2-离子形成一系列C12A7材料的衍生物,C12A7的晶格常数也会随着衍生物中取代离子直径和电荷状态的不同而改变。e-、H-、Cl-、OH-和F-等离子都可以成为取代离子,这些离子进入到晶格内部取代氧离子从而形成新的化合物。
     本文通过提拉法制备C12A7单晶以及Er3+/Yb3+共掺杂C12A7单晶,研究了单晶生长工艺对晶体质量的影响。研究发现烧结工艺、炉内气氛、生长速率和温度场等工艺条件对单晶的质量有很大的影响,其中氧气含量是决定晶体质量的关键因素之一,氧气含量过多会导致坩埚氧化,并使晶体着色同时产生气泡缺陷,氧气含量过少会导致材料分解。这主要是由于在氧气含量过高的条件下,熔体中溶解的氧会在结晶的过程中会形成气泡缺陷,同时坩埚材料也会被氧化而引入铱离子杂质导致晶体开裂。少量的气泡缺陷可以通过退火的手段消除。对工艺参数进行调整,确定了最佳工艺条件:气氛条件是0.5%O2含量的N2气氛,原料为CaCO3和α-Al2O3,坩埚为铱金坩埚,晶体的生长温度为1350℃,提拉速度为1mm/h,旋转速度为25~30rad/min,液面上温度梯度为30℃/cm,退火温度为1300℃,退火温梯度为50℃/h。
     通过理论分析研究了C12A7内部离子对其光学和电学性能的影响,运用能量最小的优化原则对理论计算条件中截断能、K点、赝势以及泛函进行选择,确定了截断能为340eV,K点为444,赝势为NCP,泛函为PW91。优化并建立C12A7与C12A7的衍生物模型,分析其结构和光学性能。研究发现C12A7及其衍生物禁带均由框架结构与内部的离子共同构成的,框架结构与自由离子之间形成一种金属键,禁带范围随着内部离子极化能力的增大而增大,并向离子周围移动,同时费米能级位置随着内部离子极化能增大而升高。分别在氧气中氧化和在氢气中还原获得了C12A7的衍生物,通过对结构和光学性能的分析研究材料之间的离子交换过程。结果表明在氧化气氛中C12A7可被氧化成C12A7:O-,在还原气氛中C12A7可被还原成C12A7:H-。
     通过高温固相法合成了Er3+/Yb3+C12A7稀土掺杂粉末晶体,Er离子含量为1%,Yb离子从0变化到20%,随着掺杂离子含量的变化,其红绿光的发光强度也在增强,上转换红光增加的较多。通过调节掺杂离子Er离子和Yb离子浓度获得最佳发光效果。此时530nm的绿光对应Er3+离子能级2H11/2/4S3/b2-4I15/2,550nm的绿光对应Er3+离子能级2H11/2/4S3/b-4I15/2。660nm的红光对应Er3+离子能级4F9/2-4I15/2。通过提拉法制备Er3+/Yb3+为1:10的C12A7单晶材料,对其上转换发光特性分析发现绿光和红光都对应着双光子过程。
     对Er3+掺杂C12A7晶体和纯C12A7晶体的能带结构图进行比较,发现稀土离子的掺入改变了C12A7能带结构,但并没有改变其费米能级的位置。对C12A7与Er掺杂C12A7的结构进行分析,确定了稀土离子并没有进入笼状结构内部,而是以替位的形式存在。在掺入Er后,C12A7的能带宽度增加,其光学吸收范围减小,金属性降低,光电性能增强。分别通过金属还原和氢气还原的方式获得了C12A7:e-,发现掺杂C12A7的导电方式是小极化子导电机制。
C12A7is a kind of alternative material of TCO (transparent conductive oxide).Its structure and optical properties would be changed when the inner ions werereplaced. Ions in the cage-like structure of C12A7could be substituted by other ionsthrough implantation, chemical reduction and other ways. Lattice constant wasdetermined by the diameter and state of inner ions. The substitute ions could be e-,H-, Cl-, OH-and F-. These oxygen were replaced and formed a new compound.
