用户名: 密码: 验证码:
BMP-2在降钙素基因相关肽调控MG63细胞增殖分化中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
降钙素基因相关肽(Calcitonin gene-related peptide,CGRP)被证实可以促进成骨细胞的增殖和分化活性,已知的CGRP信号调控通路包括了:胞内钙离子通道(Ca2+)、环磷酸腺苷(cAMP)、蛋白激酶(PKC)、丝裂原活化蛋白激酶(MAPK)、胞外信号调节激酶(ERK)等。大量实验证实,骨形态发生蛋白(BMP)也同样拥有诱导成骨的能力。骨髓基质细胞在有BMP-2参与的基础上,通过旁分泌和自分泌作用,在细胞和细胞间质传导信息,刺激DNA的合成和细胞的复制,促进成骨细胞前体的增殖,诱导未分化间充质细胞不可逆地分化为软骨细胞和成骨细胞,提高干细胞的成骨表型和成骨能力,增强碱性磷酸酶(Alkaline phosphatase,ALP)的活性,促进细胞间的粘附和成骨细胞标记基因的表达。目前已知的BMP对成骨细胞的信号传导主要包括有Smad,P38MAPK通路。
     目前的研究发现:BMP-2,4,6可以促进神经分泌CGRP,CGRP在体外促进牙髓细胞分泌BMP-2,BMP-2体内异位诱导成骨组织中CGRP的神经可以再生分布,BMP-2在腹腔注射CGRP的大鼠胫骨骨折愈合的骨痂中高表达,CGRP在体外协同增加BMP-2诱导成骨细胞增殖的能力。这些研究结果提示:CGRP可以诱导骨组织中BMP-2的表达增加,但两者之间相互作用的信号通路机制目前尚不清楚,因此推测CGRP的促成骨作用可能与BMP-2的表达有相关性。本实验将对CGRP促成骨细胞增殖、分化作用中BMP信号通路所发挥的作用;CGRP促成骨细胞BMP-2表达的影响及其机制等进行研究。
     方法
     1.细胞培养:人骨肉瘤细胞(MG63)细胞株(中国科学院上海生命科学研究院)接种于培养瓶(100ml)中传代培养(5×106个/cm~2),培养基为RPMI1640(含10%FBS),放置于5%CO2孵箱中37°C孵育72h传代,传代至6-7代时使用。
     2.CGRP对MG63细胞增殖和分化的调控作用:
     2.1MG63细胞增殖:MTT法检测CGRP对MG63细胞增殖的调控作用;流式细胞仪检测CGRP对MG63细胞增殖周期的调控。设定量效作用的浓度为(10~(–10)-10~(–7)M),时效作用为(24-72h)。
     2.2MG63细胞分化:PNPP偶氮法检测CGRP对MG63细胞ALP染色的调控作用;Western blot检测CGRP对MG63细胞碱性磷酸酶(ALP)、Ⅰ型胶原(CollagenⅠ)、骨钙素(OCN)表达的调控作用。设定量效作用的浓度为(10~(-10)-10~(-7)M),时效作用为(24-72h)。免疫荧光染色检测10-8M CGRP对MG63(48h)ALP表达的作用。
     3.CGRP对MG63细胞增殖、分化调控中BMP信号通路的作用:
     3.1分组:10-8M CGRP;10-8M CGRP+100ng/ml Noggin;100ng/ml Noggin;空白对照组,作用时间为48h。
     3.2MG63细胞增殖影响:流式细胞仪检测MG63细胞增殖周期。
     3.3MG63细胞分化影响:免疫荧光染色检测MG63细胞的ALP表达;Western blot检测MG63细胞的ALP,ColIaⅠ和OCN蛋白表达。
     4.CGRP对MG63细胞表达BMP-2的调控作用:
     4.1RT-PCR检测CGRP对MG63细胞表达BMP-2mRNA的调控作用:设定量效作用的浓度为(10~(-10)-10~(-7)M),时效作用为(1-48h)。
     4.2CGRP促进MG63细胞表达BMP-2中Noggin的作用:
     分组:10-8M CGRP;10-8M CGRP+100ng/ml Noggin;100ng/ml Noggin;空白对照组,作用时间48h。
     RT-PCR检测MG63细胞BMP-2mRNA的表达;Western blot检测MG63细胞BMP-2蛋白的表达。
     5.CGRP促进MG63细胞表达BMP-2的机制:
     5.1分组:10-8M CGRP、10-8M CGRP+5μM H-89、5μM H-89、空白对照组,作用时间48h。
     5.2免疫检测试剂盒检测MG63细胞cAMP表达;RT-PCR检测MG63细胞BMP-2mRNA表达;Western blot检测MG63细胞BMP-2、环磷酸腺苷反应元件结合蛋白(cAMPresponse element binding protein, CREB)、磷酸化环磷酸腺苷反应元件结合蛋白(Phosphorylated Camp Response Element Binding Protein,pCREB)的表达。
     6.统计分析:
     所有数据均采用均数±标准差(±s)表示,应用Dunnett,s检验中的t检验和方差分析,进行统计分析,分别设定p<0.05以及p<0.01表明有显著性差异和差异非常显著。
     结果
     1.CGRP对MG63细胞增殖、分化的调控作用:
     1.1MG63细胞增殖:MTT法检测发现CGRP加入MG63细胞培养基中24-72h的时间段中,CGRP各浓度组的细胞数均显著高于空白对照组(P<0.05),其中以10-8MCGRP浓度组最为明显(P<0.05);流式细胞仪检测细胞增殖周期发现不同浓度的CGRP都加速了细胞周期循环,但是以48h10-8M组最为明显(P<0.05),48h以后有下降趋势。
     1.2MG63细胞分化:PNPP偶氮法检测发现各浓度组的CGRP促进MG63细胞的ALP表达量均高于空白对照组,其中以72h10-8M组最为明显(P<0.05),时效对比中发现各浓度组细胞的ALP表达量在72h较48h增加不明显(P>0.05);蛋白定量分析结果发现各实验组的ALP,ColIaⅠ和OCN蛋白表达量均高于空白对照组(P<0.05),其中以48h10-8M组最为明显(P<0.05);免疫荧光染色结果发现48h10-8M组荧光数目较空白对照组多。
     2.CGRP对MG63细胞增殖、分化调控中BMP信号通路的作用:
     2.1MG63细胞增殖:流式细胞仪检测发现CGRP组和CGRP+Noggin组的S+G2期细胞的数目高于空白对照组(p<0.05),但是CGRP组和CGRP+Noggin组之间没有明显差异。
     2.2MG63细胞分化:Wstern-blot检测CGRP组ALP,ColIaⅠ和OCN蛋白的表达量高于空白对照组(p<0.05);CGRP+Noggin组低于CGRP组(p<0.05)。
     3.CGRP对MG63细胞表达BMP-2的调控作用:
     3.1PCR检测发现8-24小时内只有10-8M、10-7M组可以检测到BMP-2mRNA的表达,且10-7M组明显高于10-8M组(p<0.01);48h10-9M组可检测到BMP-2mRNA表达,但明显低于48h10-8M、48h10-7M两组(p<0.01)。
     3.210-8M CGRP作用48h,MG63细胞BMP-2mRNA和蛋白的表达量,CGRP组高于空白对照组和Noggin组(P<0.01),CGRP+Noggin组与CGRP组无差异。
     4.CGRP促进MG63细胞表达BMP-2的机制:
     4.1MG63细胞cAMP含量检测发现,CGRP组和CGRP+H-89组均高于空白对照组(P<0.01),但是前两组之间无显著差异。
     4.2CGRP、CGRP+H-89、H-89和空白对照组的CREB表达量无显著差异。
     4.3CGRP组的pCREB蛋白表达量高于空白对照组(P<0.01),但是CGRP+H-89组明显低于CGRP组(P<0.01)。
     4.4CGRP组的BMP-2mRNA和蛋白表达量高于空白对照组(P<0.01),但是CGRP+H-89组明显低于CGRP组(P<0.01)。
     结论
     1.CGRP促进MG63细胞的增殖与分化,并且具有时间以及剂量依赖性,优势浓度为10-8M,优势时段为48h。
     2.CGRP可能通过BMP-2途径促进MG63细胞的分化,而不通过BMP-2途径促进MG63细胞的增殖。
     3.CGRP促进MG63细胞表达BMP-2,并且具有时间以及剂量依赖性,优势浓度为10-7M,优势时段为48h。
     4.CGRP促进MG63细胞BMP-2表达的可能机制是:通过CGRP促进cAMP合成,从而促进CREB磷酸化,进而促进BMP-2转录。
Numerous researches provide in vivo suggested that such neuropeptide calcitonin generelated peptide (CGRP) is associated with bone development, metabolism and repair. Invitro studies have demonstrated that CGRP stimulates the osteoblastic proliferation,differentiation and maturity in both osteoblastic cell models as well as bone marrowmesenchymal stromal cell models. CGRP and its receptors have been identified in signaltransduction pathways, such as [Ca2+]i(intracellular Ca2+),the cAMP(cyclic adenosinemonophosphate), PKC (protein kinase C), ERK (extracellular signal-regulated proteinkinase) and MAPK (mitogen-activated protein kinase) pathways.
