用户名: 密码: 验证码:
Gemini/DNA复合膜在气/液界面上的性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与传统表面活性剂相比,Gemini表面活性剂具有较低的临界胶束浓度、较高的表面活性、较低的C20值,具有良好的润湿、加溶、起泡及钙皂分散作用等。DNA作为一种阴离子电解质可以与阳离子Gemini表面活性剂发生静电作用。本文主要通过LB膜技术、原子力显微镜、傅里叶红外光谱、红外反射吸收光谱以及圆二色光谱等研究了季铵盐型阳离子Gemini表面活性剂(18-s-18)与DNA(双链DNA-dsDNA和单链DNA-ssDNA)之间的相互作用。
     18-s-18与ssDNA在界面上主要形成液态扩张膜,本文考查了连接基团对π-A等温线的影响。结果表明,复合体系的分子面积随着连接基团的增加而增加,s=10时达到最大值。这主要是由于当s<6时连接基团呈短棒状、平躺于界面,当s≥6连接基团的柔性和疏水性增强,在气/液界面上呈拱形甚至倒U型结构。
     利用红外光谱研究了18-s-18/ssDNA和18-s-18/dsDNA体系中DNA的构型。结果显示,气/液界面上18-s-18/ssDNA和18-s-18/dsDNA复合单分子膜中DNA的构型分别是单链DNA和双螺旋DNA;转移到基片后,双螺旋DNA中规整的碱基堆积遭到破坏,结构发生扭曲、变形,导致碱基中C=O吸收发生红移,但它仍然具有双链结构。利用圆二色光谱探讨了湿度对Gemini/dsDNA复合膜中DNA构型的影响。结果发现,当相对湿度为85%时,18-3-18/dsDNA和18-6-18/dsDNA复合膜中的DNA仍呈B型结构;当相对湿度降低为15%时,CD光谱中只出现了一个峰强更强的负峰,这说明dsDNA在复合膜中形成了左手螺旋的三级结构ψ-相,DNA分子紧密的堆积在一起形成高度致密的结构。另外,在18-8-18/dsDNA复合体系的LB膜中,DNA分子即在侧向聚集,不易形成三级结构,因此在相对湿度较低的情况下,仍然是以B类构型存在的。
     本文研究了DNA单双链对18-s-18/DNA复合膜性质的影响,利用AFM考查了复合体系的LB和LS膜的形貌。LS膜可获得复合膜上表面和下表面的信息而LB膜可探讨液流对其结构的影响。在18-s-18/dsDNA和18-s-18/ssDNA体系中,dsDNA和ssDNA分子并不是平躺于气/液界面上,而是呈“┒或┎”状排列的。当转移到LB膜中后,DNA分子发生了不同程度的卷曲、团聚,复合膜中纤维结构的高度达7-10 nm。
Compared with the conventional surfactant, Gemini surfactant shows lower critical micelle concentration (CMC), higher surface activity, lower C2o value, better wettability, solubility, foamability and lime soap dispersing power. As a kind of anionic polyelectrolyte, DNA could produce the electrostatic attraction with cationic Gemini surfactant. Therefore, in this dissertation, the interaction between cationic Gemini surfactant(18-s-18) and double-strand DNA/single-strand DNA(dsDNA/ssDNA) was investigated by means of LB technology, atom force microscope, FT-IR spectra, IRRAS srectra and Circular Dichroism srectra ect.
     The liquid-expanded films are formed on ssDNA subphase at the air/water interface. In this paper, the impact of spacers onπ-A isotherms was investigated. Results show that molecule area increases with the spacer and the maximum area appears at s=10. This is due to that the spacer is rigid and lies on the air/water interface when s<6, while when the spacer is flexible(s≥6), the increasing flexibility and hydrophobility of spacer leads to form the arch shape and even reverse U-shape conformation at the air/water interface.