     C12A7sinlge crystal and doped C12A7powder crystal were prepared byCZ(Czochralski) method and solid-phase method respectively in this paper. Processfor growing C12A7single crystal was studied. The research showed that theatmosphere in the furnace, growth rate and temperature condition had greatinfluence on the single crystal, the oxygen content is one of the key factorsdetermining the crystal quality, excessive oxygen content will cause oxidation ofcrucible and introduce coloration and bubble defects, but less content of oxygen willcause the decomposition. When the oxygen content in the melt is higher, dissolvedoxygen will form bubble defects in crystallization process. At the same time, thecrucible material will be oxidized and introdue Ir4+ions. A small amount of bubbledefects could be eliminated by annealing. The optimum technology was thatatmosphere condition was0.5%O2containing N2atmosphere; the raw material wasCaCO3and a-Al2O3; crystal growth temperature was1350°C; lifting speed was1mm/h; the rotating speed was5-10rad/min; the surface temperature was30°C/h;the annealing temperature was1300°C; the temperature gradient was50°C/h.
     Efects on its optical and electrical properties of C12A7were studied bytheoretical analysis caused by iternal ions. Functional theory and generalizedgradient approximation were selected in quantum chemical methods. The cutoffenergy was340eV; the K point was4×4×4ensuring energy convergence(<10-6eV) calculated. The inner ions affected the properties of C12A7crystalanalysed by quantum chemistry when the polarization was increased with the ions,the Fermi level was increased. The Fermi level of C12A7materials and derivativeswere formed by the inner ions and the framework. A metal bond was formedbetween the frame structure and the free ions. Fermi level of C12A7and itsderivatives were changed when changing the inner ions. C12A7derivatives weregotten by oxidation and reduction respectiively. The ion exchange process wasanalysed through the structure and optical properties. The results showed that C12A7can be oxidized to C12A7:Oin an oxidizing atmosphere, C12A7can be
     reducted to C12A7:H-in an reducing atmosphere.The Er3+/Yb3+doped C12A7power crystal as prepared by solid reaction. Thecontent of Er3+was1mol%and the contents of Yb3+increased from0%mol to20mol%. Strong green and red emissions were found in the samples which wereincreased with the contents of Yb3+. But the increase of the red emission was greaterthan the green one. In order to analyze the luminescence mechanism of Er3+andYb3+ions, the intensity of red and green light as adjusted to the same ensuring thewhole process, Er ions and Yb ion corresponded the ratio of1:10. Emission of530nm and550nm correspond to the2H11/2/4S3/b2—4I15/2of Er3+. Emission of660nmcorrespond to the4F9/2—4I15/2of Er3+. Er3+/Yb3+C12A7single crystal as prepared byCzochralski method and the upconversion emission was tested. The upconversionluminescence characteristics found in Er3+/Yb3+1:10crystals caused by Effectfrom the segregation coefficient of the dopant ions, the ion concentration in thecrystal has an offset, obtained by adjusting the concentration ratio of1:1red green
     crystal doping concentration.Band structure of Er3+-doped C12A7and pure C12A7crystals were comparedto study the effects of doped ions. The results showed that doped ions C12A7hadchanged the band structure but not the Fermi level. C12A7:e-were prepared bymetal reduction and hydrogen reduction. Small polaron conduction mechanism asfound by testing conductiveity. Theoretical analysis on C12A7compared with Erdoped C12A7showed that no rare earth ions entered into interior of the cage-likestructure, but a substitutional ion. The bandwidth of Er3+doped C12A7wasincreased and the optical absorption range was decreased compared with C12A7, sothe metal properties were increased in Er3+doped C12A7.
引文
[1] Rauh R d. Electrochromic windows:An overview[J]. Acta,1999,44,18:3165-3176
    [2] Shannon R. D, Prewitt C. T. Effective ionic radii in oxides and fluorides[J].Acta Crystallographica,1969, B25:925.
    [3] Matsuishi S, Hayashi K, Hirano M, Tanaka I, Hosono H. Superoxide ionencaged in nanoporous crystal12CaO7Al2O3studied by continuos wave andpulseelectron paramagnetic resonance[J]. J Phys Chem B,2004,108:18557.
    [4] Wang S F, Zhang J H, Li X F. Preparation and performance analysis ofZnO:Ga LED transparent electrode.Semiconductor Technology,2010,35(5):427–430.
    [5] Chandraekahaer P, Zay B J, Birur G C, et al. Large, switchableelectrochromism in the visible through far-infrared in conducting po;ymerdevices [J]. Adv. Funct. Mater.2002,12(2):95-103.