     Although CGRP is a recognised neuromodulator of osteoblast cell signal pathway, itsmechanism of action in osteogenesis remains elusive. Bone morphogenetic proteins (BMPs)are multi-functional growth factors that belong to TGF-families. The roles of BMPs, inembryonic development and cellular functions in postnatal and adult animals have beenextensively studied in recent years. Among BMPs, BMP-2has very strong osteoinductiveactivity. Both in vivo and in vitro studies have shown that BMP-2was essential regulator ininducing osteogenic differentiation and bone formation. Bone marrow mesenchymalstromal cells (BM-MSCs) effectively supported bone formation via autocrine and paracrinefunctions when selectively facilitating the delivery and bioavailability of BMP-2. BMP-2promoted the proliferation of pre-osteoblastic cells, induced the osteogenic or chondrogenicdifferentiation of mesenchymal cells, improved the osteogenic phynotype and capacity ofstem cells, through increased ALP activity and osteocalcin mRNA expression. Signaltransduction studies have revealed that Smad, P38MAPK pathways are the immediatedownstream molecules of BMP receptors and play a central role in BMP signaltransduction.
     To date, the researches about the relationship between BMP and CGRP are limited. Previous studies suggested that bone morphogenetic proteins (BMPs)2,4, or6stimulatedCGRP expressions in60%of DRG neurons. While CGRP promoted the production ofBMP-2in pulp cells. BMP-2was also associated with the spatial and temporal regenerationof CGRP-positive nerve fibers in ectopic bone formation. Evidence suggested thatneuropeptides and receptors like CGRP play an important role in the regulation of boneremodeling and CGRP induces the expression of BMP-2in bone tissues. So we hypothesisthat expression of BMP-2is involved in the mechanism of CGRP induced osteogenesis.The experiment is about the effect of BMP signal pathway on CGRP contributing to MG63proliferation and differentiation, and CGRP contributed to BMP-2expression of MG63andits mechanism was studied.
     Methods
     1.Cell culture: Low-passage MG63osteogenic human osteosarcoma cells wereobtained from the the Chinese academy of sciences institute of Shanghai life science andplated, grown, and maintained in RPMI1640(with10%FBS).Cells were normally platedat a density of5×105cells/cm~2and cultivated in humidified5%CO2-95%air at37°C. Thesixth to seventh generations were used in the experiments.
     2. CGRP-induced MG63cells proliferation and differentiation:
     2.1Proliferation: Dose-effect (10~(-10)-10~(-7)M) and time-effect (24-72h) ofCGRP-induced MG63cells viability were determinated by MTT method; dose-effect (10~(-10)-10~(-7)M) and time-effect (24-72h) of CGRP on cell cycle were assayed by flow cytometry.
     2.2Differentiation: Dose-effect (10~(-10)-10~(-7)M) and time-effect (24-72h) ofCGRP-induced MG63cells ALP were stained by PNPP method; effect(48h) of CGRP(10-8M) on cell ALP was stained by immunofluorescence staining; dose-effect (10~(-10)-10~(-7)M) andtime-effect (24-72h) of CGRP-induced MG63cells expression of ALP、CollagenⅠ、OCNprotein were detected by Western blot.
     3. Effect of BMP signal pathway on CGRP-induced MG63cells proliferation anddifferentiation:
     3.1Groups:10-8M CGRP;10-8M CGRP+100ng/ml Noggin;100ng/ml Noggin;control.Time:48h.
     3.2Effect on Proliferation: Cell cycle was assayed by flow cytometry.
     3.3Effect on Differentiation: ALP was stained by immunofluorescence staining;expression of ALP、CollagenⅠ、OCN protein of MG63were detected by Western blot.
     4. CGRP on expression of BMP-2of MG63:
     4.1Dose-effect (10~(-10)-10~(-7)M) and time-effect (1-48h) of CGRP-induced MG63cellsexpression of BMP-2mRNA were detected by RT-PCR.
     4.2Effect of BMP signal pathway on CGRP-induced expression of BMP-2in MG63cells:
     Groups:10-8M CGRP;10-8M CGRP+100ng/ml Noggin;100ng/ml Noggin; control.Time:48h.
