用户名: 密码: 验证码:
新型二维液相色谱体系的建立、评价及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文针对二维液相色谱发展中所面临的问题,从复杂样品分析的需求出发,展开了二维液相色谱体系的理论研究和实际应用。结合本课题组开发的新型分离材料,建立了基于联萘柱与C18柱的二维反相/反相液相色谱系统,以中心切割方式在第一维选择性富集大黄中的蒽醌,在第二维以液质联用方法对大黄中的蒽醌进行分离和鉴别。
     建立了基于环糊精柱和C18柱的二维亲水/反相液相色谱系统,以蛹虫草为研究对象,优化了第一维的亲水色谱条件,对第二维反相色谱分离中pH值对分离选择性进行考察,最终确定了pH 2.8为优化条件。采用离线二维的方式,在第一维将蛹虫草组分划分为12个组分,第二维对组分的分离可以将第一维中共流出的组分进行了有效的分离。亲水-反相二维系统具有较好的正交性,利用该方法可以发现复杂体系中更多的化学物质基础,特别是微量组分。
     捕获柱是重要的二维接口。通过定量地比较第一维色谱柱接捕获柱和不接捕获柱的保留时间,峰面积和峰展宽差异,建立了捕获柱的评价体系,考察了影响捕获柱捕获能力的主要因素。通过该方法可以对捕获柱进行筛选,考察样品含量及性质对捕获能力的影响,直观比较和优化对复杂样品的捕获能力。
In this thesis, the theoretical study and practical application of two-dimensional liquid chromatography (2D-LC) were developed to get better analysis of complicated samples. With the introduction of novel stationary phases, we established the heart-cutting mode 2D-RPLC/RPLC by "click" binaphthyl column and C18 column, selectively enriching anthraquinones from Rheum palmatum L. in the first dimension, then separating and identifying anthraquinones by UPLC-ESI-MS/MS in the second dimension.
     Take Cordyceps militaris(L.ex Fr.)Link as research object, a 2D-HILIC/RPLC was developed basing on "click"β-CD column and C18 column. The hydrophilic chromatographic conditions were optimized in the first dimension and the selectivity affected by pH values was investigated in the second dimension, ultimately determined the pH 2.8 as the optimal condition. In the off-line 2D-LC, the Cordyceps militaris(L.ex Fr.)Link was divided into 12 fractions in the first dimension and then all the fracions were separated in the second dimension. The experiment results indicated that the orthogonality of the 2DLC system is good, and this kind of method can be used to discover more chemical components in the complex samples, especially trace quantities.
     Capture column is one of most important two-dimensional interfaces. An evaluation system of capture column was established by quantative comprison of retention times, peak areas and peak spreads through connecting and inconnecting the capture columns. We have reviewed the main factors which impacted the capture columns'abilities, selected the capture columns by this method and researched the influence of injection volumes and properties towards the columns'capture abilities, finally complex samples'capture abilities were compared and optimized directly by this method.
引文
[1]Davis JM, Giddings JC. Statistical theory of component overlap in multicomponent chromatograms. Anal. Chem.1983,55(3):418-424.
    [2]富玉,陈能武.高温液相色谱的原理及研究进展.中国测试技术2007,33(3):36-40.
    [3]Swartz ME. UPLC:An introduction and review. J. Liquid Chromator. Relat. Technol. 2005,28(7-8):1253-1263.
    [4]Davis JM, Giddings JC. Statistical-method for estimation of number of components from single complex chromatograms-application to experimental chromatograms. Anal.Chem. 1985,57(12):2178-2182.
    [5]Dugo P, Favoino O, Tranchida PQ, Dugo G, Mondello L. Off-line coupling of non-aqueous reversed-phase and silver ion high-performance liquid chromatography-mass spectrometry for the characterization of rice oil triacylglycerol positional isomers. J. Chromatogr. A.2004,1041(1-2):135-142.
    [6]Chen XG, Kong L, Su XY, Pan CS, Ye ML, Zou HF. Integration of ion-exchange chromatography fractionation with reversed-phase liquid chromatography-atmospheric pressure chemical ionization mass spectrometer and matrix-assisted laser desorption/ioniztion time-of-flight mass spectrometry for isolation and identification of compounds in Psoralea corylifolia. J. Chromatogr. A.2005,1089(1-2):87-100.
    [7]Bushey MM, Jorgenson JW. Automated instrumentation for comprehensive two-dimensional high-performance liquid chromatography of proteins. Anal.Chem. 1990,62(2):161-167.
    [8]Hu LH, Chen XG, Kong L, Su XY, Ye ML, Zou HF. Improved performance of comprehensive two-dimensional HPLC separation of traditional Chinese medicines by using a silica monolithic column and normalization of peak heights. J. Chromatogr. A. 2005,1092(2):191-198.
    [9]Sheldon EM. Development of a LC-LC-MS complete heart-cut approach for the characterization of pharmaceutical compounds using standard instrumentation. J. Pharm. Biomed. Anal.2003,31(6):1153-1166.
    [10]Hogendoorn EA, Van Zoonen P, Polettini A, Bouland GM, Montagna M. The potential of restricted access media columns as applied in coupled-column LC/LC-TSP/MS/MS for the high-speed determination of target compounds in serum. Application to the direct trace analysis of salbutamol and clenbuterol. Anal.Chem.1998,70(7):1362-1368.
    [11]Sancho JV, Pozo OJ, Hernandez F. Direct determanation of chlorpyrifos and its main metabolite 3,5,6-trichloro-2-pyridinol in human serum and urine by coupled-column liquid chromatography/electrospray-tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2000,14(16):1485-1490.