    [6] Qu Y F, Wang R, Zhang Z G. Upconversion White-Light Emission in Ho3+/Yb3+/Tm3+Codoped12CaO7Al2O3Polycrystals[J].2014,6:343-348.
    [7] Minami T. New n-type transparent conducting oxides[J]. Mrs Bulletin,2000,25(8):38–44.
    [8] Ginley D S, Bright C. Transparent conducting oxides[J]. Mrs Bulletin2000,25(8):15–18.
    [9] Gordon R G. Criteria for choosing transparent conductors. Mrs Bulletin[J],2000,25(8):52–57.
    [10] Lee J J, Kim J S, Yoon S. J, Cho Y S, Choi J W. Electrical and OpticalProperties of Indium Zinc Oxide (IZO) Thin Films by ContinuousComposition Spread[J]. Journal of Nanoscience and Nanotechnology,2013,13:3317-3320.
    [11] Hayash F, Yoshitake T, Yoshimi K. Ammonia decomposition by rutheniumnanoparticles loaded on inorganic electride C12A7:e [J]. Chemical Science,2013,8:3124-3130.
    [12] Krunks M, Karber E, Katerski A, Otto K. Extremely thin absorber layer solarcells on zinc oxide nanorods by chemical spray[J]. Solar Energy Materials andSolar Cells,2010,2:36.
    [13] Hongsingthonga A, Yunaza I A, Miyajimaa S, Konagaia M. Preparation ofZnO thin films using MOCVD technique with D2O/H2O gas mixture for use asTCO in silicon-based thin film solar cells[J]. Solar Energy Materials and SolarCells,2011,95:171-174.
    [14] Patel K, Panwar O S, Bisht A, Sreekumar C. Simulation studies onheterojunction and HIT solar cells[J]. Device Modelling and Simulation,2012,8:549.
    [15] Hautcoeur J, Castela X, Colombel F. Transparency and electrical properties ofmeshed metal films[J]. Thin Solid Films,2011,1:262.
    [16] Edward N C, Moon P, Kim C E. Modeling and optimization of ITO/Al/ITOmultilayer films characteristics using neural network and genetic algorithm[J].Expert Systems with Applications,2012,39:8885-8889.
    [17] Redel E, Chen H, Dag O. From Bare Metal Powders to Colloidally Stable TCODispersions and Transparent Nanoporous Conducting Metal Oxide ThinFilms[J]. Nano Small Micro,2012,8:3806-3809.
    [18] Ueda K, Yusuke K, Yasukazu T. Optical and electrical properties ofheat-resistant Sb-doped Sn1xHfxO2transparent conducting films[J]. ThinSolid Films,2012,520:3755-3759.
    [19] Zhong S L, Wang S J, Liu Q Y. Y2O3: Eu3+microstructures: Hydrothermalsynthesis and photoluminescence properties[J]. Mate. Res. Bull.2009,44(12):2201-2205.
    [20] Antic Z, Krsmanovic R, Marinovic-Cincovic M. Gd2O3:Eu3+/PMMAComposite: Thermal and Luminescence Properties[J]. Acta. Phys. Pola.2010,117(5):831-836.
    [21] Singh S K, Kumar K, Srivastava M Kl. Magnetic-field-induced opticalbistability in multifunctional Gd2O3: Er3+/Yb3+upconversion nanophosphor[J].Opt. Lett.2010,35(10):1575-1577
    [22] Chen G Y, Zhang Y G, Somesfalean G, et al. Two-color upconversion inrare-earth-ion-doped ZrO2nanocrystals[J]. Appl. Phys. Lett,2006,89(16):16315.
    [23] Kim J R, Jung J H, Shin W S, So W W, Moon S J. Efficient TCO-FreeOrganic Solar Cells with Modified Poly Ethylenedioxythiophene:Poly(Styrenesulfonate) Anodes[J]. Journal of Nanoscience andNanotechnology,2011,11:326-330.
    [24] Favier A, Munoz D, Ribeyron P J. Boron-doped zinc oxide layers grown bymetal-organic CVD for silicon heterojunction solar cells applications[J]. SolarEnergy Materials and Solar Cells,2011,95:1057-1061.
