用户名: 密码: 验证码:
组蛋白磷酸化和tRNA甲基化相关蛋白的结构与功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要研究组蛋白修饰和tRNA修饰相关蛋白的结构与功能。
     论文的前两章介绍了人源蛋白MCPH1串联BRCT结构域的结构与功能。MCPH1蛋白参与到DNA损伤修复过程中,它含有三个BRCT结构域,其中位于N端的第一个BRCT结构域与染色质重塑复合物SWI-SNF结合,并把SWI-SNF复合物带到DNA损伤位点,使紧密的染色质变的松散;位于C-端的第二个和第三个BRCT结构域属于串联BRCT结构域,他被证实参与结合磷酸化的组蛋白变异体H2AX (γH2AX)。γH2AX发生在DNA修复反应的早期并引发了下游的修复过程,在DNA的损伤修复过程中扮演着重要角色。在本论文中,通过采用X射线晶体学和生物化学相结合的方法,我们研究MCPH1串联BRCT结构域识别yH2AX的分子机制。首先我们用荧光偏振的方法测定了MCPH1串联BRCT与yH2AX小肽的亲和力,结果表明它们之间有很强的的相互作用。然后,我们分别解析了串联BRCT以及它与yH2AX小肽复合物的晶体结构,并与其他经典的串联BRCT结构相比较,我们的结构显示MCPH1采用一种新的RXXN motif代替RXXK motif来识别yH2AX。此外,MCPH1对磷酸化+3位的残基(Tyr,位于小肽的C末端)有选择性,它倾向于结合C末端有COOH基团的小肽,C-末端的氨基化明显减弱了它们的相互作用。我们进一步证明MCPH1串联BRCT结构域与内源性的yH2AX有相互作用。我们的研究揭示了MCPH1串联BRCT结构域识别yH2AX的分子机理。
     论文的后两章介绍了酿酒酵母(Saccharomyces cerevisiae) tRNA ml G9甲基转移酶scTrml0的酶活催化机制。tRNA的甲基化是一种很普遍的修饰,这种修饰对tRNA的生物学功能是必需的。然而鸟嘌呤G的N-1甲基化(m1G)在tRNA修饰中却比较罕见,目前在两个位点上发现了m1G甲基化:位于anti-codon附近的nlG37和位于D-loop和acceptor stem连接处的m1G9。据最近的文献报道,Trm10家族蛋白被发现与tRNA ml G9的形成有关,但是,该反应的催化机制以及Trm10与底物tRNA的结合机制尚不清楚。在本工作中,我们解析了酿酒酵母scTrml0与小分子底物SAH的复合物晶体结构。通过拓扑结构分析,我们发现scTrml0的酶活结构域属于SPOUT甲基转移酶家族。因为目前已知的SPOUT家族甲基转移酶都是同二聚体,所以我们使用X射线小角散射(SAXS)的方法研究了裂殖酵母spTrm10的溶液结构,结果证明spTrm10在溶液中呈现单体状态,而且它的N端区域在溶液中非常活跃。通过体外的酶活实验、ITC实验和分子docking结果,我们猜测两个保守残基参与了甲基转移反应:D210可能在酶活反应充当着转移甲基的作用,而Q118则与tRNAG9有直接的相互作用。进一步,我们用EMSA实验证实了scTrm10的N端区域和酶活结构域的碱性区域都可以识别tRNA。通过该研究,我们第一次报道了酿酒酵母scTrm10的晶体结构,并进一步分析了它催化tRNA ml G9形成的分子机制。
The thesis focus on structure and function of proteins that are involved in histone modification and tRNA modification.
     In the first two chapters, we introduce the structure and function of human protein MCPH1tandem BRCT domains, which is involved in DNA damage response pathway. MCPH1contains three BRCT domains, one is at N-terminus and the tandem BRCT are at C-terminus. The N-terminal BRCT can directly bind to chromatin remodeling complex SWI-SNF and bring the complex to DNA damage sites, then the SWI-SNF complex can relax compact chromatin; the C-terminal BRCT2-BRCT3(tandem BRCT domains) are involved in interacting with yH2AX in DNA damage response. yH2AX is an early event in DNA response and triggers downstream pathway. In addition, yH2AX plays an important role in the DNA response pathway. In our study, we carried out X-ray crystallography and biochemical methods to investigate the molecular mechanism MCPH1tandem BRCT domains recognize yH2AX,. First of all, we determined the binding affinity between MCPH1with yH2AX peptide using fluorescence polarization (FP) assays, the results revealed that the binding affinity is very strong, which is consistent with previous study. Then we solved the crystal structures of MCPH1tandem BRCT alone as well as in complex with yH2AX peptide. Compared with other structures of tandem BRCT domains, MCPH1uses a novel motif (RXXN) to recognize yH2AX instead of RXXK motif in other BRCT domains. Additionally, MCPH1tandem BRCT domains show a binding selectivity on pSer+3(Tyr) and prefer to bind phosphopeptide with free COOH-terminus. The amination of C-terminus in peptide reduced the binding affinity. Taken together, our research provided the molecular mechanism of yH2AX recognition by MCPHl tandem BRCT domain.