    [12]Schoenmakers P, Marriott P, Beens J. Nomenclature and conventions in comprehensive multidimensional chromatography. LC GC Eur.2003,16(6):335-339.
    [13]Erni F, Frei RW. Two-dimensional column liquid chromatographic technique for resolution of complex mixtures. J. Chromatogr.1978,149:561-569.
    [14]Holland HA, Jorgenson JW. Separation of nanoliter samples of biological amines by a comprehensive 2-dimensional microcolumn liquid-chromatography system Anal.Chem. 1995,67(18):3275-3283.
    [15]Holland HA, Jorgenson JW. Characterizaiton of a comprehensive two-dimensional anion exchange-perfusive reversed phase liquid chromatography system for improved separations of peptides. J. Microcol. Sep.2000,12(6):371-377.
    [16]Opiteck GJ, Lewis KC, Jorgenson JW, Anderegg RJ. Comprehensive on-line LC/LC/MS of proteins. Anal.Chem.1997,69(8):1518-1524.
    [17]Maynard DM, Masuda J, Yang XY, Kowalak JA, Markey SP. Charaterizing complex peptide mixtures using a multi-dimensional liquid chromatography-mass spectrometry system: saccharomyces cerevisiae as a model system. J. Chromatogr. B.2004,810(1):69-76.
    [18]Wagner K, Racaityte K, Unger KK, Miliotis T, Edholm LE, Bischoff R, Marko-Varga G. Protein mapping by two-dimensional high performance liquid chromatography. J. Chromatogr. A.2000,893(2):293-305.
    [19]Wagner K, Miliotis T, Marko-Varga G, Bischoff R, Unger KK. An automated on-line multidimensional HPLC system for protein an peptide mapping with integrated sample preparation. Anal.Chem.2002,74(4):809-820.
    [20]Millea KM, Krull IS, Cohen SA, Gebler JC, Berger SJ. Integration of multidimensional chromatographic protein separations with a combined "top-down" and "bottom-up" proteomic strategy. J. Proteome Res.2006,5(1):135-146.
    [21]Kimura H, Tanigawa T, Morisaka H, Ikegami T, Hosoya K, Ishizuka N, Minakuchi H, Nakanishi K, Ueda M, Cabrera K, Tanaka N. Simple 2D-HPLC using a monolithic silica column for peptide separation. J. Sep. Sci.2004,27(10-11):897-904.
    [22]Chelius D, Zhang T, Wang GH, Shen RF. Global protein identification and quantification technology using two-dimensional liquid chromatography nanospray mass spectrometry. Anal.Chem.2003,75(23):6658-6665.
    [23]Mawuenyega KG, Kaji H, Yamauchi Y, Shinkawa T, Saito H, Taoka M, Takahashi N, Isobe T. Large-scale identification of caenorhabditis elegans proteins by multidimensional liquid chromatography-tandem mass spectrometry. J. Proteome Res.2003,2(1):23-25.
    [24]Wu SL, Choudhary G, Ramstrom M, Bergquist J, Hancock WS. Evaluation of shotgun sequencing for proteomic analysis of human plasma using HPLC coupled with either ion trap or fourier transform mass spectrometry. J. Proteome Res.2003,2(4):383-393.
    [25]Link AJ, Eng J, Schieltz DM, Carmack E, Mize GJ, R. MD, Garvik BM, Yates JR. Direct analysis of protein complexes using mass spectrometry. Nat. Biotechnol.1999,17(7):676-682.
    [26]Washburn MP, Wolters D, Yates JR. Large-scale analysis of the yeast proteome by multidimensional protein indentification technology. Nat. Biotechnol.2001,19(3):242-247.
    [27]Wolters DA, Washburn MP, Yates JR. An automated multidimensional protein identification techonology for shotgun proteomics. Anal.Chem.2001,73(23):5683-5690.
    [28]Opiteck GJ, Jorgenson JW, Anderegg RJ. Two-dimensional SEC/RPLC coupled to mass spectrometry for the analysis of peptides. Anal.Chem.1997,69(13):2283-2291.
    [29]Opiteck GJ, Ramirez SM, Jorgenson JW, Underberg WJM. Comprehensive two-dimensional high-performance liquid chromatography for the isolation or overexpressed proteins and proteome mapping. Anal. Biochem.1998,258(2):349-361.
    [30]Stroink T, Wiese G, Lingeman H, Bult A, Underberg WJM. Development of an on-line size exclusion chromatographic-reversed-phase liquid chromatographic two-dimensional system for the quantitative determination of peptides with concentration prior to reversed-phase liquid chromatographic separation. Anal.Chim. Acta.2001,444(2):193-203.
    [31]Francois I, Villiers A, Sandra P. Considerations on the possibilities and limitations of comprehensive normal phase-reversed phase liquid chromatography (NPLC/RPLC). J. Sep. Sci.2006,29(4):492-498.
    [32]Dugo P, Kumm T, Crupi ML, Cotroneo A, Mondello L. Comprehensive two-dimensional liquid chromatography combined with mass spectrometric detection in the analyses of triacylglycerols in natural lipidic matrixes. J. Chromatogr. A.2006,1112(1-2):269-275.
    [33]Tian HZ, Xu J, Xu Y, Guan YF. Multidimensional liquid chromatography system with an innovative solvent evaporation interface. J. Chromatogr. A.2006,1137(1):42-48.
    [34]Chen XG, Kong L, Su XY, Fu HJ, Ni JY, Zhao RH, Zou HF. Separation and identification of compounds in Rhizoma chuanxiong by comprehensive two-dimensional luquid chromatography coupled to mass spectrometry. J. Chromatogr. A.2004,1040(2):169-178.