     The comformation of DNA in 18-s-18/ssDNA and 18-s-18/ssDNA system are studied by infrared spectrum. The FT-IR spectra imply that the comformation of DNA in 18-s-18/ssDNA and 18-s-18/ssDNA monolayers is respective single-strand DNA and double helix DNA. However, the regular bases stacking are destroyed in double helix DNA after complex monolayers transferred onto substrates. The distortion and deformation of Double helix could lead to the red shift of C=O absorption. Nevertheless, it still has a double-stranded structure in 18-s-18/ssDNA complex system. We investigated the impact of the humidity on the comformation of DNA in Gemini/dsDNA complex using CD srectra. The result shows that humidity has a significant effect on the conformation of DNA. The DNA is like-B-form conformation at 85%r.h. in 18-3-18/dsDNA and 18-6-18/dsDNA complex. However, at 15%r.h., only a negative peak appears in CD srectra. This implies that Gemini/DNA complex is a typical chiralψ-phase, in which the DNA molecules are tightly packed together to fabricate highly condensed structure with a left-handed tertiary conformation. Because the surface morphology of 18-8-18/dsDNA is flat and not easy to from the tertiary structure, DNA remains the like-B-form conformation in the case of the lower relative humidity.
     We studied the impact of ssDNA and dsDNA on the properties of Gemini/DNA complex. LS films are available to get the information of on the surface and lower surface, while LB films would explore the influence of the liquidstream on the structure. In 18-s-18/ssDNA and 18-s-18/ssDNA systems, dsDNA and ssDNA do not flat lie at the air/water interface, but show the "┓or┎"-like arrangement. After transferred to LB films, DNA molecules appear curve and aggregation, the height of the fiber structure is 7-10 nm.
引文
[1]陈琛,袁立丽.LB膜技术的应用综述.合肥师范学院学报.2009,27(3):94-96
    [2]江龙.胶体化学概论[M].北京:科学出版社,2002
    [3]赵国玺,朱埗珧.表面活性剂作用原理[M].北京:中国轻工业出版社,2003
    [4]欧阳健明,《LB膜原理和应用》.广州:暨南大学出版社,1999
    [5]傅献彩,沈文霞等.物理化学.北京:高等教育出版社,2006
    [6]何平笙,《二维状态下的聚集》.合肥:中国科学技术大学出版社,2007
    [7]Yuan J, Liu M H. Chiral Molecular Assemblies from a Novel Achiral Amphiphilic 2-(Heptadecyl) Naphtha[2,3]imidazole through Interfacial Coordination. J. AM. CHEM. SOC.2003,125,5051-5056
    [8]Hong X, Li C, Jiang S G, Wang X S, Zhang B W, Liu M H. Supramolecular chirality of the hydrogen-bonded complex Langmuir-Blodgett film of achiral barbituric acid and melamine. Journal of Colloid and Interface Science 285 (2005) 680-685
    [9]Hong X, Li C, Jiang S G, Wang X S, Zhang B W, Liu M H. Self-Assembled Spiral Nanoarchitecture and Supramolecular Chirality in Langmuir-Blodgett Films of an Achiral Amphiphilic Barbituric Acid. J. Am. Chem. Soc.2004,126:1322-1323
    [10]王文军,刘金凤.LB膜的制备及其在光学中的应用[J].应用光学.2004,25(1):52-54
    [11]卢崇考,关桂芳.LB膜技术及其在传感器中的应用[J].传感器技术.1992(4):1-7
    [12]Fendler J H. Atomic and molecular clusters in membrane mimetic chemistry[J]. Chemical Reviews.1987,87(5):877-899
    [13]苗莉,徐瑞松,马跃良.Sn02:F导电薄膜的制备方法和性能表征.材料导报.2008,22(1): 121-123
    [14]冀鸽,强亮生,万山红等.LB技术制备ATO超薄膜[J].稀有金属材料与工程.2007,36(增刊1):900-903
    [15]朱杰,孙润广.LB膜技术在生命科学中的应用研究.生命科学仪器.2005,3(1):5-8
    [16]徐又一,陈元胜,徐志康.光电导性聚酰亚胺的研究(Ⅲ)含咔唑、酞菁铜聚酰亚胺LB膜的制备及其光电导性能.功能材料.1997,28(6):629-632
    17] Watanabe I, Hong K, Rabner M F. Structural control of vacuum-deposited thin films by the use of a Langmuir-Blodgett multilayer. Thin Solid Films,1989:179-199