    [25] Saarenpaa H, Niemi T, Tukiainen A. Aluminum doped zinc oxide films grownby atomic layer deposition for organic photovoltaic devices[J]. Solar EnergyMaterials and Solar Cells,2010,94:1379-1383.
    [26] Ozga K, Kawaharamura T, Umar A A. Non-linear optical effects in Aunanoparticle-deposited ZnO nanocry stalline films [J]. Nano. Res.2002,2:31-38.
    [27] Liu X Y, Huang B C, Coville N J. The Fe(CO)5catalyzed pyrolysis of pentane:carbon nano tube and carbon nano ball formation[J]. Carbon,2002,40(15):2791-2799.
    [28] Niwase K, Homae T, Nakamura K G, Kondo K. Ceneration of giant carbonhollow spheres from C60fullerene by shoek-compression[J]. Chem phys. Let.2002,362(1-2):47-50.
    [29] Wang X J, Lu J, Xie Y, Du G, Guo X, Zhang S Y. A novel route to multiwalledcarbon nano tubes and carbon nanorods at low temperature[J]. J. Pys. Chem. B2002,106(5):933-937.
    [30] Park J S, Kim H, Kim I D. Overview of electroceramic materials for oxidesemiconductor thin film transistors[J]. Journal of Electroceramics.
    [31] Moss T S. The interpretation of the properties of indium antimonide[J].Proceedings of the Physical Society. Section B,1954,67(10):775–782.
    [32] Hamberg I, Granqvist C G. Evaporated sn-doped In2O3films-basic opticalproperties and applications to energy-efficient windows[J]. Journal of AppliedPhysics,1986,60(11):R123–R159.
    [33] Chopra K L, Major S, Pandya D K. Transparent conductors-a status review[J].Thin Solid Films,1983,102(1):45–46.
    [34] Hosono H, Kikuchi N, Ueda N, Kawazoe H. Working Hypothesisto ExploreNovel Wide Band Gap Electrically Conducting Amorphous Oxides andExamples[J]. Non-Cryst Sol,1996,198:165–169.
    [35] Orita M, Ohta H, Hirano M, Narushima S, Hosono H, Amorphous TransparentConductive Oxide InGaO3(ZnO)m (m<4): A Zn4s Conduc-tor, Phil Mag B[J].2001,81:501–515.
    [36] Narushima S, Ueda K, Mizoguchi H, Ohta H, Hirano M, Shimizu K, Kamiya T,Hosono H, AP-Type Amorphous Oxide Semiconductor, ZnRh2O4, and RoomTemperature Fabricationof Amorphous Oxide P–N Hetero-Junction Diodes,Adv Mater[J].2003,15:1409–1413.
    [37] Kawazoe H, Yasukawa M, Hyodo H, Kurita M, Yanagi H, Ho-sono H. P-TypeElectrical Conduction in Transparent Thin Films of CuAlO2[J]. Nature,1997,389:939–942.
    [38] Yanagi H, Ueda K, Ohta H, Orita M, Hirano M, Hosono H, Fabrication of AllOxide Transparent P–N Homo junction Using Bipolar CuInO2Semiconducting Oxide with Delafossite Structure[J]. Sol.State Co-mmun,2002,121:15–18.
    [39] Laia K C, Liub C C, Luc C, Yehc C H, Hounga M P. Characterization ofZnO:Ga transparent contact electrodes for microcrystalline silicon thin filmsolar cells[J]. Solar Energy Materials and Solar Cells,2009,94:397-401.
    [40] Moon Taeho, Hyung J J, Lee H. Additional coating effects on textured ZnO:Althin films as transparent conducting oxides for thin-film Si solar cells[J].2011,20:1137.
    [41] Maeng W J, Park J S. Growth characteristics and film properties of galliumdoped zinc oxide prepared by atomic layer deposition[J].2013:338-344.
    [42] Park T Y, Choi Y S, Kang J Won. Enhanced optical power and low forwardvoltage of GaN-based light-emitting diodes with Ga-doped ZnO transparentconducting layer[J]. Appl Phys Lett,96:1125.
    [43] Fleischer K, Arca E, Shvets I V. Improving solar cell efficiency with opticallyoptimised TCO layers[J]. Solar Energy Materials and Solar Cells,2012,101:262-269.
    [44] Ohta H, Kawamura K, Orita M, Hirano M, Sarukura N, Hosono H. CurrentInjection Emission from A Transparent P/N Junction Composed ofp-SrCu2O2/n-ZnO[J]. Appl.Phys.Lett,2000,77:475–477.