    [35]Venkatramani CJ, Zelechonok Y. An automated orthogonal two-dimensional liquid chromatography. Anal.Chem.2003,75(14):3484-3494.
    [36]Gray MJ, Dennis GR, Slonecker PJ, Shalliker RA. Evaluation of the two-dimensional reversed-phase-reversed-phase separations of low-molecular mass polystyrenes. J. Chromatogr. A.2003,1015(1-2):89-98.
    [37]Gray MJ, Dennis GR, Slonecker PJ, Shalliker RA. Comprehensive two-dimensional separations of complex mixtures using reversed-phase-reversed-phase liquid chromatography. J. Chromatogr. A.2004,1041(1-2):101-110.
    [38]Rogatsky E, Tomuta V, Cruikshank G, Vele L, Jayatillake H, Stein D. Direct sensitive quantitaive LC/MS analysis of C-peptide from human urine by two dimensional reverse phase/reverse phase high-performance liquid chromatography. J. Sep. Sci. 2006,29(4):529-537.
    [39]Venkatramani CJ, Patel A. Towards a comprehensive 2-D-LC-MS separation J. Sep. Sci. 2006,29(4):510-518.
    [40]Riggs L, Sioma C, Regnier FE. Automated signature peptide approach for proteomics. J. Chromatogr. A.2001,924(1-2):359-368.
    [41]Hsieh YLF, Wang HQ, Elicone C, Mark J, Martin SA, Regnier F. Automated analytical system for the examination of protein primary structure. Anal.Chem.1996,68(3):455-462.
    [42]Apffel A, Chakel JA, Hancock WS, Souders C, Mtimkulu T, Pungor E. Application of multidimensional affinity high-performance liquid chromatography and electrospray ionizaion liquid chromatography mass spectrometry to the characterization of glycosylation in single-chain plasminogen activator initial results. J. Chromatogr. A.1996,750(1-2):35-42.
    [43]Hata K, Morisaka H, Hara K, Mima J, Yumoto N, Tatsu Y, Furuno M, Ishizuka N, Ueda M. Two-dimensional HPLC on-line analysis of phosphopeptides using titania and monolithic columns. Anal. Biochem.2006,350(2):292-297.
    [44]Hu LH, Li X, Feng S, Kong L, Su XG, Chen XG, Oln F, Ye ML, Ishizuka N, Ueda M. Comprehensive two-dimensional HPLC to study the interaction of multiple components in Rheum palmatum L. with HSA by couplinga silica-bonded HSA column to a silica monolithic ODS column. J. Sep. Sci.2006,29(6):881-888.
    [45]Lecchi P, Gupte AR, Perez RE, Stockert LV, Abramson FP. Size-exclusion chromatography in multidimensional separation schemes for proteome analysis. J. Biochem. Biophys. Methods.2003,56(1-3):141-152.
    [46]Davis MT, Beierle J, Bures ET, McGinley MD, Mort J, Robinson JH, Spahr CS, Yu W, Luethy R, Patterson SD. Automated LC-LC-MS-MS platform using binary ion-exchange and gradient reversed-phase chromatography for improved proteomic analyses J. Chromatogr. B. 2001,752(2):281-291.
    [47]Vissers JPC, Van Soest REJ, Chervet JP, Cramers CA. Two-dimensional capillary liquid chromatography based on microfractionation. J. Microcol. Sep.1999,11(4):277-286.
    [48]Boersema PJ, Divecha N, Heck AJR, Mohammed S. Evaluation and optimization of ZIC-HILIC-RP as an alternative MudPIT strategy. J. Proteome Res.2007,6(3):937-946.
    [49]Gilar M, Olivova P, Daly AE, Gebler JC. Two-dimensional separation of peptides using RP-RO-HPLC system with different pH in first and second separation dimensions. J. Sep. Sci. 2005,28(14):1694-1703.
    [50]Zhang ZL, Smith DL, Smith JB. Multiple separations facilitate identification of protein variants by mass spectrometry. Proteomics 2001,1(8):1001-1009.
    [51]Feng BB, Patel AH, Keller PM, Slemmon JR. Fast charaterization of intact proteins using a high-throughput eight-channel parallel liquid chromatography mass spectrometry system. Rapid Commun. Mass Spectrom.2001,15(10):821-826.
    [52]Le Coutre J, Whitelegge JP, Gross A,Turk E, Wright EM, Kaback HR, Faull KF. Proteomics on full-length membrane proteins using mass spectrometry. Biochemistry 2000,39(15):4237-4242.
    [53]Regnier F, Huang G. Future potential of targeted component analysis by multidimensional liquid chromatography mass spectrometry. J. Chromatogr. A. 1996,750(1-2):3-10.
    [54]Giddings JC. Sample dimensionality-a predictor of order-disorder in component peak distribution in multidimensional separation. J. Chromatogr. A.1995,703(1-2):3-15.
    [55]Kok SJ, Hankemeier T, Schoenmakers PJ. Comprehensive two-dimensional liquid chromatography with on-line-fourier-tansform-infrared-spectroscopy detection for the charaterization of copolymers. J. Chromatogr. A.2005,1098(1-2):104-110.
    [56]Adrian J, Esser E, Hellmann G, Pasch H. Two-dimensional chromatography of complex polymers Part 1. Analysis of a graft copolymer by two-dimensional chromatography with on-line FTIR detection. Polymer 2000,41 (7):2439-2449.