     The expression of BMP-2mRNA and protein of MG63were detected by RT-PCR andWestern blot.
     5. The mechanism of CGRP-induced expression of BMP-2in MG63cells:
     5.1Groups:10-8M CGRP、10-8M CGRP+5μM H-89、5μM H-89、control. Time:48h.
     5.2The expression of cAMP was detected by ELISA; the expression of BMP-2mRNAwas detected by RT-PCR; the expression of BMP-2、 CREB、 pCREB protein weredetected by Western blot.
     6. Statistic analysis:
     Data were expressed as means±S.D. Statistical comparisons of the results were madeusing analysis of variance. Significant differences (p<0.05, p<0.01) between the means ofcontrol and test group were analyzed by Dunnett’s test.
     Results
     1. CGRP-induced MG63cells proliferation and differentiation:
     1.1Proliferation: Through MTT assay, the cell,sgrowth rate in10~(-10)-10~(-7)M CGRPgroups was higher than that in control group (P<0.05), especially in10-8M CGRPexperimental group; in flow cytometry assay, the proportion of S+G2phase cells in10~(-10)-10~(-7)M CGRP groups was higher than that in control group (P<0.05),especially in10-8M CGRP (48h)experimental group and a downward trend appeared after48h.
     1.2Differentiation: OD value of ALP stain in10~(-10)-10~(-7)M CGRP groups was higherthan that in control group (P<0.05),especially in10-8M CGRP experimental group, and no increasing after48h; in immunofluorescence staining, fluore-
     scence number of10-8M CGRP (48h) group was more than control group; in westernblot assay, expression of ALP、CollagenⅠ and OCN protein in10~(-10)-10~(-7)M CGRPexperimental groups were higher than control group (P<0.05).
     2. Effect of BMP signal pathway on CGRP-induced MG63cells proliferation anddifferentiation:
     2.1Effect on Proliferation: In flow cytometry assay, the proportion of S+G2phasecells in CGRP and CGRP+Noggin experimental groups was higher than that in controlgroup (P<0.05); while there was no difference between CGRP and CGRP+Nogginexperimental groups.
     2.2Effect on Differentiation: The expression of ALP、CollagenⅠ、OCN protein inCGRP group was higher than that in control group and CGRP+Noggin group(p<0.05).
     3. CGRP on expression of BMP-2in MG63cells:
     3.1The BMP-2mRNA expression in10-7M CGRP group was higher than that in10-8M group between8-48h(p<0.01); the BMP-2mRNA expression in10-9M group detecteduntil48h was lower than that in10-8M and10-7M group (p<0.01).
     3.2The expression of BMP-2mRNA and protein were increased in both CGRP andCGRP+Noggin groups, with significant difference when compared with the Noggin andcontrol groups (p<0.01).
     4. The mechanism of CGRP-induced expression of BMP-2in MG63cells:
     4.1ELISA of the related fold of cAMP concentrations in four groups, CGRP groupand CGRP+H-89group were higher than control group (P<0.01), while there was nodifference between CGRP group and CGRP+H-89group.
     4.2The expression of CREB did not differ in four groups.
     4.3The expression of pCREB was significantly increased in CGRP treated group andinhibited in H-89pretreated group (P<0.01).
     4.4The expression levels of BMP-2mRNA and protein significantly increased in theCGRP treated group compared with the other three groups (p<0.01).
     Conclusions
     1. CGRP up-regulates proliferation and differentiation of MG63in vitro, with time and dose dependence.
     2. CGRP-induced cell differentiation may operate by a BMP-2-dependent pathway;CGRP-induced cell proliferation may operate by a BMP-2-independent pathway.
     3. CGRP up-regulates the expression levels of BMP-2of MG63in vitro, with time anddose dependence.
     4. cAMP/pCREB pathway is involved in the CGRP promotion of BMP-2mRNA andprotein in MG63.
引文
[1] F Elefteriou. Neuronal signaling and the regulation of bone remodeling[J]. Cellularand Molecular Life Sciences,2005,(62):2339–2349.
    [2] Manolagas S. C. Birth and death of bone cells: basic regulatory mechanisms andimplications for the pathogenesis and treatment of steoporosis[J]. EndocrRev,2000,21(2):115-137.
    [3] Pearson J, Dancis J, Axelrod F, and Grover N. The sural nerve in familialdysautonomia[J]. Neuropathol Exp Neurol,1975,34(5):413-424.
    [4] Poole K E, Reeve J and Warburton E A. Falls, fractures, and osteoporosis after stroke:time to think about protection[J]. Stroke,2002,33(5):1432-1436.
    [5] Ramnemark A, Nyberg L, Lorentzon R, Englund U and Gustafson Y. Progressiveemiosteoporosis on the paretic side and increased bone mineral density in thenonparetic arm the first year after severe stroke[J]. Osteoporos Int,1999,9(3):269-275.
    [6] Livnat S, Madden K S, Felten D L and Felten S Y. Regulation of the iMune system bysympathetic neural mechanisms[J]. Prog Neuropsychopharmacol Biol Psychiatry,1987,11(23):145-152.
    [7] Baldridge D, Shchelochkov O, Kelley B. Signaling pathways in human skeletaldysplasias[J]. Annu Rev Genomics Hum Genet,2010,22(11):189-217.
    [8] Isabella Villa a, Raffaella Melzi a, Francesca Pagani b. Effects of calcitoningene-related peptide and amylin on human osteoblast-like cells proliferation[J].European Journal of Pharmacology,2000,40(9):273–278.
    [9] I Villa C, Dal Fiume A, Maestroni A. Human osteoblastlike cell proliferation inducedby calcitonin-related peptides involves PKC activity[J].Physiol EndocrinolMetab,2003,84(8):627-633.
    [10] I Villa, E Mrak, A Rubinacci. CGRP inhibits osteoprotegerin production in humanosteoblast-like cells via cAMP/PKA-dependent pathway[J]. Am J Physiol CellPhysiol,2006,29(1):529-537.
    [11] Ulrich Valcourt, Jerome Gouttenoire, Aristidis Moustakas. Functions of TransformingGrowth Factor-B Family Type I Receptors and Smad Proteins in theHypertrophicMaturation and Osteoblastic Differentiation of Chondrocytes[J].TheJournal of Biological Chemistry,2002,277(37):33545-33558.
    [12] Huijuan Liu, Baojie Li. P53Control of Bone Remodeling[J].Journal of CellularBiochemistry,2010,11(1):529–534.
    [13] Naganawa T, Xiao L, Coffin J. Reduced expression and function of bonemorphogenetic protein-2in bones of Fgf-null mice[J]. Cell Biochem,2008,103(6):1975-1988.