     In the last two chapters, we talked about structure and function of tRNA ml G9methyltransferase scTrm10from Saccharomyces cerevisiae. The methylation of tRNA is very common modification, it is very necessary for tRNA function. However, the m1G modification is very rare and has been identified in tRNA only in two positions until now:one is m1G37modification, which is present at Position37(adjacent to3' of the anticodon) of the tRNA; the other is m1G9modification, which is present at Position9and between D-loop and acceptor stem junction. The m1G9modification was recently found to be catalyzed by Trm10family of methyltransferases, but the molecular mechanism and substrate tRNA binding mechanism of Trm10is unclear. In this thesis, we solved the crystal structure of Saccharomyces cerevisiae scTrm10in complex with cofactor SAH. From its topology structure, we can see that TrmlO belongs to SPOUT family. SPOUT family methyltransferases studied to date are known to functionally exist as homodimers, so we performed small angle X-ray scattering (SAXS) to study the solution structure of spTrmlO from Schizosaccharomyces pombe. The SAXS analysis results revealed that spTrmlO functions as a monomer in solution and its N-terminal extension is very flexible. Additionally, using in vitro tRNA methyltransferase activity, ITC experiments and molecular docking, we suggested that two residues could be directly involved in methyl group transferring reaction:D210could play an important role in methyl group transferring, Q118may be involved in substrate G9binding. Furthermore, our EMS A results showed that N-terminal extension and basic surface on the TrmlO methyltransferase domain are all essential to bind the substrate tRNA. In all, we reported the first crystal structure of scTrm10family, and our work provides an insight into the molecular mechanism that how Trm10family catalyzes tRNA mlG9formation.
引文
Abraham, R. T. (2001). "Cell cycle checkpoint signaling through the ATM and ATR kinases." Genes Dev 15(17):2177-2196.
    Callebaut, I. and J. P. Mornon (1997). "From BRCA1 to RAP1:a widespread BRCT module closely associated with DNA repair." FEBS Lett 400(1):25-30.
    Campbell, S. J., R. A. Edwards, et al. (2010). "Comparison of the structures and peptide binding specificities of the BRCT domains of MDC1 and BRCA1." Structure 18(2):167-176.
    Clapperton, J. A., I. A. Manke, et al. (2004). "Structure and mechanism of BRCA1 BRCT domain recognition of phosphorylated BACH1 with implications for cancer." Nat Struct Mol Biol 11(6):512-518.
    Derbyshire, D. J., B. P. Basu, et al. (2002). "Crystal structure of human 53BP1 BRCT domains bound to p53 tumour suppressor." EMBO J 21(14):3863-3872.
    Dickey, J. S., C. E. Redon, et al. (2009). "H2AX:functional roles and potential applications." Chromosoma 118(6):683-692.
    Emsley, P. and K. Cowtan (2004). "Coot:model-building tools for molecular graphics." Acta Crystallographica Section D:Biological Crystallography 60(12):2126-2132.
    Fernandez-Capetillo, O., A. Lee, et al. (2004). "H2AX:the histone guardian of the genome." DNA Repair (Amst) 3(8-9):959-967.
    Ginsberg, D. (2002). "E2F1 pathways to apoptosis." Febs Letters 529(1):122-125.
    Holm, L. and C. Sander (1993). "Protein structure comparison by alignment of distance matrices." Journal of molecular biology 233(1):123-138.
    Jackson, A. P., H. Eastwood, et al. (2002). "Identification of microcephalin, a protein implicated in determining the size of the human brain." The American Journal of Human Genetics 71(1):136-142.
    Jackson, S. P. and J. Bartek (2009). "The DNA-damage response in human biology and disease." Nature 461(7267):1071-1078.