    [57]Van Der Horst A, Schoenmakers PJ. Comprehensive two-dimensional liquid chromatography of polymers. J. Chromatogr. A.2003,1000(1-2):693-709.
    [58]Siewing A, Lahn B, Braun D, Pasch H. Two-dimensional chromatography of complex ploymers. Ⅳ. Analysis of the grafting reaction of methyl methacrylate onto polybutadiene. J. Polym. Sci. Pol. Chem.2003,41 (20):3143-3148.
    [59]Siewing A, Schierholz J, Braun D, Hellmann G, Pasch H. Two-dimensional chromatography of complex polymers,2-Analysis of the grafting reaction of methyl methacrylate onto EPDM. Macromol. Chem. Phys.2001,202(14):2890-2894.
    [60]Graef SM, Van Zyl AJP, Sanderson RD, Klumperman B, Pasch H. Use of gradient, critical and two-dimensional chromatography in the analysis of styrene-and methyl methacrylate-grafted epoxidized natural rubber. J. Appl. Polym. Sci.2003,88(10):2530-2538.
    [61]Whelan TJ, Shalliker RA, McIntyre C, Wilson MA. Development of a multidimensional high-performance liquid chromatography (HPLC) separation for Bayer humic substances. Ind. Eng. Chem. Res.2005,44(9):3229-3237.
    [62]Gray MJ, Sweeney AP, Dennis GR, Slonecker PJ, Shalliker RA. Comprehensive coupled reversed-phase reversed-phase separations of a complex isomeric mixture. Analyst 2003,128(6):598-604.
    [63]Chen XG, Hu LH, Su XY, Kong L, Ye ML, Zou HF. Separation and detection of compounds in Honeysuckle by integration of ion-exchange chromatography fractionation with reversed-phase liquid chromatography-atmospheric pressure chemical ionization mass spectrometer and matrix-assisted laser desorption/ionizaiton time-of-flight mass spectrometry analysis. J. Pharm. Biomed. Anal.2006,40(3):559-570.
    [64]Ma S, Chen LX, Luo GA, Ren KN, Wu JF, Wang YM. Off-line comprehensive two-dimensional high-performance liquid chromatography system with size exclusion column and reverse phase column for separation of complex traditional Chinese medicine Qingkailing injection. J. Chromatogr. A.2006,1127(1-2):47-52.
    [65]Wong V, Sweeney AP, Shalliker RA. Using analytical multidimensional isocratic HPLC methods of separation to isolate active constituents in natural products. J. Sep. Sci. 2004,27(1-2):47-52.
    [66]Jandera P, Skerikova V, Rehova L, Hajek T, Baldrianova L, Skopova G, Kellner V, Horna A. RP-HPLC analysis of phenolic compounds and flavonoids in beverages and plant extracts using a CoulArray detector. J. Sep. Sci.2005,28(9-10):1005-1022.
    [67]Dugo P, Favoino O, Luppino R, Dugo G, Mondello L. Comprehensive two-dimensional normal-phase (adsorption)-reversed-phase liquid chromatography. Anal.Chem. 2004,76(9):2525-2530.
    [68]Ikegami T, Hara T, Kimura H, Kobayashi H, Hosoya K, Cabrera K, Tanaka N. Two-dimensional reversed-phase liquid chromatography using two monolithic silica C18 columns and different mobile phase midifiers in the two dimensions. J. Chromatogr. A. 2006,1106(1-2):112-117.
    [69]Murahashi T. Comprehensive two-dimensional high-performance liquid chromatography for the separation of polycyclic aromatic hydrocarbons. Analyst 2003,128(6):611-615.
    [70]Tanaka N, Kimura H, Tokuda D, Hosoya K, Ikegami T, Ishizuka N, Minakuchi H, Nakanishi K, Schintani Y, Furuno M, Cabrera K. Simple and comprehensive two-dimensional reversed-phase HPLC using monolithic silica columns. Anal.Chem.2004,76(5):1273-1281.
    [71]Stoll DR, P. LX, Wang XO, Carr PW, Porter SEG, Rutan SC. Fast, comprehensive two-dimensional liquid chromatography. J. Chromatogr. A.2007,1168:3-43.
    [72]Davis JM, Giddings JC. Statistical theory of component overlap in multicomponent chromatograms. Anal.Chem.1983,55(3):418-424.
    [73]Liu SY, Davis JM. Dependence on saturation of average minimum resolution in two-dimensional statistical-overlap theory:Peak overlap in saturated two-dimensional separations. J. Chromatogr. A.2006,1126(1-2):244-256.
    [74]Davis JM. Statistical-overlap theory for elliptical zones of high aspect ratio in comprehensive two-dimensional separations. J. Sep. Sci.2005,28(4):347-359.
    [75]Davis JM. Justification of probability density function for resolution in statistical models of overlap. Chromatographia 1997,44(1-2):81-90.
    [76]Davis JM. Statistical-theories of peak overlap in chromatography. Adv. Chromatogr. 1994,34:109-176.
    [77]Samuel C, Davis JM. Application of statistical-overlap theory to gas chromatograms simulated on intermediate-polarity and polar stationary phases. J. Microcol. Sep. 2000,12(4):211-225.
    [78]Marin M, Herman DP, Guiochon G. Probability distributions of the number of chromatographically resolved peaks and resolvable components in mixtures. Anal.Chem. 1986,58(11):2200-2222-2207.
    [79]Nagels LJ, Creten WL, Haverbeke LV. Determination limits in high-performance liquid chromatography of plant phenolic compounds with an ultraviolet detector. Anal.Chem. 1985,173:185-192.