    [14] Xingbin Ai, Jason Cappuzzello, and Alison K Hall. Activin and Bone MorphogeneticProteins Induce Calcitonin Gene-Related Peptide in Embryonic Sensory Neurons inVitro[J]. Molecular and Cellular Neuroscience,1999,14(13):506–518.
    [15] John W. Calland, DDS, Stephen E. Human pulp cells respond to calcitoningene-related peptide in vitro[J]. J Endodontics,1997,23(8):485-489.
    [16] Xiao-Yun Wang, Xia Guo,Shu-Xin Qu. Temporal and Spatial CGRP Innervation inRecombinant Human Bone Morphogenetic Protein Induced Spinal Fusion inRabbits[J]. SPINE,2009,34(22):2363–2368.
    [17]柏永刚,秦书俭,田志逢.降钙素基因相关肽联合重组人骨形态发生蛋白对兔成骨样细胞增殖和碱性磷酸酶活性的影响[J].解剖科学进展,2008,14(1):73-75.
    [18]韩娜,张殿英,王天兵.降钙素基因相关肽对大鼠胫骨骨折早期愈合的影响[J].第三军医大学学报,2008,30(21):2001-2004.
    [19] Kwasaki H, Takasaki K, Saito A, Goto K. Calcitonin Gene-related peptide acts as anovel vasodilator neurotransmitter in mesenteric resistance vessels of the rat[J].Nature,1988,335(6186):164-167.
    [20] Yan Li, Yinghui Tan, Gang Zhang, Bo Yang, Jianshe Zhang.The Effects of CalcitoninGene-related Peptide on the Expression and Activity of Nitric Oxide Synthaseduring the Mandibular Bone Healing in Rabbits: an experimental study[J].Journal OfOral&Maxillofacial Surgery,2009,67(2):273-279.
    [21] Wisskirchen FM, Gray DW, Marshall I. Receptors mediating CGRP2inducedrelaxation in the rat isolated thoracic aorta and porcine isolated coronary arterydifferentiated by h(alpha) CGRP (8237)[J]. Br J Pharmacol,1999,128(2):283-292.
    [22] Jansen I, Mortensen A, Edvinsson L. Calcitonin gene-related peptide is released fromcapsaicin-sensitive nerve fibres and induces vasodilation of human cerebral arteriesconcomitant with activation of adenylcyclase[J]. Cephalagia,1996,16(5):310-316.
    [23] Qi, T and Hay, D L. Structure-function relationships of the Nterminus of receptoractivity-modifying proteins[J]. Br J Pharmacol,2009,159(23):1059–1068.
    [24] Imai S, Matsusue Y. Neuronal regulation of bonemetabolism and anabolism:calcitonin gene-related peptide2, substance P2, and tyrosine hydroxylase containingnerves and the bone[J].Icrosc-Res-Tech,2002,58(2):61-69.
    [25] Irie K, F HaraIrie, H Ozawa. Calcitonin generelated peptide (CGRP)containing nervefibers in bone tissue and their involvement in bone remodeling[J]. Microscopyresearch and technique,2002,58(2):85-90.
    [26] Imai, S, H Rauvala, YT, Konttinen. Efferent Targets of Osseous CGRPimmunoreactive Nerve Fiber Before and After Bone Destruction in Adjuvant ArthriticRat: An Ultramorphological Study on Their TerminalTarget Relations[J]. Journal ofBone and Mineral Research,1997,12(7):1018-1027.
    [27]廉凯,杜靖远.降钙素基因相关肽对鼠成骨细胞IGF-I及IGF-IR mRNA表达的影响[J].中国矫形外科杂志,2001,8(11):1084-1087.
    [28]郑加军,杨铭艳,王建华.失神经支配下兔颌骨骨折愈合过程中VIP对微血管密度的影响[J].四川医学,2007.28(1):6-8.
    [29] Juaneda, C, Y Dumont, and R Quirion. The molecular pharmacology of CGRP andrelated peptide receptor subtypes[J].Trends in Pharmacological Sciences,2000,21(11):432-438.
    [30]何海涛,谭颖徽,王建华.P物质在去下牙槽神经下颌骨骨折愈合中的表达[J].实用口腔医学杂志,2007,23(3):423-425.
    [31]廉凯,杜靖远.降钙素基因相关肽对大鼠成骨细胞增殖和分化的影响[J].中国骨伤,2002,15(1):20-22.
    [32] Bronsky, J., R. Prusa, and J. Nevoral. The role of amylin and related peptides inosteoporosis[J]. Clinica chimica acta,2006.373(12):9-16.
    [33]谭颖徽,李焰,何海涛.神经介质对下颌骨骨折愈合影响的系列实验研究[J].西南军医杂志,2009,3(12):23-24.
    [34] Kawase, T, K. Okuda, C H Wu. Calcitonin generelated peptide acts as a mitogen forhuman Gin1gingiva-l fibroblasts by activating the MAP kinase signalling pathway[J].Journal of periodontal research,1999,34(3):160-168.
    [35] Kawase, T, K Okuda, and DM Burns. Mature human osteoblastic MG63cellspredominantly express a subtype1-like CGRP receptor that inactivates extracellularsignal response kinase by a cAMP-dependent mechanism[J]. European journal ofpharmacology,2003,470(3):125-137.
    [36] Drissi, H, M Hott, P J Marie. Expression of the CT/CGRP gene and its regulation bydibutyryl cyclic adenosine monophosphate in human osteoblastic cells[J]. Journal ofBone and Mineral Research,1997,12(11):1805-1814.
    [37] Shu-jian, BAIYQIN, TZW Rui-fang, and X U Guang-shuai. The Effects of CGRP andrhBMP-2on the Proliferation and ALP Activity of Rabbit Osteoblast-like Cells[J].Progress of Anatomical Sciences,2008,12(1):120-124.
    [38] Li Yan, Tan Yinghui, Yang Bo, Zhang Gang, Xiao Xian, Zheng Lu. Effect ofcalcitonin gene-related peptide on nitric oxide production in osteoblasts: anexperimental study[J]. International cell biology,2011,35(8):757-765.
    [39] Ryu, BM, Y Li, Z J Qian. Differentiation of human osteosarcoma cells by isolatedphlorotannins is subtly linked to COX-2, iNOS, MPs, and MAPK signaling:Implication for chronic articular disease[J]. Chemico-biological interactions,2009,179(23):192-201.
    [40] Burns, D M, L Stehno-Bittel, and T Kawase. Calcitonin gene-related peptide elevatescalcium and polarizes membrane potential in MG63cells by both cAMP-independentand-dependent mechanisms[J]. American Journal of hysiology-Cell Physiology,2004,287(2):457-458.