    Joo, W. S., P. D. Jeffrey, et al. (2002). "Structure of the 53BP1 BRCT region bound to p53 and its comparison to the Brcal BRCT structure." Genes Dev 16(5):583-593.
    Kilkenny, M. L., A. S. Dore, et al. (2008). "Structural and functional analysis of the Crb2-BRCT2 domain reveals distinct roles in checkpoint signaling and DNA damage repair." Genes Dev 22(15):2034-2047.
    Kim, H., J. Huang, et al. (2007). "CCDC98 is a BRCA1-BRCT domain-binding protein involved in the DNA damage response." Nat Struct Mol Biol 14(8):710-715.
    Kobayashi, M., E. Ab, et al. (2010). "Structure of the DNA-bound BRCA1 C-terminal region from human replication factor C p140 and model of the protein-DNA complex." J Biol Chem 285(13):10087-10097.
    Kumar, A., M. Markandaya, et al. (2002). "Primary microcephaly:microcephalin and ASPM determine the size of the human brain." J Biosci 27(7):629-632.
    Laskowski, R. A., M. W. MacArthur, et al. (1993). "PROCHECK:a program to check the stereochemical quality of protein structures." Journal of applied crystallography 26(2): 283-291.
    Lee, M. S., R. A. Edwards, et al. (2005). "Structure of the BRCT repeat domain of MDC1 and its specificity for the free COOH-terminal end of the gamma-H2AX histone tail." J Biol Chem 280(37):32053-32056.
    Leung, C. C. and J. N. Glover (2011). "BRCT domains:easy as one, two, three." Cell Cycle 10(15):2461-2470.
    Leung, C. C., Z. Gong, et al. (2011). "Molecular basis of BACH1/FANCJ recognition by TopBPl in DNA replication checkpoint control." J Biol Chem 286(6):4292-4301.
    Li, M., L. Y. Lu, et al. (2013). "The FHA and BRCT domains recognize ADP-ribosylation during DNA damage response." Genes Dev 27(16):1752-1768.
    Lin, S. Y. and S. J. Elledge (2003). "Multiple tumor suppressor pathways negatively regulate telomerase." Cell 113(7):881-889.
    Lin, S. Y., Y. Liang, et al. (2010). "Multiple roles of BRIT1/MCPH1 in DNA damage response, DNA repair, and cancer suppression." Yonsei Med J 51(3):295-301.
    Lloyd, J., J. R. Chapman, et al. (2009). "A supramodular FHA/BRCT-repeat architecture mediates Nbsl adaptor function in response to DNA damage." Cell 139(1):100-111.
    Manke, I. A., D. M. Lowery, et al. (2003). "BRCT repeats as phosphopeptide-binding modules involved in protein targeting." Science 302(5645):636-639.
    McCoy, A. J., R. W. Grosse-Kunstleve, et al. (2007). "Phaser crystallographic software." Journal of applied crystallography 40(4):658-674.
    Miki, Y, J. Swensen, et al. (1994). "A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1." Science 266(5182):66-71.
    Mohammad, D. H. and M. B. Yaffe (2009). "14-3-3 proteins, FHA domains and BRCT domains in the DNA damage response." DNA Repair (Amst) 8(9):1009-1017.
    Murshudov, G. N., A. A. Vagin, et al. (1997). "Refinement of macromolecular structures by the maximum-likelihood method." Acta Crystallographica Section D:Biological Crystallography 53(3):240-255.
    Niida, H. and M. Nakanishi (2006). "DNA damage checkpoints in mammals." Mutagenesis 21(1): 3-9.
    Otwinowski, Z. and W. Minor (1997). "Processing of X-ray diffraction data." Methods enzymol 276:307-326.
    Pei, H., L. Zhang, et al. (2011). "MMSET regulates histone H4K20 methylation and 53BP1 accumulation at DNA damage sites." Nature 470(7332):124-128.
    Peng, G., E. K. Yim, et al. (2009). "BRIT1/MCPH1 links chromatin remodelling to DNA damage response." Nat Cell Biol 11(7):865-872.
    Posthuma, D., E. J. De Geus, et al. (2002). "The association between brain volume and intelligence is of genetic origin." Nat Neurosci 5(2):83-84.
    Rai, R., H. Dai, et al. (2006). "BRIT1 regulates early DNA damage response, chromosomal integrity, and cancer." Cancer Cell 10(2):145-157.