    [18]华炳增,胡文云,陈衍珍等.硬脂酸镍LB膜对甲醇的电催化氧化.电化学.1997,3(3): 282-286
    [19]Zana R. Dimeric and oligomeric surfactants. Behavior at interfaces and in aqueous solution:a review. Adv. Colloid Interf. Sci.2002,97(1-3):203-251
    [20]Menger F M, Keiper J S. Gemini surfactants. Angew. Chem. Int. Ed.2000,39(11): 1906-1920
    [21]Rosen M J. Geminis:a new generation of surfactants. Chemtech.1993,23(3):30-33
    [22]Zana R, Benrraou M, Rueff R. Alkanediyl-.alpha.,.omega.-bis(dimethylalkylammonium bromide) surfactants.1. Effect of the spacer chain length on the critical micelle concentration and micelle ionization degree[J]. Langmuir.1991,7(6):1072-1075
    [23]Alami E, Levy H, Zana R, et al. Alkanediyl-.alpha.,.omega.-bis(dimethylalkylammoniurn bromide) surfactants.2. Structure of the lyotropic mesophases in the presence of water[J]. Langmuir.1993,9(4):940-944
    [24]Zana R, Levy H. Alkanediyl-[alpha],[omega]-bis(dimethylalkylammonium bromide) surfactants (dimeric surfactants) Part 6. CMC of the ethanediyl-1,2-bis(dimethylalkylammonium bromide) series[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects 1997,127(1-3):229-232
    [25]Zana R, In M, Levy H, et al. Alkanediyl-α,ω-bis(dimethylalkylammonium bromide).7. Fluorescence Probing Studies of Micelle Micropolarity and Microviscosity[J]. Langmuir 1997,13(21):5552-5557
    [26]Alami E, Zana R, et al. Alkanediyl-α,ω-bis (dimethylalkylammonium bromide) Surfactants.3. Behavior at the Air-Water Interface. Langmuir 1993,9(6):1465-1467
    [27]Zhang G C, Zhai X D, Liu M H. Spacer-Controlled Aggregation and Surface Morphology of a Selenacarbocyanine Dye on Gemini Monolayers. J. Phys. Chem. B 2006,110(21):10455-10460
    [28]Jiao T F, Liu M H. Supramolecular Assemblies of a New Series of Gemini-Type Schiff Base Amphiphiles at the Air/Water Interface:In Situ Coordination, Interfacial Nanoarchitectures, and Spacer Effect. Langmuir 2006,22(11):5005-5012
    [29]Shang Y Z, Liu H L, Hu Y. Phase separation and microstructure of mixed surfactants solution containing cationic geminis and traditional anionic surfactant[J]. Chinese Journal of Chemical Engineering.2004,12(4):486-492
    [30]Shang Y Z, Liu H L, Hu Y, et al. Aqueous two-phase system (ATPS) containing gemini (12-3-12,2Br(-)) and SDS I:Phase diagram and properties of ATPS[J]. Journal of Dispersion Science and Technology.2006,27(3):335-339
    [31]Shang Y Z, Liu H L, Hu Y, et al. Phase behavior and microstructures of the Gemini (12-3-12,2Br(-))-SDS-H2O ternary[J]. Colloid and Surfaces A:Phsicochemical and Engineering Aspects.2007,294(1-3):203-211
    [32]Shang Y Z, Xu Y, Liu H L, et al. The formation and properties of multilamellar vesicles in Gemini/SDS/H2O system[J]. Journal of Dispersion Science and Technology.2006, 27(1):105-108
    [33]胡军,周丽绘,李鸿宁等. Gemini表面活性剂联接基团对合成硅基介孔材料结构的影响[J].物理化学学报.2005,21(11):1217-1222
    [34]Li R, Chen Q B, Liu H L, Hu Y. Influence of Spacer of Gemini on the Interactions between Cationic Gemini Surfactant and Stearic Acid in Mixed Monolayers. Langmuir, 2010,26 (12):9342-9350
    [35]Xu J, Han X, Liu H L, et al. Synthesis and optical properties of silver nanoparticles stabilized by gemini surfactant[J]. Colloid and Surfaces A:Phsicochemical and Engineering Aspects.2006,273(1-3):179-183