    [80]Oros FJ, Davis JM. Comparison of statistical theories of spot overlap in two-dimensional separations and verification of means for estimating the number of zones. J. Chromatogr. A. 1992,591(1-2):1-18.
    [81]Giddings JC. Two-dimensional separations:concept and promise. Anal.Chem. 1984,56:1258A-1270A.
    [82]Jandera P. Column selectivity for two-dimensional liquid chromatography. J. Sep. Sci. 2006,29(12):1763-1783.
    [83]Jandera P, Novotna K, Kolarova L, Fischer J. Phase system selectivity and peak capacity in liquid column chromatography-the impact on two-dimensional separations. Chromatographia 2004,60:S27-S35.
    [84]Liu Z, Patterson DG, Lee ML. Geometric approach to factor analysis for the estimation of orthogonality and practical peak capacity in comprehensive two-dimensional separations. Anal.Chem.1995,67:3840-3845.
    [85]Slonecker PJ, Li XR, Dorsey JG. Informational orthogonality of two-dimensional chromatographic. Anal.Chem.1996,68(4):682-689.
    [86]Gilar M, Olivova P, Daly AE, Gebler JC. Orthogonality of separation in two-dimensional liquid chromatography. Anal.Chem.2005,77(19):6426-6434.
    [87]Liu YM, Guo ZM, Jin Y, Xue XY, Xu Q, Zhang FF, Liang XM. "Click oligo(ethylene glycol)":An excellent orthogonal stationary phase to C18 for two-dimensional reversed-phase/reversed-phase liquid chromatography. J. Chromatogr. A.2008,1206:153-159.
    [88]Xue MY, Huang HX, Ke YX, Chu CH, Jin Y, Liang XM. "Click dipeptide":A novel stationary phase applied in two-dimensional liquid chromatography. J. Chromatogr. A. 2009,1216:8623-8629.
    [89]Sweeney AP, Shalliker RA. Development of a two-dimensional liquid chromatography system with trapping and sample enrichment capabilities. J. Chromatogr. A. 2002,968(1-2):41-52.
    [90]Chen JZ, Balgley BM, Devoe DL, Lee CS. Capillary isoelectric focusing-based multidimensional concentration/separation platform for proteome analysis. Anal.Chem. 2003,75(13):3145-3152.
    [91]Unger KK, Racaityte K, Wagner K, Miliotis T, Edholm LE, Bischoff R, Marko-Varga G. Is multidimensional high performance liquid chromatography (HPLC) an alternative in protein analysis to 2D gel electrophoresis? J. High Resolut. Chromatogr.2000,23(3):259-265.
    [92]Moore AW, Jorgenson JW. Comprehensive 3-dimensional separation of peptides using size-exclusion chromatography reversed-phase liqiud chromatography optically gated capillary zone electrophoresis. Anal.Chem.1995,67(19):3456-3463.
    [93]Winther B, Reubsaet JLE. Application of supplementary flow in comprehensive 2D liquid chromatography combining SECand RPLC. J. Sep. Sci.2005,28(5):477-482.
    [94]Andersson T, Hyotylainen T, Riekkola ML. Analysis of phenols in pyrolysis oils by gel permeation chromatography and multidimensional liquid chromatography. J. Chromatogr. A. 2000,896(1-2):343-349.
    [95]Tyan YC, Wu HY, Lai WW, Su WC, Liao PC. Proteomic profiling of human pleural effusion using two-dimensional nano liquid chromatography tandem mass spectrometry. J. Proteome Res.2005,4(4):1274-1286.
    [96]Millea kA, Kass IJ, Cohen SA, Krull IS, Gebler JC, Berger SJ. Evaluation of multidimensional (ion-exchange/reversed-phase) protein separations using linear and step gradients in the first dimension. J. Chromatogr. A.2005,1079(1-2):287-298.
    [97]Haefliger OP. Universal two-dimensional HPLC technique for the chemical analysis of complex surfactant mixtures. Anal.Chem.2003,75(3):371-378.
    [98]Liu HJ, Berger SJ, Chakraborty AB, Plumb RS, Cohen SA. Multidimensional chromatography coupled to electrospray ionization time-of-flight mass spectrometry as an alternative to two-dimensional gels for indentification and analysis of complex mixtures fo intact proteins. J. Chromatogr. B.2002,782(1-2):267-289.
    [99]Machtejevas E, John H, Wagner K, Standker L, Marko-Varga G, Forssmann WG, Bischoff R, Unger KK. Automated-multi-dimensional liquid chromatography:sample pretaration and identification of peptides from human blood filtrate. J. Chromatogr. B. 2004,803(1):121-130.
    [100]Murphy RE, Schure MR, Foley JP. Effect of sampling rate on resolution in comprehensive two-dimensional liquid chromatography. Anal.Chem.1998,70(8):1585-1594.
    [101]Xiang YQ, Yan BW, Yue BF, McNeff CV, Carr PW, Lee ML. Elevated-temperature ultrahige-pressure liquid chromatography using very small polybutadiene-coated nonporous zirconia particles. J. Chromatogr. A.2003,983(1-2):83-89.
    [102]Stoll DR, Carr PW. Fast, comprehensive two-dimensional HPLC separation of tryptic peptides based on high-temperature HPLC. J. Am. Chem. Soc 2005,127(14):5034-5035.
    [103]Unger KK, Jilge G, Janzen R, Giesche H, Kinkel JN. Non-porous microparticulate supports in high-performance liquid chromatography (HPLC) of biopolymers-concepts, realization and prospects. Chromatographia 1986,22:379-380.
    [104]Guiochon G, Marchetti N, Mriziq K, Shalliker RA. Implementations of two-dimensional liquid chromatography. J. Chromatogr. A.2008,1189(1-2):109-168.