    Rappas, M., A. W. Oliver, et al. (2011). "Structure and function of the Rad9-binding region of the DNA-damage checkpoint adaptor TopBPl." Nucleic Acids Res 39(1):313-324.
    Reinhardt, H. C. and M. B. Yaffe (2009). "Kinases that control the cell cycle in response to DNA damage:Chkl, Chk2, and MK2." Curr Opin Cell Biol 21(2):245-255.
    Richards, M. W., J. W. Leung, et al. (2010). "A pocket on the surface of the N-terminal BRCT domain of Mcphl is required to prevent abnormal chromosome condensation." J Mol Biol 395(5):908-915.
    Rogakou, E. P., C. Boon, et al. (1999). "Megabase chromatin domains involved in DNA double-strand breaks in vivo." J Cell Biol 146(5):905-916.
    Rogakou, E. P., D. R. Pilch, et al. (1998). "DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139." J Biol Chem 273(10):5858-5868.
    Shiloh, Y. (2003). "ATM and related protein kinases:safeguarding genome integrity." Nat Rev Cancer 3(3):155-168.
    Stucki, M., J. A. Clapperton, et al. (2005). "MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks." Cell 123(7):1213-1226.
    Wang, J. K., Y. Li, et al. (2008). "A common SNP of MCPH1 is associated with cranial volume variation in Chinese population." Hum Mol Genet 17(9):1329-1335.
    Williams, J. S., R. S. Williams, et al. (2010). "gammaH2A binds Brcl to maintain genome integrity during S-phase." EMBO J 29(6):1136-1148.
    Williams, R. S., R. Green, et al. (2001). "Crystal structure of the BRCT repeat region from the breast cancer-associated protein BRCA1." Nat Struct Biol 8(10):838-842.
    Winn, M. D., C. C. Ballard, et al. (2011). "Overview of the CCP4 suite and current developments." Acta Crystallographica Section D:Biological Crystallography 67(4): 235-242.
    Wood, J. L., Y. Liang, et al. (2008). "Microcephalin/MCPH1 associates with the Condensin Ⅱ complex to function in homologous recombination repair." J Biol Chem 283(43): 29586-29592.
    Wood, J. L., N. Singh, et al. (2007). "MCPH1 functions in an H2AX-dependent but MDC1-independent pathway in response to DNA damage." J Biol Chem 282(48): 35416-35423.
    Woods, C. G., J. Bond, et al. (2005). "Autosomal recessive primary microcephaly (MCPH):a review of clinical, molecular, and evolutionary findings." The American Journal of Human Genetics 76(5):717-728.
    Wu, X., G. Mondal, et al. (2009). "Microcephalin regulates BRCA2 and Rad51-associated DNA double-strand break repair." Cancer Res 69(13):5531-5536.
    Xu, X., J. Lee, et al. (2004). "Microcephalin is a DNA damage response protein involved in regulation of CHK1 and BRCAl." J Biol Chem 279(33):34091-34094.
    Yang, S. Z., F. T. Lin, et al. (2008). "MCPH1/BRIT1 cooperates with E2F1 in the activation of checkpoint, DNA repair and apoptosis." EMBO Rep 9(9):907-915.
    Yu, X. and J. Chen (2004). "DNA damage-induced cell cycle checkpoint control requires CtIP, a phosphorylation-dependent binding partner of BRCA1 C-terminal domains." Mol Cell Bjol 24(21):9478-9486.
    Yuan, J., R. Adamski, et al. (2010). "Focus on histone variant H2AX:to be or not to be." FEBS Lett 584(17):3717-3724.
    Zhang, X., S. Morera, et al. (1998). "Structure of an XRCCl BRCT domain:a new protein-protein interaction module." EMBO J 17(21):6404-6411.
    Ahn, H. J., H. W. Kim, et al. (2003). "Crystal structure of tRNA(m1G37)methyltransferase: insights into tRNA recognition." Embo Journal 22(11):2593-2603.
    Anderson, J., L. Phan, et al. (2000). "The Gcd10p/Gcd14p complex is the essential two-subunit tRNA(1-methyladenosine) methyltransferase of Saccharomyces cerevisiae." Proc Natl Acad Sci U S A 97(10):5173-5178.
    Aravind, L. and E. V. Koonin (1999). "Novel predicted RNA-binding domains associated with the translation machinery." J Mol Evol 48(3):291-302.