    [45] Nomura K, Ohta H, Ueda K, Kamiya T, Hirano M, Hosono H, Thin. FilmTransistor Fabricated in Single-Crystalline Transparent OxideSemiconductor[J]. Science,2003,300:1269–1272.
    [46] Narushima S, Orita M, Hirano M, Hosono H. Electronic Structure andTransport Properties in the Transparent Amorphous Oxide Semicon-ductor2CdOGeO2[J]. Phys.Rev.B,200266:035203-1–035203-8.
    [47] Nomura K, Ohta H, Ueda K, Kamiya T, Hirano M, Hosono H. CarrierTransportin Transparent Oxide Semiconductor with Intrinsic StructuralRandomness Probed Using Single-Crystalline InGaO3(ZnO)5Films [J].Appl.Phys.Lett,2004,85:1993–1995.
    [48] Takagi A, Nomura K, Ohta H, Yanagi H, Kamiya T, Hirano M, Hosono H.Carrier Transport and Electronic Structure in Amorphous OxideSemiconductor,a-InGaZnO4[J]. Thin Sol.Films2005,85:1993–1995.
    [49] Kudo A, Yanagi H, Hosono H, Kawazoe H, SrCu2O2:AP-Type ConductiveOxide with Wide Band Gap[J]. Appl.Phys.Lett,1998,73:220–222.
    [50] Ueda K, Inoue S, Hirose S, Kawazoe H, Hosono H. Transparent P-TypeSemiconductor: LaCuOS Layered Oxysulfde[J]. Appl Phys Lett,2000,77:2701–2703.
    [51] Imlach J A, Glasser L S D, Glasser F P. Excess oxygen and the stability of12CaO7Al2O3[J]. Cement Conc Res.1971,1:57–61.
    [52] Jeevara J, Glasser F P, Glasser L S D. Anion substitution and structure of12CaO7Al2O3[J]. Am Ceram Soc.1964,47:105–106.
    [53] Hosono H, Abe Y. Occurrence of superoxide radical ion in crystalline12CaO7Al2O3prepared via solid-state reaction[J]. Inorg Chem.1987,26:1192–1195.
    [54] Hayashi K, Hirano M, Matsuishi S. Microporous crystal12CaO7Al2O3encaging abundant O-radicals[J]. Am Chem Soc.2002,124:738–739.
    [55] Watauchi S, Tanaka I, Hayashi K. Crystal growth of Ca12Al14O33by thefloating zone method[J]. Cryst Growth,2002,237:496–502.
    [56] Li Q X. Absolute emission current density of O-from12CaO7Al2O3[J]. ApplPhys Lett.2002,80:4259–4261.
    [57] Hayashi K, Matsuishi S, Kamiya T. Light-induced conversion of an insulatingrefractory oxide into persistent electronic conductor[J]. Nature,2002,419:462-465.
    [58] Matsuishi S, Toda Y, Miyakawa M. High-Density Electron Anions in aNanoporous Single Crystal:[Ca24Al28O64]4+(4e-)[J]. Science,2003,301:626.
    [59] Zhang T L, Chen H Y, Su C Y and Kuang D B. A novel TCO-and Pt-freecounter electrode for high efficiency dye-sensitized solar cells[J]. J MaterChem,2013,1:1724-1730.
    [60]张师平,陈森,朱少奇,闫丹,张炎,吴平.利用红外光谱测量氮化镓薄膜的载流子浓度和迁移率[J].物理实验,2013,3:4-6.
    [61] Reijnen L, Meester B, Goossens A, Schoonman J. Nanoporous TiO2/Cu1.8SHeterojunctions for Solar Energy Conversion[J]. Mater Sci Eng C,2002,19:311–314.
    [62] Hiramatsu H, Ueda K, Kamiya T, Ohta H, Hirano M, Hosono H, OpticalProperties and Two-Dimensional Electronic Structurein Wide-Gap LayeredOxychalcogenide: La2CdO2Se2[J]. J Phys Chem.B,2004,108:17344–17351.
    [63] Hiramatsu H, Ueda K, Ohta H, Hirano, Kamiya M T, Hosono H, DegenerateP-Type Conductivity in Wide-Gap LaCuOS1-xSex (x=0–1)Epitaxial Films[J].Appl Phys Lett,2003,82:1048–1050.