    [41] Morara, S, L P Wang, V Filippov. Calcitonin generelated peptide (CGRP)-triggersCa2+responses in cultured astrocytes and in Bergmann glial cells from cerebellarslices[J]. European Journal of Neuroscience,2008,28(11):2213-2220.
    [42] Harada, S. and G.A. Rodan. Control of osteoblast function and regulation of bonemass[J]. Nature,2003,423(6937):349-355.
    [43] Simons, DJ. Fracture healing perspectives[J]. Clinical orthopaedics and relatedresearch,1985,200(35):100-101.
    [44] Keiko Fujimoto.Low-Intensity Laser Irradiation Stimulates Mineralization viaIncreased BMPs in MC3T3-E1[J]. Cells Lasers in Surgery and Medicine,2010,42(21):519-526.
    [45]康健,苟三怀,曹东.Noggin蛋白对人骨肉瘤细胞MG63增殖性的影响[J].生物骨科材料与临床研究,2009,6(3):41-44.
    [46] Etsuko Abe, Matsuo Yamamoto. Essential requirement of BMPs-2/4for bothosteoblast and osteoclast formation in murine bone marrow cultures from adult mice:antagonism by noggin[J]. Journal of Bone and MineralResearch,2000,15(11):663-673.
    [47] Kazushi Takayama, Akinobu Suzuki, Tomoya Manaka. RNA interference for nogginenhances the biological activity of bone morphogenetic proteins in vivo and invitro[J].J Bone Miner Metab,2009,27(15):402-411.
    [48] Dup lomb L, Dagouassat M, Jourdon P. Embryonic stem cells: new tool to studyosteoblast and osteoclast differentiation[J]. Stem Cells,2007,25(3):544-552.
    [49] Hughes FJ, Collyer J, Stanfield M. The effects of bone morphogenetic protein-2,-4,and-6on differentiation of rat osteoblastic cells in vitro[J].Endocrinology,1995,136(21):2671-2677.
    [50] Qin XZ, Reinhard GY, Subbueaman M. Osteoporosis [M]. California: AcademicPress,2001:59-82.
    [51] Pluhar GE, Turner AS, Pierce AR. A comparison of two biomaterial carriers forosteogenic protein-7(BMP-7) in an ovine critical defect model[J]. J Bone Joint SurgBr,2006,88(7):960-966.
    [52] Zoricic S, Maric I, Bobinac D. Expression of bone morphogenetic proteins andcartilage derived morphogenetic proteins during osteophyte formation in humans[J]. JAnat,2003,202(3):269-277.
    [53] Katagiri T, Takahashi N. Regulatory mechanisms of osteoblast and osteoclastdifferentiation[J]. OralDis,2002,8(3):147-159.
    [54]曹东,马俊明.外源性Noggin蛋白抑制人骨肉瘤细胞MG-63增殖性的体外试验[J].中华现代外科学杂志,2011,8(2):65-70.
    [55] Davis HE, Case EM, Miller SL. Osteogenic response to BMP-2of hMSCs grown onapatite—coated caffolds[J].Biotechnol Bioeng,201l,108(11):2727-2735.
    [56] l,avery K, Swain P, Falh D.BMP-2/4and BMP-6/7differentially utilize cellsurface receptors to induce osteoblastic differentiation of hunmn bonemarrow-derived mesenehymal stem cells[J].J Biol Chem,2008,283(30):20948-20958.
    [57] Luong LN, Ramaswamy J, Kohn DH. Effects of osteogenic growth factors on bonemarrow stromal cell diferentiation in a mineral—based delivery system[J].Biomaterials,2012,33(1):283-294.
    [58] Park KH, Kim H, Moon S. Bone morphogenic protein-2(BMP-2)loaded nanoparticlesmixed with human mescnchymalstem cell in fibrin hydrogel for bone tissueengineering[J]. J Biosci Bioeng,2009,108(6):530-537.
    [59] Song I, Kim BS, Kim CS. Effects of BMP-2and vitamin D3on the osteogenicdifferentiation of adipose stem cells[J]. Biochem Biophys Res CoMun,2011,408(1):126-131.
    [60]张超,胡蕴玉,徐建强.骨相关生长因子对兔骨髓基质干细胞生长及分化的量效作用[J].中国修复重建外科杂志,2005,19(11):906-909.
    [61]段智霞,郑启新,郭晓东.骨形成蛋白-2活性多肽体外定向诱导骨髓间充质干细胞向成骨方向分化的剂量依赖性研究[J].修复重建外科杂志,2007,21(10):1118-1122.
    [62]张学瑜,孙和炎.基因重组人骨形成蛋白2生物学活性及其复合异种骨体内异位植入的成骨活性[J].中国临床康复,2005,9(42):34-37.
    [63] De Vries,L,Zheng B, Fischer T. The regulation of G proteins signalingfamlily[J].Ann Rev Pharmacol Toxicol,2000,40(21):235-271.
    [64] Ying SX, Hussain ZJ,Zhang YE. Smurfl facilitates myogenic differentiation andantagonizes the bone morphogenetic protein-2induced osteoblast conversion bytargeting Smad5for degradation[J].J Biol Chem,2003,278(32):39029-39036.
    [65] Reddi AH. Morphgenesis and tissue engineering of bone and cartilage: Inductic signal,stem cells, and biomimetic biomaterials[J]. Tissue Eng,2000,6(12):351-359.
    [66] Chen TL, Shen WJ, Kraemer FB. Human BMP-7/OP-1induces the growth anddifferentiation of adipocytes and osteoblasts in bone marrow stromal cell cultures[J]. JCell Biochem,2001,82(12):187-199.
    [67] Hay, D.L. Desensitisation of adrenomedullin and CGRP receptors[J]. Regul Pept,2003,112(21):139–145.
    [68] Drissi, H. Activation of phospholipase C-beta1via Galphaq/11during calciummobilization by calcitonin gene-related peptide[J]. J Biol Chem,1998,273(33):20168–20174.
    [69] Drissi, H. Calcitonin gene-related peptide (CGRP) increases intracellular free Ca2+concentrations but not cyclic AMPformation in CGRP receptor-positive osteosarcomacells (OHS-4)[J]. Cytokine,1999,11(31):200–207.
    [70] Brain SD and Grant AD. Vascular actions of calcitonin generelatedpeptide andadrenomedullin[J]. Physiol Rev,2004,84(5):903–934.
    [71] Tobin AB. Location sitespecific GPCR phosphorylation offers a mechanism forcell--type-specific signaling[J]. Trends Pharmacol Sci,2008,29(15):413–420.