    [36]Xu J, Han X, Liu H L, et al. Synthesis of monodisperse gold nanoparticles stabilized by gemini surfactant in reverse micelles[J]. Journal of Dispersion Science and Technology. 2005,26(4):473-476
    [37]Xu J, Hu J, Peng C J, et al. A simple approach to the synthesis of silver nanowires by hydrothermal process in the presence of gemini surfactant[J]. Journal of Colloid and Interface Science.2006,298(2):689-693
    [38]Bunton C A, Robinson L, Schaak J. Catalysis of nucleophilic substitutions by micelles of dicationie detergent[J]. J. Org. Chem.1971,36(16):2346-2350
    [39]Zhu Y P, Masuyama A, Okahara M. Preparation and surface-active properties of new amphipathic compounds with two phosphate groups and two long chain alkyl groups[J]. Journal of the American Oil Chemists' Society,1991,68(4) 268-271
    [40]Menger F M, Littau C A. Gemini-surfactants:synthesis and properties [J]. J. Am. Chem. Soc.1991,113(4):1451-1452
    [41]李晓萍,金向军.Gemini表面活性荆的结构特性及其应用[J].白城师范学院学报.2006,20(4):30-34
    [42]金家红,柳长习. Gemini表面活性荆及其应用[J].三峡大学学报(自然科学版).2007,29(6):555-556
    [43]杨燕,刘永兵等.双子表面活性剂的研究进展[J].油气地质与采收率.2005,12(6):67-70
    [44]Qiu L G, Xie A J, Shen Y H. Understan ding the adsorption of cationic gemini surfactants on steel surface in hydroehloric acid[J]. Materials science communication 2004,87(2):237-240
    [45]Qiu L G, Xie A J, Shen Y H. The adsorption and corrosion inhibition of some cationic gemini surfactants on carbon steel surface in hydrochloric acid[J]. Corrosion Science 2005,47(1):273-278
    [46]刘新光,罗德胜.生物化学.北京:科学出版社,2007
    [47]吴梧桐.生物化学.北京:中国医药科技出版社,2010
    [48]Raedler J O, Koltover I, Salditt T, et al. Structure of DNA-cationic liposome complexes: DNA intercalation in multilamellar membranes in distin[J]. science.1997,275(5301): 810-814
    [49]Leal C, Bilalov A, Lindman B. Phase Behavior of a DNA-Based Surfactant Mixed with Water and n-Alcohols[J]. The Journal of Physical Chemistry B.2006,110(34): 17221-17229
    [50]Rudiuk S, Franceschi-Messant S. Chouini-Lalanne N. et al. Modulation of Photo-oxida-tive DNA Damage by Cationic Surfactant Complexation[J]. Langmuir.2008,24(16): 8452-8457
    [51]Trewavas A. A new method for counting labeled nucleic acids by liquid scintillation[J]. Analytical Biochemistry.1967,21(2):324-32
    [52]Kevin H, Michael J, Anthony J. Aggregation Properties of a Novel Class of Cationic Gemini Surfactants Correlate with Their Efficiency as Gene Transfection Agents. Langmuir 2002,18(6):2426-2429
    [53]Karlsson L, Marcel C P, et al. Compaction of DNA by Gemini Surfactants:Effects of Surfactant Architecture. Journal of Colloid and Interface Science 2002,252(2):290-296
    [54]Zhao X F, Shang Y Z, Liu H L, et al. Complexation of DNA with cationic gemini surfactant in aqueous solution[J]. Journal of Colloid and Interface Science.2007,314(2): 478-483
    [55]Zhao X F, Shang Y Z, Hu J, et al. Biophysical characterization of complexation of DNA with oppositely charged Gemini surfactant 12-3-12[J]. Biophysical Chemistry.2008, 138(3):144-14
    [56]Zhao F Q, Huang L J, Zeng B Z, etal. Electrochemical investigation on DNA-gemini complex films immobilized on gold electrode. Electrochemistry Communications 2004, 6(3):319-324
    [57]Okahata O, Kobayashi T, Tanaka K. Orientation of DNA Double Strands in a Langmuir-Blodgett Film. Langmuir 1996,12(5):1326-1330
    [58]Ijiro K, Shimomura M, Tanaka M, Nakamura H, Hasebe K. DNA monolayers complexed with amphiphilic intercalator at the air-water interface. Thin Solid Films 1996,284-285:780-78