    [64] Hiramatsu H, Ueda K, Takafuji K, Ohta H, Hirano M, Kamiya T, Hosono H,Intrinsic Excitonic Photoluminescence and Band-Gap Engi-neering ofWide-Gap P-Type Oxychalcogenide Epitaxial Films of LnCuOCh(Ln=La, Pr,And Nd; Ch=S Or Se)Semiconductor Alloys[J]. J Appl Phys,2003,94:5805–5808.
    [65] Ueda K, Hiramatsu H, Ohta H, Hirano M, Kamiya T, Hosono H,Single-Atomic-Layered Quantum Wells Builtin Wide-Gap Semicon-ductors,LnCuOCh (Ln=Lanthanide, Ch=Chalcogen)[J]. Phys Rev B,2004,69155305-1–69155305-4.
    [66] Liu Y X, Ma L, Yan D T, Zhu H C, Liu X L, Bian H Y. Effects of encagedanions on the optical and EPR spectroscopies of RE doped C12A7[J]. Journalof Luminescence,2013,10:66.
    [67] Inoue S, Ueda K, Hosono H, Electronic Structure of The Transparent P-TypeSemiconductor(LaO)CuS[J]. Phys Rev B,2001,64:245211-1–245211-5.
    [68] Sun, J Q, Lu G, Shen J, Lin Zhou, Li Q X. Sol-Gel Preparation of PorousC12A7-Cl-Crystals[J]. Acta Physico-Chimica Sinica,2010,26:795-798.
    [69] Kamiya T, Ueda K, Hiramatsu H, Kamioka H, Ohta H, Hirano M, Hosono HTwo-Dimensional Electronic Structure and Multiple Excitonic States inLayered Oxychalcogenide Semiconductors LaCuOCh(Ch5S, Se,Te):Relativistic Ab-Initio Study[J]. Thin Solid Films2004.
    [70] Feldbach E, Avarmaa T, Denks V P, Magi H, Oja M, E Toldsepp and Kirm M.Tuning the electronic properties of naturally nanostructured compounds[J].Physica Scripta,2013,15:157.
    [71] Yasunori I, Masaaki K, Sung-W K, Toshiharu Y, Michikazu H and Hideo H.Highly Dispersed Ru on Electride [Ca24Al28O64]4+4e–as a Catalyst forAmmonia Synthesis[J]. American Chemical Society,2013,15:674-680.
    [72] McLeod J A, Buling A, Kurmaev E Z. Spectroscopic characterization of amultiband complex oxide: Insulating and conducting cement12CaO7Al2O3[J].Physical Review B,2012,13:85.
    [73] Hayashi K, Hirano M, Matsuishi S. Microporous crystal12CaO7Al2O3encaging abundant O-radicals [J]. J Am Chem Soc,2002,124:738–739.
    [74] Hayashi K, Hirano M, Hosono H. Thermodynamics and Kinetics of HydroxideIon Formation in12CaO7Al2O3[J]. Phys Chem B,2005,109:11900-11906.
    [75] Hayashi K, Matsuishi S, Ueda N, Hirano M, Hosono H. MaximumIncorporation of Oxygen Radicals,O-and O2-, into12CaO7Al2O3with aNanoporous Structure [J]. Chem Mater,2003,15:1851-1854.
    [76] Hayashi K, Ueda N, Hirano M, Hosono H. Effect of stability and diffusivity ofextra-frameworkoxygen species on the formation of oxygen radicals in12CaO7Al2O3[J]. Solid State Ionics,2004,173:89-94.
    [77] Eida K M, Ammarb H Y. Adsorption of SO2on Li atoms deposited on MgO (100) surface: DFT calculations[J]. Applied Surface Science,2011,1:122.
    [78] Toda Y. Intense thermal field electron emission from room-temperature stableelectride[J]. App Phys Lett,2005,87:254103-1-3.
    [79] Sushko P V, Shluger, Hirano A L. From Insulator to Electride: A TheoreticalModel ofNanoporous Oxide12CaO7Al2O3[J]. J Am Chem Soc,2007,129:942-952.
    [80] Vink T J, Balkenende A R, Verbeek R G F A, H. van Hal A M. Materials with ahigh secondary-electron yield for use in plasma displays[J]. Phys Lett,2002,80:2216.