    [72] Tilakaratne N. Amylin receptor phenotypes derived from human calcitoninreceptor/RAMP coexpression exhibit pharmacological differences dependent onreceptor isoform and host cell environment[J]. J Pharmacol Exp,2000,29(4):61–72.
    [73] Morfis M. Receptor activity-modifying proteins differentially modulate the Gprotein-coupling efficiency of amylin receptors[J]. Endocrinology,2008,149(21):5423–5431.
    [74] Tomoyuki Kawase. Mature osteoblastic MG63cells posess two calcitoningene-related peptide receptor subtypes that respond differently to [Cys(Acm)2,7]calcitonin gene-related peptide and CGRP8-37[J]. AM J Physiol Cell Physiol,2005,289(18):811-818.
    [75]徐琳,葛永玲,郑宇浩等.H89抑制降钙素基因相关肽促兔成骨细胞OPG表达的实验研究[J].西北国防医学杂志,2011,32(4):274-275.
    [76] H Drissi M, Lieberherr M, Hott MPJ, Marie and F Lasmoles. Calcitonin Gene-RelatedPeptide (CGRP) increases intracellular free Ca2+concentrations but not cyclic AMPformation in CGRP receptor-positive osteosarcoma cells (OHS-4)[J]. Cytokine,1999,11(3):200~207.
    [77] A Vignery, TL Mc Carthy. The neuropep tide calcitonin gene-related peptidestimulates insulin-like growth factor I production by primary fetal rat osteoblasts[J].Bone,1996,18(4):331~335.
    [78] lsabelle Millet and Agnes Vignery. The neuropep tide Calcitonin Gene-RelatedPeptide inhibits TNF-but pooly induces IL-6p roduction by fetal rat osteoblasts[J].Cytokine,1997,9(12):999~1007.
    [1] Qi T and Hay DL. Structure-function relationships of the Nterminus of receptoractivity-modifying proteins[J]. Br J Pharmacol,2009,159(21):1059–1068.
    [2] Conner AC et al. A key role for transmembrane prolines in calcitonin receptor-likereceptor agonist binding and signalling:implications for family B G-protein-coupledreceptors[J]. Mol.Pharmacol,2005,67(11):20–31.
    [3] Conner AC et al. Diverse functional motifs within the three intracellular loops of theCGRP receptor[J]. Biochemistry,2006,45(33):12976–12985.
    [4] Conner AC et al. Ligand binding and activation of the CGRP receptor[J]. BiochemSoc Trans,2007,35(9):729–732.
    [5] Evans BN et al. CGRP-RCP, a novel protein required for signal ransduction atcalcitonin gene-related peptide and adrenomedullin receptors[J]. J Biol Chem,2000,275(12):31438–31443.
    [6] Conner AC et al. The second intracellular loop of the calcitonin gene-related peptidereceptor provides molecular determinants for signal transduction and cell surfaceexpression[J]. J Biol Chem,2006,281(22):1644–1651.
    [7] Conner M et al. Functional and biophysical analysis of the Cterminus of theCGRP-receptor; a family B GPCR[J]. Biochemistry,2008,47(14):8434–8444.
    [8] Kuwasako K et al. Function of the cytoplasmic tail of human calcitonin receptor-likereceptor in complex with receptor activitymodifying protein2[J]. Biochem BiophysRes CoMun,2010,392(21):380–385.
    [9] Palczewski K et al. Crystal structure of rhodopsin: A G proteincoupled receptor[J].Science,2000,289(16):739–745.
    [10] McLatchie LM et al. RAMPs regulate the transport and ligand specificity of thecalcitonin-receptor-like receptor[J]. Nature,1998,393(213):333–339.
    [11] Zhang Z et al. Calcitonin gene-related peptide receptor activation by receptoractivity-modifying protein-1gene transfer to vascular smooth muscle cells[J].Endocrinology,2006,147(23):1932–1940.
    [12] Zhang Z et al. Sensitization of calcitonin gene-related peptide receptors by receptoractivity-modifying protein-1in the trigeminal ganglion[J]. J Neurosci,2007,27(12):2693–2703.
    [13] Steiner S et al. The transmembrane domain of receptoractivity-modifying protein1isessential for the functional expression of a calcitonin gene-related peptide receptor[J].Biochemistry,2002,41(7):11398–11404.
    [14] Kuwasako K et al. Functions of the cytoplasmic tails of the human eceptoractivity-modifying protein components of calcitonin gene-related peptide andadrenomedullin receptors[J]. J Biol Chem,2006,281(9):7205–7213.
    [15] Udawela M et al. A critical role for the short intracellular C terminus in receptoractivity-modifying protein function[J]. Mol Pharmacol,2006,70(14):1750–1760.
    [16] Sexton PM et al. Modulating receptor function through RAMPs: can they representdrug targets in themselves[J]. Drug Discov Today,2009,14(25):413–419.
    [17] Dickerson IM. The CGRP-receptor component proten: A regulator for CLRsignaling[A]. In: Hay DL and Dickerson IM. The calcitonin gene-related peptidefamily: form, function and future perspectives[M]. Springer,2010:59–73.
    [18] Hay DL et al. Desensitisation of adrenomedullin and CGRP receptors[J]. Regul Pept,2003,112(21):139–145.
    [19] Drissi H et al. Activation of phospholipase C-beta1via Galphaq/11during calciummobilization by calcitonin gene-related peptide[J]. J Biol Chem,1998,273(14):20168–20174.
    [20] Drissi H et al. Calcitonin gene-related peptide (CGRP) increases intracellular freeCa2+concentrations but not cyclic AMPformation in CGRP receptor-positiveosteosarcoma cells (OHS-4)[J]. Cytokine,1999,11(8):200–207.
    [21] Brain SD and Grant AD. Vascular actions of calcitonin generelatedpeptide andadrenomedullin[J]. Physiol Rev,2004,84(3):903–934.
    [22] Tobin AB et al. Location, location, location: site-specific GPCR phosphorylationoffers a mechanism for cell-type-specific signaling[J]. Trends PharmacolSci,2008,29(23):413–420.
    [23] Tilakaratne N et al. Amylin receptor phenotypes derived from human calcitoninreceptor/RAMP coexpression exhibit pharmacological differences dependent onreceptor isoform and host cell environment[J]. J Pharmacol Exp Ther,2000,294(6):61–72.
    [24] Morfis M et al. Receptor activity-modifying proteins differentially modulate the Gprotein-coupling efficiency of amylin receptors[J]. Endocrinology,2008,149(7):5423–5431.
    [25] Bailey RJ and Hay DL. Pharmacology of the human CGRP1receptor in Cos7cells[J].Peptides,2006,27(5):1367–1375.