    [59]Kago, K.; Matsuoka, H.; Yoshitome, R.; Yamaoka, H.; Ijiro, K.; Shimomura, M. Direct in Situ Observation of a Lipid Monolayer-DNA Complex at the Air-Water Interface by X-ray Reflectometry. Langmuir 1999,15(16):5193-5196
    [60]Shimomura, M.; Nakamura, F.; Ijiro, K.; Taketsuna, H.; Tanaka, M.; Nakamura, H.; Hasebe, K. Two-Dimensional DNA-Mimetic Molecular Organizations at the Air-Water Interface. J. Am. Chem. Soc.1997,119(9):2341-2342
    [61]Miao W G, Du X Z, Liang Y Q. Molecular Recognition of Nucleolipid Monolayers of 1-(2-Octadecyloxycarbonylethyl)cytosine to Guanosine at the Air-Water Interface and Langmuir-Blodgett Films. Langmuir 2003,19(13):5389-5396
    [62]Wang Y C, Du X Z, Miao W G, Liang Y Q. Molecular Recognition of Cytosine-and Guanine-Functionalized Nucleolipids in the Mixed Monolayers at the Air-Water Interface and Langmuir-Blodgett Films. J. Phys. Chem. B 2006,110(10):4914-4923
    [63]Li C, Huang J G, Liang Y Q. Molecular Recognition Capabilities of a Nucleolipid Amphiphile (3',5'-Distearoyl)-2'-Deoxythymidine to Adenosine at the Air/Water Interface and Langmuir-Blodgett Films Studied by Molecular Spectroscopy. Langmuir 2000,16(20):7701-7707
    [64]Osamu H, Yasutaka M, Yuichi H, Kenichi N, Kuniharu I. Sequence-Specific Control of Azobenzene Assemblies by Molecular Recognition of DNA. Langmuir 2008,24(6): 2618-2624
    [65]Tae W K, Young J K, Hesson C. The role of non-ionic surfactants on cationic lipid mediated gene transfer. Journal of Controlled Release 2002,82(2-3):455-465
    [66]Chen X D, Li L, Liu M H. Assembly and Characterization of Ternary SV-DNA-TMPyP Complex Langmuir-Blodgett Films. Langmuir 2002,18(11):4449-4454
    [67]Erokhina S, Berzina T, et al. Interaction of DNA Oligomers with Cationic Lipidic Monolayers:Complexation and Splitting. Langmuir 2007,23(8):4414-4420
    [68]Sastry M, Ramakrishnan V, et al. Hybridization of DNA by Sequential Immobilization of Oligonucleotides at the Air-Water Interface. Langmuir 2000,16(24):9142-9146
    [69]Sukhorukov G B, Feigin L A, et al. X-ray and infrared study of Langmuir-Blodgett films of the complexes between nucleic acids and aliphatic amines.Thin Solid Films 1995,259: 79-84
    [70]Wu J C, Lin T L, et al. Neutron and X-ray reflectivity studies on DNA adsorption on mixed DPPC/DC-Cholesterol monolayers. Physica B:Condensed Matter.2006, 385-386:841-844
    [71]Zana R. Dimeric and oligomeric surfactants. Behavior at interfaces and in aqueous solution:a review[J]. Advances in Colloid and Interface Science 2002,97(1-3):205-253
    [72]Zana R. Dimeric (Gemini) Surfactants:Effect of the Spacer Group on the Association Behavior in Aqueous Solution[J]. Journal of Colloid and Interface Science 2002,248(2): 203-22
    [73]Yang J P, Xie J Y, Chen G M, Chen X C. Surface, Interfacial and Aggregation Properties of Sulfonic Acid-Containing Gemini Surfactants with Different Spacer Lengths. Langmuir 2009,25(11),6100-6105
    [74]Chen X D, Wang J B, Shen N, Luo Y H, Li L, Liu M H, Thomas R H. Gemini surfactant/DNA complex monolayers at the air-water interface:Effect of surfactant structure on the assembly, stability, and topography of monolayers. Langmuir 2002, 18(16):6222-6228
    [75]Wang Y J, Marques E F. Thermotropic phase behavior of cationic gemini surfactants and their equicharge mixtures with sodium dodecyl sulfate[J]. The Journal of Physical Chemistry B.2006,110(3):1151-1157