    [81] Hayashi K, Hirano M, Matsuishi S. High-Density Electron Anions in aNanoporous Single Crystal:[Ca24Al28O64]4+(4e-). J Am Chem Soc,2002,124:738.
    [82] Torimoto Y, Shimada K, Nishioka T. Continuous emission of O-radical anionsfrom solid electrolyte surface [J]. J Chem Eng Jpn,2000,33:914.
    [83] Nishioka M, Kashiwagi H, LiQ. Features and mechanism of atomic oxygenradical anion emission from yttria-stabilized zirconia electrolyte[J]. J Catal,2003,215:1.
    [84] Torimoto Y, Harano A, Suda T. Emission of O-radical anions from a solidelectrolyte surface into the gas phase[J] Jpn J Appl Phys Prat2-Lett,1997,36:238.
    [85] Fujiwara Y, Kaimai A, Hong J O. Emission Characteristics of O-Ions from aBare Surface of Yttria-Stabilized Zirconia (YSZ) at Elevated Temperatures[J].Japanese Journal of Applied Physics,2002,41:657.
    [86] Li Q X, Hayashi K, Nishioka M, Kashiwagi H. Absolute emission currentdensity of O-from12CaO7Al2O3crystal[J].2002,80:4259-4261.
    [87] Gao A M, Tu J and Li Q X. NOxStorage Features and Mechanism overC12A7-O–/K[J]. J Phys Chem C,2011,115:14812–14818.
    [88] Ning S, Shen J, Li X H and Li Q X. Preparation and Characterization ofStorage and Emission Functional Material of Cs2O-doped12CaO·7Al2O3[J].Chinese Journal of Chemical Physics,2011,24:35
    [89] Jung C H, Rok H I, P B H, Y D H. Characterization of12CaO·7Al2O3DopedIndium Tin Oxide Films for Transparent Cathode in Top-Emission OrganicLight-Emitting Diodes[J].2013,13:7556-7560.
    [90] Li Q X, Hosono H, Hirano M. High-intensity atomic oxygen radical anionemission mechanism from12CaO7Al2O3crystal surface[J]. Surf Sci,2003,527:100.
    [91] Li Q X, Hayashi K, Nishioka M. Electric Field Emission of High Density O-ions from12CaO7Al2O3Engineered to Incorporate Oxygen Radicals[J]. Jpn JAppl Phys,2002,41: L530.
    [92] Gao A M, Zhu X F, Wang H J. Atomic Fluorine Anion Storage EmissionMaterial C12A7-F-and Etching of Si and SiO2by Atomic Fluorine Anions[J].Phys Chem B,2006,110:11854.
    [93] Wang L, Gong L, Zhao E. Inactivation of Escherichia coli by O-water[J]. LettAppl Microbiol,2007,45:200.
    [94] Li L C, Wang L, Yu Z. Synthesis and characterization of adsorbent for Pb(II)-capture by using glow discharge electrolysis plasma[J]. Plas Sci Technol,2007,9:119.
    [95] Wang L, Song C F, Sun J Q. TNF-308gene polymorphism is associated withCOPD risk among Asians: meta-analysis of data for6.118subjects[J]. ProgBiochem Biophys,2007,34:1288.
    [96] Hayashi K, Matsu hi S, Kamiya T. Light-induced conversion of an insulatingrefractory oxide intopersistent electronic conductor [J]. Nature,2002,419:462-465.
    [97] Ning S, Shen J, Li X L, Xu Y, Li Q X. Characterization and Anion EmissionCharacteristics of the Microporous Crystal Cs-C12A7[J]. ActaPhysico-Chimica Sinica,2011,27:983-989.
    [98] Katsuro H, Satoru, Toshio, Masahiro and Hideo. Light-induced conversion ofan insulating refractory oxide into a persistent electronic conductor[J]. Lettersto Nature,200,419:462-465.
    [99] Miyakawa M, Kim S W, Hirano M, et al. Superconductivity in an InorganicElectride12CaO7Al2O3:e-[J]. J Am Chem Soc,2007,129:7270-7271.
    [100] Yoshitake T, Hiroyuki H, Navaratnarajah K, Antonio T, Peter V, Hideo.Activation and splitting of carbon dioxide on the surface of an inorganicelectride material[J]. Nature communications,2013,23:2078.