    [26] Hay DL et al. CL/RAMP2and CL/RAMP3produce pharmacologically distinctadrenomedullin receptors: a comparison of effects of adrenomedullin22-52,CGRP8-37and BIBN4096BS[J]. Br J Pharmacol,2003,140(4):477–486.
    [27] Hay DL et al. Determinants of1-piperidinecarboxa mide,-[2-[[5-amino-l-
    [[4-(4-pyridinyl)-l-piperazinyl] carbonyl]pentyl]amino]-1-[(3,5-dibromo-4ydroxyphenyl)methyl]-2-oxoethyl]-4-(1,4-dihydro-2-oxo-3(2H)-quinazolinyl)(BIBN4096BS)affinity for calcitonin generelatedpeptide and amylin receptors—the role of receptoractivity modifying protein1[J]. Mol Pharmacol,2006,70(33):1984–1991.
    [28] Takhshid MA et al. Characterization and effects on cAMP accumulation ofadrenomedullin and calcitonin gene-related peptide (CGRP) receptors in dissociatedrat spinal cord cell culture[J]. Br J Pharmacol,2006,148(9):459–468.
    [29] Han JS et al. Critical role of calcitonin gene-related peptide1receptors in theamygdala in synaptic plasticity and pain behavior[J]. JNeurosci,2005,25(4):10717–10728.
    [30] Han JS et al. Facilitation of synaptic transmission and pain responses by CGRP in theamygdala of normal rats[M]. Mol Pain,2010:6-10.
    [31] Champion HC et al. Responses to human CGRP, ADM, and PAMP in human thymicarteries. Am. J. Physiol. Regul[J]. Integr. Comp Physiol,2003,284(4):531–537.
    [32] Hosaka K et al. Calcitonin gene-related peptide activates different signaling pathwaysin mesenteric lymphatics of guinea pigs[J]. Am J Physiol Heart Circ Physiol,2006,290(7):813–822.
    [33] Wellman GC et al. ATP-sensitive K+channel activation by calcitonin gene-relatedpeptide and protein kinase A in pig coronary arterial smooth muscle[J]. J Physiol,1998,507(1):117–129.
    [34] Hosokawa S et al. Calcitonin gene-related peptide-and adrenomedullin-inducedfacilitation of calcium current by different signal pathways in nucleus tractussolitarius[J]. Brain Res,2010,1327(23):47–55.
    [35] Kawase T et al. Mature osteoblastic MG63cells possess two calcitonin gene-relatedpeptide receptor subtypes that respond differently to [Cys(Acm)(2,7)] calcitoningene-related peptide and CGRP(8-37)[J]. Am J Physiol Cell Physiol,2005,289(22):811–818.
    [36] Vause CV and Durham PL. Calcitonin gene-related peptide differentially regulatesgene and protein expression in trigeminal glia cells: findings from array analysis[J].Neurosci. Lett,2010,473(4):163–167.
    [37] Wiley JW et al. The peptide CGRP increases a high-threshold Ca2+current in ratnodose neurones via a pertussis toxin-sensitive pathway[J]. J Physiol,1992,455(3):367–381.
    [38] Disa J et al. Involvement of cAMP-dependent protein kinase and pertussistoxin-sensitive G-proteins in CGRP mediated JNK activation in humanneuroblastoma cell line[J]. Neuropeptides,2000,34(12):229–233.
    [39] Kim D. Calcitonin-gene-related peptide activates the muscarinic-gated K+currentin atrial cells[J]. Pflugers Arch,1991,418(7):338–345.
    [40] Aiyar N et al. Calcitonin gene-related peptide receptor independently stimulates3’,5’-cyclic adenosine monophosphate and Ca2+signaling pathways[J]. Mol CellBiochem,1999,197(22):179–185.
    [41] Parameswaran N et al. Activation of multiple mitogenactivated protein kinases byrecombinant calcitonin gene-related peptide receptor[J]. Eur JPharmacol,2000,389(14):125–130.
    [42] Main MJ et al. The CGRP receptor can couple via pertussis toxin sensitive andinsensitive G proteins[J]. FEBS Lett,1998,441(2).:6–10.
    [43] Morara S et al. Calcitonin gene-related peptide (CGRP) triggers Ca2+responses incultured astrocytes and in Bergmann glial cells from cerebellar slices[J]. Eur JNeurosci,2008,28(6):2213–2220.
    [44] Ritter SL and Hall RA. Fine-tuning of GPCR activity by receptor-interactingproteins[J]. Nat Rev Mol Cell Biol,2009,10(6):819–830.
    [45] Sun RQ et al. Calcitonin gene-related peptide receptor activation produces PKA-andPKC-dependent mechanical hyperalgesia and central sensitization[J]. JNeurophysiol,2004,92(4):2859–2866.
    [46] Fabbretti E et al. Delayed upregulation of ATP P2X3receptors of trigeminal sensoryneurons by calcitonin gene-related peptide[J]. J Neurosci,2006,26(21):6163–6171.
    [47] Simonetti M et al. Mechanisms mediating the enhanced gene transcription of P2X3receptor by calcitonin gene-related peptide in trigeminal sensory neurons[J]. J BiolChem,2008,283(33):18743–18752.
    [48] Natura G et al. Calcitonin gene-related peptide enhances TTXresistant sodiumcurrents in cultured dorsal root ganglion neurons from adult rats[J].Pain,2005,116(8):194–204.
    [49] Wang W et al. Endogenous calcitonin gene-related peptide protects human alveolarepithelial cells through protein kinase C epsilon and heat shock protein[J]. J BiolChem,2005,280(21):20325–20330.
    [50] Heroux M et al. Assembly and signaling of CRLR and RAMP1complexes assessed byBRET[J]. Biochemistry,2007,46(7):7022–7033.
    [51] Hilairet S et al. Agonist-promoted internalization of a ternary complex betweencalcitonin receptor-like receptor, receptor activitymodifying protein1(RAMP1), andbeta-arrestin[J]. J Biol Chem,2001,276(34):42182–42190.
    [52] Padilla BE et al. Endothelin-converting enzyme-1regulates endosomal sorting ofcalcitonin receptor-like receptor and betaarrestins[J].J Cell Biol,2007,179(4):981–997.
    [53] De Fea K. Beta-arrestins and heterotrimeric G-proteins: collaborators and competitorsin signal transduction[J]. Br J Pharmacol,2008,153(1):298–309.
    [54] Nikitenko LL et al. Adrenomedullin and CGRP interact with endogenouscalcitonin-receptor-like receptor in endothelial cells and induce its desensitisation bydifferent mechanisms[J]. J Cell Sci,2006,119(3):910–922.