    [76]Santhana R, Krishnan G, Thennarasu S, et al. Self-assembling characteristics of a new nonionic gemini surfactant [J]. The Journal of Physical Chemistry B.2004,108(26): 8806-881
    [77]朱传凤,王琛.扫描探针显微术应用进展.北京:化学工业出版社,2007
    [78]汪川,王振尧,柯伟.石英晶体微天平工作原理及其在腐蚀研究中的应用与进展[J].腐蚀科学与防护技术.2008,20(5):367-371
    [79]Dmitri I, Ihab A H, Plamen A, Ebtisam W. Biosensors for Detection of Pathogenic Bacteria. Biosensors and Bioelectronics 1999,14(7):599-624
    [80]Renee L B, Eric J J, Jefrey J R. Piezoelectric Quartz Crystal Biosensors. Talanta 1998, 46(6):1223-1236
    [81]马宏伟,何建安,朱志强等.基于石英晶体微天平的分子尺技术研究生物大分子.分析化学.2009,37(10):69
    [82]Ramakrishnan V, Moneesha D, Krishna N. Effect of Salt on the Hybridization of DNA by Sequential Immobilization of Oligonucleotides at the air-water Interface in the Presence of ODA/DOTAP Monolayers. Journal of Colloid and Interface Science 2004, 276 (1):77-84
    [83]Zhou Y M, Nakayama Y, et al. Deposition transfection technology using a DNA complex with a thermoresponsive cationic star polymer. Journal of Controlled Release 2007,123(3):239-246
    [84]刘光明,张广照.石英晶体微天平在高分子科学中的应用.高分子通报.2008,8:174-188
    [85]黄永莲.琼脂糖凝胶电泳实验技术研究.湛江师范学院学报.2009,30(6):83-85
    [86]Liu X, Yang J W, Miller A D, et al. Charge-Shifting Cationic Polymers That Promote Self-Assembly and Self-Disassembly with DNA[J]. Macromolecules 2005,38(19): 7907-7914
    [87]Rosa M, Dias R, Da Graca Miguel M, et al. DNA-Cationic Surfactant Interactions Are Different for Double- and Single-Stranded DNA[J]. Biomacromolecules 2005,6(4): 2164-2171
    [88]Gorelov A V, Kudryashov E D, Jacquier J, et al. Complex formation between DNA and cationic surfactant [J]. Physica A:Statistical Mechanics and its Applications 1998, 249(1-4):216-225
    [89]Spink C H, Chaires J B. Thermodynamics of the Binding of a Cationic Lipid to DNA[J]. Journal of the American Chemical Society 1997,119(45):10920-10928
    [90]李蓉.气/液界面含Gemini表面活性剂的混合单分子膜研究.上海:华东理工大学,2010
    [91]Gaines G L J. Insoluble Monolayers at Liquid-Gas Interfaces[M]. New York:Wiley-Interscience,1966
    [92]Harkins W D. The physical chemistry of surface films[M]. New York:Reinhold Publishing Corp,1952
    [93]Alami E, Beinert G, Marie P, Zana R. Alkanediyl-.alpha.,.omega.-bis(dimethylalkylamm-onium bromide) surfactants.3. Behavior at the air-water interface[J]. Langmuir 1993, 9(6):1465-1467
    [94]Chen Q B, Zhang D Z, et al. Effect of the spacer group on the behavior of the cationic Gemini surfactant monolayer at the air/water interface. Thin Solid Films 2008,516(23): 8782-8787
    [95]Antipina M N, Schulze I, et al. Physicochemical Investigation of a Lipid with a New Core Structure for Gene Transfection: 2-Amino-3-hexadecyloxy-2-(hexadecyloxymethyl)propan-1-ol. Langmuir 2007,23(7): 3919-3926
    [96]董瑞新.盐浓度和温度对DNA结构和特性影响的研究.成都:电子科技大学,2004
    [97]Koltover I, Salditt T, Radler J O, et al. An inverted hexagonal phase of cationic liposome--DNA complexes related to DNA release and delivery[J]. science 1998, 281(5373):78-81
    [98]Scarzello M, Wagenaar A, Stuart M C A, et al. Sunfish Cationic Amphiphiles:Toward an Adaptative Lipoplex Morphology[J]. Journal of the American Chemical Society.2005, 127(29):10420-10429
    [99]E. Taillandier, J. Liquier, et al. Conformational Transitions of Nucleic Acids Studied by IR and Raman Apectroscopies. Journal of Molecular Structure 1989,214:185-211