    [101] Li W P, Chen J H, Christoph W. Study on Melting Properties ofCaO-Al2O3-SiO2-MgO System Calcium Aluminate Flux[J]. AdvancedMaterials Research,2013,683:569-572.
    [102] Subhojeet G, Chirag S, Atul M. Effect of Reactive Alumina on thePhysico-Mechanical Properties of Refractory Castable[J]. Transactions of theIndian Ceramic Society,2013,72:113-118.
    [103] Hideo H. Exploring Electro-active Functionality of Transparent OxideMaterials[J]. Japanese Journal of Applied Physics,2013,52:241.
    [104] Hayashi K, Sushko P V, Shluger A L, et al. Hydride Ion as a Two-ElectronDonor in a NanoporousCrystalline Semiconductor12CaO.7Al2O3[J] J. PhysChem B,2005,109:23836-23842.
    [105] Hayashi K., Matsuishi S., Kamiya T. Light-induced conversion of aninsulating refractory oxide into a persistent electronic conductor[J]. Nature2002,419:462-465.
    [106] Kim S. W., Toda Y., Hayashi K. Field-induced water electrolysis switches anoxide semiconductor from an insulator to a metal[J]. Chem Mater2006,18:1938-1944.
    [107] Masaaki K, Yasunori I, Yamazaki Y. Ammonia synthesis using a stableelectride as an electron donor and reversible hydrogen store[J]. NatureChemistry,2012,4:934–940.
    [108] Masashi M, Hayato K, Masahiro H. Photoluminescence from Auion-implanted nanoporous single-crystal12CaO7Al2O3[J]. Physical Review B,2006,73:108.
    [109] Huang F, Li J, Xian H, Tu J, Sun J Q, Yu S Q, Li Q X, Torimoto Y, Sadakata M.Substitution of H-for O-and H-emissions of12CaO7Al2O3[J]. Appl Phys Lett,2005,86;114.
    [110] Gong L, Lin z, Ning S, Sun J. Synthesis and characteristies of the C12A7-O-nan oparticles by citric acid sol-gel combustion method[J]. Materials Letters,2010,64:1322.
    [111] Wang L, Gong L, Zhao E, Yu Z, Torimoto Y. Inactivation of Escherichaia coliby O-Water[J]. Letters in Applied Microbiology,2007,45:200.
    [112] Sun J, Gong L, Lin Z, and Li Q X. Synthesis and Characterization of theMicroporous Crystal C12A7-Cl-Prepared by Sol-gel Method[J]. ActaPhyico-chimica Sinica,2010,26:795.
    [113] Wang L, Song C F, Sun J Q, Hou Y. Oxidation of silicon Surface with AtomicOxygen Radical Anons[J]. Chinese Physics B,2008,17:1.
    [114] Sun J C, Xu Y L, Wang R. Ir4+ion-free12CaO7Al2O3single crystal grown bythe CZ method[J]. Cryst Res Technol.2013,48, No.8:505–510.
    [115]李进辉. Er3+掺杂12CaO7Al2O3发光陶瓷的制备及其微结构和光学性质研究[D]:[硕士学位论文].长春:东北师范大学物理学院,2009.
    [116]李慧. Eu2+,Dy3+共掺杂12CaO7Al2O3粉体的制备及其结构和光学性质研究[D]:[硕士学位论文].长春:东北师范大学物理学院,2010.
    [117]尚开. Yb3+-Er3+掺杂12CaO7Al2O3粉体上转换发光[D]:[硕士学位论文].长春:东北师范大学物理学院,2010.
    [118]宫璐,沈静,李全新. C12A7-O-材料抗菌性能及机理研究[J].无机材料学报,2010,25(9):1.
    [119]沈静,宫璐,李全新.纳Na2O掺杂C12A7材料的结构及其抗菌性[J].无机化学学报,2011,27:356-360.
    [120] Song C F, S J Q, Qiu S B. Atomic fluorine anion storage-emission materialC12A7-F-and etching of Si and SiO2by atomic fluorine anions[J]. Chemistryof Materials,2008,20:3473-3479.
    [121]谢森林.含C12A7的CaO-Al2O3以及Al2O3-SiO2和CaO-SiO2二元相图的热力学优化计算[J].江西理工大学,2012

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700