    [105]Opiteck GJ, Lewis KC, Jorgenson JW, Anderegg RJ. Comprehensive on-line LC/LC/MS of proteins. Anal.Chem.1997,69(8):1518-1524.
    [106]Stoll DR, Carr PW. Comprehensive two-dimensional HPLC separation of tryptic peptides based on high-temperature HPLC. J. Am. Chem. Soc 2005,127(14):5034-5035.
    [107]Motoyama A, Venable JD, Ruse CI, Yates JR. Automated ultra-high-pressure multidimensional protein identification technology (UHP-MudPIT) for improved peptide identification of proteomic samples. Anal.Chem.2006,78(14):5109-5118.
    [108]Stoll DR, Cohen JD, Carr PW. Fast, comprehensive on-line two-dimensional high performance liquid chromatography through the use of high temperature ultra-fast elution reversed-phase liquid chromatography J. Chromatogr. A.2006,1122(1-2):123-137.
    [109]Tian H, Xu J, Xu Y, Guan Y. Multidimensional liquid chromatography system with an innovative solvent evaporation interface. J. Chromatogr. A.2006,1137(1):42-48.
    [110]Murphy RE, Schure MR, Foley JP. Effect of sampling rate on resolution in comprehensive two-dimensional liquid chromatography. Anal.Chem.1998,70(8):1585-1594.
    [111]Giddings JC. Sample dimensionality-a predictor of order-disorder in component peak distribution in multidimensional separation. J. Chromatogr. A.1995,703(1-2):3-15.
    [112]Gilar M, Olivova P, Daly AE, Gebler JC. Orthogonality of separation in two-dimensional liquid chromatography. Anal.Chem.2005,77(19):6426-6434.
    [113]Watson NE, Davis JM, Synovec RE. Observations on "orthogonality" in comprehensive two-dimensional separations. Anal.Chem.2007,79:7924-7927.
    [114]Stoll DR, Wang XL, Carr PW. Comparison of the practical resolving power of one-and two-dimensional high-performance liquid chromatography analysis of metabolomic samples. Anal.Chem.2008,80:268-278.
    [115]Seeley JV. Theoretical study of imcomplete sampling of the first dimension in comprehensive two-dimension chromatography. J. Chromatogr. A.2002,962(1-2):21-27.
    [116]Horie K, Kimura H, Ikegami T, Iwatsuka A, Saad N, Fiehn O, Tanaka N. Calculating optimal modulation periods to maximize the peak capacity in two-dimensional HPLC. Anal.Chem.2007,79(10):3764-3770.
    [117]Murahashi T. Comprehensive two-dimensional high-performance liquid chromatography for the separation of polycyclic aromatic hydrocarbons. Analyst 2003,128(6):611-615.
    [118]Cacciola F, Jandera P, Blahova E, Mondello L. Development of different comprehensive two dimensional systems for the separation of phenolic antioxidants. J. Sep. Sci.2006,29(16):2500-2513.
    [119]Dixon SP, Pitfield ID, Perrett D. Comprehensive multi-dimensional liquid chromatographic separation in biomedical and pharmaceutical analysis:a review. Biomed. Chromatogr.2006,20(6-7):508-529.
    [120]Opiteck GJ, Jorgenson JW, Anderegg RJ. Two-dimensional SEC/RPLC coupled to mass spectrometry. Anal.Chem.1997,69(13):2283-2291.
    [121]Porter SEG, Stoll DR, Rutan SC, Carr PW, Cohen JD. Analysis of four-way two-dimensional liquid chromatography-diode array data:Application to metabolomics. Anal.Chem.2006,78(15):5559-5569.
    [122]Gray M, Dennis GR, Wormell P, Andrew Shalliker R, Slonecker P. Two dimensional reversed-phase-reversed-phase separations:Isomeric separations incorporating C18 and carbon clad zirconia stationary phases. J. Chromatogr. A,2002,975:285-297.
    [123]Marchetti N, Fairchild JN, Guiochon G. Comprehensive off-line two-dimensional liquid chromatography application to the separation of peptide digests. Anal.Chem. 2008,80(8):2756-2767.
    [124]Jiang XL, Van Der Horst A, Lima V, Schoenmakers PJ. Comprehensive two-dimensional liquid chromatography for the characterization of functional acrylate polymers. J. Chromatogr. A.2005,1076(1-2):51-61.
    [125]P. D, Kumm T, Crupi ML, Cotroneo A, Mondello L. Comprehensive two-dimensional liquid chromatography combined with mass spectrometric detection in the analyses of triacylglycerols in natural lipidic matrixes. J. Chromatogr. A. 2006,1112(1-2):269-275.
    [126]Tanaka N, Kimura H, Tokuda D, Hosoya K, Ikegami T, Ishizuka N, Minakuchi H, Nakanishi K, Shintani Y, Furuno M, Cabrera K. Simple and comprehensive two-dimensional reversed-phase HPLC using monolithic silica column. Anal.Chem.2004,76(5):1273-1281.
    [127]Vollmer M, Horth P, Nagele E. Optimizaion of two-dimensional off-line LC/MS separations to improve resolution of complex proteomic samples. Anal.Chem. 2004,76(17):5180-5185.
    [128]Stoll DR, P. LX, Wang XO, Carr PW, Porter SEG, Rutan SC. Fast, comprehensive two-dimensional liquid chromatography. J. Chromatogr. A.2007,1168:3-43.