    [55] Ma W et al. A role for adrenomedullin as a pain-related peptide in the rat[J]. ProcNatl Acad Sci USA,2006,103(35):16027–16032.
    [56] Yu XJ et al. Calcitonin gene-related peptide increases proliferation of human HaCaTkeratinocytes by activation of MAP kinases[J]. Cell Biol Int,2009,33(5):1144–1148.
    [57] Kawanami Y et al. Calcitonin gene-related peptide stimulates proliferation of alveolarepithelial cells[J]. Respir Res,2009,10(2):8-9.
    [58] Wang Z et al. Cell-type specific activation of p38and ERK mediates calcitoningene-related peptide involvement in tolerance to morphine-induced analgesia[J].FASEB J,2009,23(15):2576–2586.
    [59] Vause CV and Durham PL. CGRP stimulation of iNOS and NO release fromtrigeminal ganglion glial cells involves mitogenactivated protein kinase pathways[J].J Neurochem,2009,110(24):811–821.
    [60] Kenakin TP. Cellular assays as portals to seventransmembrane receptor-based drugdiscovery[J]. Nat Rev Drug Discov,2009,8(6):617–626.
    [1] Daik R. BMP-2gene modified tissue engincered bone hepairug segmental tibial boredefects in goats[J]. Natl Med J China,2003,83(3):1345-1349.
    [2] Hogan BL. Bone morphogenetic proteins: multifunctional regulatorsof vertebratedevelopment[J]. Genes Dev,1998,10(13):1580-1594.
    [3] Mehler MF, Mabie PC, Zhang D, et al. Bone morphogenetic proteins in the nervoussystem[J]. Trends Neurosci,1997,20(7):309-317.
    [4] Nakayama T, Cui Y, Christian JL. Regulation of BMP signaling during embryonicdevelopment[J]. Cell Mol Life Sci,2000,57(6):943-956.
    [5] Mehler MF, Mabie PC, Zhang DM, et al. Bone morphogenetic proteins in the nervussystem[J]. Trends Neurosci,1997,20(13):309-311.
    [6] Malpe R, Baylink DJ, Sampath TK, et al. Evidence that human bone cells in culturecontaining binding sites for osteogenic protein-1[J]. Biochem Biophys Res Commun,1994,201(3):1140-1143.
    [7] Hogan BLM. Bone morphogenetic proteins: Multifunctional regulators of vertebratedevelopment[J]. Genes Dev,1996,10(4):1580-1584.
    [8] Zhang H, Bradley A. Mice deficient for BMP-2are nonviable and have defects inamnion/chorion and cardiac development[J]. Developmet,1996,122(34):2977-2980.
    [9] Duprez D, Bell EJ, Richardson MK, et al. Overexpression of BMP-2and BMP-4alters the size and shape of developing skeletal elements in the chick limb[J]. MechDev,1996,57(4):145-148.
    [10] Massague J, Attisano L, Wrana JL. The TGF–β family and its compositereceptors[J]. Trends Cell Biol,1994,4(3):172-175.
    [11] Mishina Y, Suzuki A, Golbert DJ,et al. Genomic organization and chromosomallocation of the mouse type I BMP-2/-4receptor[J]. Biochem Biophys Res Commun,1995,206(1):310-311.
    [12] Suzuki A, Thies RS, Yamaji N,et al. A truncated bone morphogenetic protein receptoraffects dorsal-ventral patterning in the early Xenopus embryo[J]. Proc Natl Sci USA,1994,91(32):10255-10259.
    [13] Ruberte E, Marty T, NellenO, et al. An absolute requirement for both the type II andtype I receptors, punt and thick veins, for dpp signalling in vivo[J]. Cell,1995,80(3):889-891.
    [14] Rosenzweg BL, Imamura T, Okadome T, et al. Cloning and characterization of ahuman type II receptor for bone morphogenetic proteins[J]. Proc Natl Sci USA,1995,92(21):7632-7634.
    [15] Liu F, Ventura F, Doody J, et al. Human type II receptor for bone morphogeneticproteins (BMPs): extension of the two-kinase receptor model to the BMPs[J]. MoleCell Biol,1995,15(7):3479-3482.
    [16] Hassel S, Schmitt S, Hartung A, et al. Initiation of Smad-dependent andSmad-independent signaling via distinct BMP-recepor comlaexes[J]. J Bone JointSurg AM,2003,85(7):44-51.
    [17] Ying SX, Hussain ZJ, Zhang YE. Smurf1faciltates myogenic differentiation andantagonizes the bone morphogenetic protein-2induced osteblast conversion bytargeting Smad5for degradation[J].J Biol Chem,2003,278(26):39029-39036.
    [18] Zhao Ming, Qiao Mei, Stephen EH, et al. Smurf1inhibits osteblast differentiation andbone formation vitro and in vivo[J]. J Biol Chem,2004,279(7):12854-12859.
    [19] Gallea S, Lallemand F, Atfi A, et al.Activation of mitogen-activated protein kinsecascades is involved in regulation of bone morphogenetic protein-2inducedosteblast differentiation in pluripotent C2C12cells[J]. Bone,2001,28(5):491-498.
    [20] Lemonnier J, Ghayor C, Guicheux J, et al. Protein kinase C-independent activation ofprotein kinase D is involved in BMP-2-induced activation of stress mitogen-activedprotein kinase JNK and P38osteoblast cell differentiation[J].J BiolChem,2004,279(33):259-264.
    [21] Nishitai G, Shimizu N, Takahiro T. Stress induces mitochondria-mediated apotosisindependent of SAPK/JNK activation in embryonic stem cells[J].J BiomChem,2004,279(15):1621-1626.
    [22] Komori T, Kishimoto T. Cbfa1in bone development[J].Curr Opin GenetDev,1998,8(17):494-499.
    [23] Nishimura R, Hata K, Harris SE, et al. Core-binding factor a1(Cbfa1) inducesosteoblastic differentiation of C2C12cells without interactions with Smad1andSmad5[J]. Bone,2002,31(2):302-312.
    [24] Reddi AH. Morphgenesis and tissue engineering of bone and cartilage: Inductic signal,stem cells, and biomimetic biomaterials[J].Tissue Eng,2000,6(13):351-359.
    [25] Tao Yan,Riggs BL,Boyle WJ, et al. Regulation of osteoclastogenesis and RANKexpression by TGF-1[J].J Cell Biochem,2001,83(2):320-325.
    [26] Carpio L, Gladu J, Goltzman D, et al. Induction of osteoblast differentiation indexs byPTHrP in MG-63cells involves multiple signaling pathways[J].Am J PhysiolEndocrinol Metab,2001,281(7):489-499.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700