    [100]E. Taillandier, J. Liquier. [16] Infrared spectroscopy of DNA. Methods in Enzymology 1992,211:307-335
    [101]朱淮武.有机分子结构波谱解析.北京:化学工业出版社,2005
    [102]丁晓岚,高红旗.圆二色光谱技术应用和实验方法.实验技术与管理.2008,25(10):48-52
    [103]于海英,程秀民,王晓坤.圆二色光谱及其在药物研究方面的应用.光谱实验室.2007,24(5):877-885
    [104]Mcloughlin D, Delsanti M, et al. Aggregates formation between short DNA fragments and cationic surfactants. Molecular Physics 2005,103(21-23):3125-3139
    [105]Montrel M M, Sukhorukov G B, Petrov A I, et al. Spectroscopic study of thin multilayer films of the complexes of nucleic acids with cationic amphiphiles and polycations:their possible use as sensor elements. Sensors and Actuators B 1997,42(3): 225-231
    [106]Taniguchi H, Saito M. The effect of water on infrared spectra of DNA. J. Phys.: Condens. Matter.2009,21:1-4
    [107]Byrd H, Whipps S, Pike J K, et al. Role of the template layer in organizing self-assembled films:zirconium phosphonate moriolayers and multilayers at a Langmuir-Blodgett template[J]. Journal of American Chemical Society 1994,116(1): 295-301
    [108]Porter M D, Bright T B, Allara D L, et al. Spontaneously organized molecular assemblies.4. Structural characterization of n-alkyl thiol monolayers on gold by optical ellipsometry, infrared spectroscopy, and electrochemistry [J]. Journal of American Chemical Society 1987,109(12):3559-3569
    [109]Du X Z, Shi B, Liang Y Q. N-Octadecanoyl-L-alanine Amphiphile Monolayer at the Air/Water Interface and LB Film Studied by FTIR Spectroscopy. Langmuir 1998, 14(13):3631-3636
    [110]Cea P, Lafuente C, Urieta J S, et al. Langmuir and Langmuir-Blodgett Films of a Phosphorus Derivative[J]. Langmuir 1996,12(24):5881-5887
    [111]Tang X, Schneider T, Buttry D A. A Vibrational Spectroscopic Study of the Structure of Electroactive Self-Assembled Monolayers of Viologen Derivatives[J]. Langmuir 1994, 10(7):2235-2240
    [112]Sun H, Li W, Wu L X. Honeycomb-Patterned Films Fabricated by Self-Organization of DNA-Surfactant Complexes. Langmuir 2009,25(18):10466-10472
    [113]Yan Y, Guo S, Xiong W, et al. Molecular Arrangement and Recognition of a New Bolaform Cinnamic Acid Derivative in LB Films. Acta. Phys.-Chim. Sin.2005,21(5): 550-555
    [114]Sukhorukov G B, Montrel M M, et al. Multilayer films containing immobilized nucleic acids. Their structure and possibilities in biosensor applications. Biosensors & Bioelectronics 1996,11(9):913-922
    [115]Donald M, Robert L, et al. [19] Circular dichroism spectroscopy of DNA. Methods in Enzymology 1992,211:389-406
    [116]Bombelli C, Faggioli F, et al. Efficient Transfection of DNA by Liposomes Formulated with Cationic Gemini Amphiphiles. J. Med. Chem.2005,48(16):5378-5382
    [117]Mcloughlin D, Delsanti M, et al. Aggregates formation between short DNA fragments and cationic surfactants. Molecular Physics 2005,103(21-23):3125-3139
    [118]Matthijn R J Vos, et al. Insights in the Organization of DNA-Surfactant Monolayers Using Cryo-Electron Tomography. J. Am. Chem. Soc.2007,129(39):11894-11895
    [119]Chen X D, Wang J B, Liu M H. Influence of surfactant molecular structure on two-dimensional surfactant-DNA complexes:Langmuir balance study. Journal of Colloid and Interface Science 2005,287(1):185-190

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700