    [129]Gilar M, Olivova P, Daly AE, Gebler JC. Two-dimensional separation of peptides using RP-RP-HPLC system with different pH in first and second separation dimensions. J. Sep. Sci.2005,28(14):1694-1703.
    [130]Ikegami T, Hara T, Kimura H, Kobayashi H, Hosoya K, Cabrera K, Tanaka N. Two-dimensional reversed-phase liquid chromatography using two monolithic silica C18 columns and different mobile phase modifiers in the two dimensions. J. Chromatogr. A. 2006,1106(1-2):112-117.
    [131]Liu YM, Xu Q, Xue XY, Zhang FF, Liang XM. Two-dimensional LC-MS analysis of components in Swertia franchetiana Smith. J. Sep. Sci.2008,31:935-944.
    [132]Hu LH, Chen XG, Kong L, Su XY, L. YM, Zou HE Improved performance of comprehensive two-dimensional HPLC separation of traditional Chinese medicines by using a silica monolithic column and normalization of peak heights. J. Chromatogr. A. 2005,1092(2):191-198.
    [133]Cacciola F, Jandera P, Hajdu Z, Cesla P, Mondello L. Comprehensive two-dimensional liquid chromatography with parallel gradients for separation of phenolic and flavone antioxidants. J. Chromatogr. A.2007,1149(1):73-87.
    [134]Gray MJ, Dennis GR, Slonecker PJ, Shalliker RA. Utilising retention correlation for the separation of oligostyrenes by coupled-column liquid chromatography. J. Chromatogr. A. 2005,1073(1-2):3-9.
    [135]Jackson PT, Schure MR, Weber TP, Carr PW. Intermolecular interactions involved in solute retention on carbon media in reversed-phase high-performance liquid chromatogaphy. Anal.Chem.1997,69(3):416-425.
    [136]Venkatramani CJ, Patel A. Towards a comprehensive 2-D-LC-MS separation. J. Sep. Sci.2006,29(4):510-518.
    [137]Verma SC, Singh NP, Sinha AK. Determination and locational variations in the quantity of hydroxyanthraquinones and their glycosides in rhizomes of Rheum emodi using high-performance liquid chromatography. J. Chromatogr. A.2005,1097(1-2):59-65.
    [138]Su XY, Kong L, Li X, Chen XG, Guo M, Zou HF. Biological fingerprinting analysis by liquid chromatography/mass spectrometry for evaluation of DNA structural selectivity of multiple compounds in natural products. Journal of Combinatorial Chemistry 2006,8(4):544-550.
    [139]Hu LH, Li X, Feng S, Kong L, Su XG, Chen XG, Oln F, Ye ML, Zou HF. Comprehensive two-dimensional HPLC to study the interaction of multiple components in Rheum palmatum L. with HSA by coupling a silica-bonded HSA column to a silica monolithic ODS column. J. Sep. Sci.2006,29(6):881-888.
    [140]Li WK, Chan CL, Lueng HW. Liquid chromatography-atmospheric pressure chemical ionization mass spectrometry as a tool for the characterization of anthraquinone derivatives from Chinese herbal medicine. Journal of Pharmacy and Pharmacology 2000,52(6):723-729.
    [141]Ye M, Han J, Chen HB, Zheng JH, Guo D. Analysis of phenolic compounds in rhubarbs using liquid chromatography coupled with electrospray ionization mass spectrometry. J. Am. Soc. Mass. Spectrom.2007,18(1):82-91.
    [142]Alpert AJ. Hydrophilic-interaction chromatography for the separation of peptides, nucleic-acids and other polar compounds. J. Chromatogr.1990,499:177-196.
    [143]Hemstrom P, Irgum K. Hydrophilic interaction chromatography. J. Sep. Sci. 2006,29(12):1784-1821.
    [144]Sun P, Wang C, Armstrong DW, Peter A, Forro E. Separation of enantiomers of beta-lactams by HPLC using cyclodextrin-based chiral stationary phases. J. Liq. Chromatogr. & Rel. Tech.2006,29(13):1847-1860.
    [145]Armstrong DW, Wang X, Chang LW, Ibrahim H, Reid GR, Beesley TE. Comparison of the selectivity and retention of beta-cyclodextrin vs. heptakis-2,3-O-dimethyl-beta-cyclodextrin LC stationary phases for structural and geometric isomers. J. Liq. Chromatogr.& Rel. Tech.1997,20(20):3297-3308.
    [146]Tang Y, Zukowski J, Armstrong DW. Investigation on enantiomeric separations of fluorenylmethoxycarbonyl amino acids and peptides by high-performance liquid chromatography using native cyclodextrins as chiral stationary phases. J. Chromatogr. A. 1996,743(2):261-271.
    [147]Panda SK, Schrader W, Andersson JT. Beta-cyclodextrin as a stationary phase for the group separation of polycyclic aromatic compounds in normal-phase liquid chromatography. J. Chromatogr. A.2006,1122(1-2):88-96.
    [148]Berthod A, Chang SSC, Kullman JPS, Armstrong DW. Practice and mechanism of HPLC oligosaccharide separation with a cyclodextin bonded phase. Talanta 1998,47(4):1001-1012.
    [149]Risley DS, Strege MA. Chiral separations of polar compounds by hydrophilic interaction chromatography with evaporative light scattering detection. Anal.Chem. 2000,72(8):1736-1739.
    [150]Strege MA. Hydrophilic interaction chromatography electrospray mass spectrometry analysis of polar compounds for natural product drug discovery. Anal.Chem. 1998,70(13):2439-2445.
    [151]Guo ZM, Lei AW, Zhang YP, Xu Q, Xue XY, Zhang FF, Liang XM. "Click saccharides":novel separation materials for hydrophilic interaction liquid chromatography. Chem. Comm.2007,24:2491-2493.
    [152]陈尚卫,虞锐鹏,松朱,吴胜芳,军戴.高效液相色谱法同时测定蛹虫草中四种核苷类活性成分.食品安全与检测2006,22(6):107-109.
    [153]廖春丽,方改霞,王莲哲,王国贞,万亚涛.蛹虫草主要有效成分分析.安微农业科学2008,36(12):5050-5052.
    [154]杨听,王瑞华,涂秩平,胡事君,陈宝林,李高.高效液相色谱法同时测定人工蛹虫草子实体中核苷类成分的含量.中国医院药学杂志2007,27(8).
    [155]Fan H, Yang FQ, Li SP. Determination of purine and pyrimidine bases in natural and cultured Cordyceps using optimum acid hydrolysis followed by high performance liquid chromatography. Journal of Pharmaceutical and Biomedical Analysis 2007,45:141-144.
    [156]Yuan JP, Zhao SY, Wang JH, Kuang HC, Liu X. Distribution of Nucleosides and Nucleobases in Edible Fungi. J. Agric. Food Chem.2008,56(3):809-815.
    [157]Li SP, Li P, Dong TX, Tsim WK. Determination of nucleosides in natural cordyceps sinensis and cultured cordyceps mycelia by capillary electrophoresis. Electrophoresis 2001,22:144-150.
    [158]Dugo P, Cacciola F, Kumm T, Dugo G, Mondello L. Comprehensive multidimensional liquid chromatography:Theory and applications. J. Chromatogr. A. 2008,1184:353-368.
    [159]Fairchild JN, Horvath K, Guiochon G. Approaches to comprehensive multidimensional liquid chromatography systems. J. Chromatogr. A.2009,1216:1363-1371.
    [160]Sweeney AP, Shalliker RA. Development of a two-dimensional liquid chromatography system with trapping and sample enrichment capabilities. J. Chromatogr. A. 2002,968(1-2):41-52.
    [161]Davis MT, Beierle J, Bures ET, McGinley MD, Mort J, Robinson JH, Spahr CS, Yu W, Luethy R, Patterson DG. Automated LC-LC-MS-MS platform using binary ion-exchange and gradient reversed-phase chromatography for improved proteomic analyses. J. Chromatogr. B.2001,752(2):281-291.
    [162]Chen JZ, Balgley BM, Devoe DL, Lee CS. Capillary isoelectric focusing-based multidimensional concentration/separation platform for proteome analyses. Anal.Chem. 2003,75(13):3145-3152.
    [163]Hu LH, Chen XG, Kong L, Su XY, Ye ML, Zou HF. Improved performance of comprehensive two-dimensional HPLC separation of traditional Chinese medicines by using a silica monolithic column and normalizaion of peak heights. J. Chromatogr. A. 2005,1092(2):191-198.
    [164]Opiteck GJ, Lewis KC, Jorgenson JW, Anderegg RJ. Comprehensive on-line LC/LC/MS of proteins. Anal.Chem.1997,69(8):1518-1524.
    [165]Stroink T, Wiese G, Lingeman H, Bult A, Underberg WJM. Development of an on-line size exclusion chromatographic-reversed-phase liquid chromatographic two-dimensional system for the quantitative determination of peptides with concentration prior to reversed-phase liquid chromatographic separation. Anal.Chim. Acta. 2001,444(2):193-203.
    [166]Wagner K, Racaityte K, Unger KK, Miliotis T, Edholm LE, Bischoff R, Marko-Varga G. Protein mapping by two-dimensional high performance liquid chromatography. J. Chromatogr. A.2000,893(2):293-305.
    [167]Wagner K, Miliotis T, Marko-Varga G, Bischoff R, Unger KK. An automated on-line multidimensional HPLC system for protein an peptide mapping with integrated sample preparation. Anal.Chem.2002,74(4):809-820.
    [168]Opiteck GJ, Jorgenson JW, Anderegg RJ. Two-dimensional SEC/RPLC coupled to mass spectrometry for the analysis of peptides. Anal.Chem.1997,69(13):2283-2291.
    [169]Opiteck GJ, Ramirez SM, Jorgenson JW, Underberg WJM. Comprehensive two-dimensional high-performance liquid chromatography for the isolation or overexpressed proteins and proteome mapping. Anal. Biochem.1998,258(2):349-361.
    [170]Unger KK, Racaityte K, Wagner K, Miliotis T, Edholm LE, Bischoff R, Marko-Varga G. Is multidimensional high performance liquid chromatography (HPLC) an alternative in protein analysis to 2D gel electrophoresis? J. High Resolut. Chromatogr. 2000,23(3):259-265.
    [1714]Moore AW, Jorgenson JW. Comprehensive 3-dimensional separation of peptides using size-exclusion chromatography reversed-phase liqiud chromatography optically gated capillary zone electrophoresis. Anal.Chem.1995,67(19):3456-3463.
    [172]Winther B, Reubsaet JLE. Application of supplementary flow in comprehensive 2D liquid chromatography combining SEC and RPLC. J. Sep. Sci.2005,28(5):477-482.
    [173]Andersson T, Hyotylainen T, Riekkola ML. Analysis of phenols in pyrolysis oils by gel permeation chromatography and multidimensional liquid chromatography. J. Chromatogr. A.2000,896(1-2):343-349.
    [174]Tian HZ, Xu J, Xu Y, Guan YF. Multidimensional liquid chromatography system with an innovative solvent evaporation interface. J. Chromatogr. A.2006,1137(1):42-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700