    Aravind, L. and E. V. Koonin (2001). "THUMP--a predicted RNA-binding domain shared by 4-thiouridine, pseudouridine synthases and RNA methylases." Trends in Biochemical Sciences 26(4):215-217.
    Awai, T, S. Kimura, et al. (2009). "Aquifex aeolicus tRNA (N2,N2-guanine)-dimethyltransferase (Trml) catalyzes transfer of methyl groups not only to guanine 26 but also to guanine 27 in tRNA." J Biol Chem 284(31):20467-20478.
    Bjork, G. R., K. Jacobsson, et al. (2001). "A primordial tRNA modification required for the evolution of life?" Embo Journal 20(1-2):231-239.
    Bjork, G. R., P. M. Wikstrom, et al. (1989). "Prevention of translational frameshifting by the modified nucleoside 1-methylguanosine." Science 244(4907):986-989.
    Bray, J. E., B. D. Marsden, et al. (2009). "The human short-chain dehydrogenase/reductase (SDR) superfamily:a bioinformatics summary." Chem Biol Interact 178(1-3):99-109.
    Brule, H., M. Elliott, et al. (2004). "Isolation and characterization of the human tRNA-(N1G37) methyltransferase (TRM5) and comparison to the Escherichia coli TrmD protein." Biochemistry 43(28):9243-9255.
    Cantara, W. A., P. F. Crain, et al. (2011). "The RNA Modification Database, RNAMDB:2011 update." Nucleic Acids Res 39(Database issue):D195-201.
    Christian, T., G. Lahoud, et al. (2010). "Mechanism of N-methylation by the tRNA m1G37 methyltransferase Trm5." RNA 16(12):2484-2492.
    Czerwoniec, A., J. M. Kasprzak, et al. (2009). "Folds and functions of domains in RNA modification enzymes." DNA and RNA Modification Enzymes:Structure, Mechanism, Function and Evolution. Landes Bioscience. Austin, Texas, USA:289-302.
    El Yacoubi, B., M. Bailly, et al. (2012). "Biosynthesis and function of posttranscriptional modifications of transfer RNAs." Annu Rev Genet 46:69-95.
    Elkins, P. A., J. M. Watts, et al. (2003). "Insights into catalysis by a knotted TrmD tRNA methyltransferase." J Moi Biol 333(5):931-949.
    Emsley, P. and K. Cowtan (2004). "Coot:model-building tools for molecular graphics." Acta Crystallographica Section D:Biological Crystallography 60(12):2126-2132.
    Fischer, H., M. D. Neto, et al. (2010). "Determination of the molecular weight of proteins in solution from a single small-angle X-ray scattering measurement on a relative scale." Journal of Applied Crystallography 43:101-109.
    Fislage, M., M. Roovers, et al. (2012). "Crystal structures of the tRNA:m2G6 methyltransferase Trml4/TrmN from two domains of life." Nucleic Acids Research 40(11):5149-5161.
    Goto-Ito, S., T. Ito, et al. (2008). "Crystal structure of archaeal tRNA(m(1)G37)methyltransferase aTrm5." Proteins 72(4):1274-1289.
    Goto-Ito, S., T. Ito, et al. (2009). "Tertiary structure checkpoint at anticodon loop modification in tRNA functional maturation." Nat Struct Mol Biol 16(10):1109-1115.
    Gray, M. W. (1975). "Analysis of O2'-methylnucleoside 5'-phosphates in snake venom hydrolysates of RNA:identification of O2'-methyl-5-carboxymethyluridine as a constituent of yeast transfer RNA." Can J Biochem 53(7):735-746.
    Gustavsson, M. and H. Ronne (2008). "Evidence that tRNA modifying enzymes are important in vivo targets for 5-fluorouracil in yeast." RNA 14(4):666-674.
    Gustilo, E. M., F. A. Vendeix, et al. (2008). "tRNA's modifications bring order to gene expression." Curr Opin Microbiol 11(2):134-140.
    Hauenstein, S. I. and J. J. Perona (2008). "Redundant synthesis of cysteinyl-tRNACys in Methanosarcina mazei." J Biol Chem 283(32):22007-22017.
    Hentze, M. W. (1994). "Enzymes as RNA-binding proteins:a role for (di)nucleotide-binding domains?" Trends Biochem Sci 19(3):101-103.
    Hermanson, G. T. (2013). Bioconjugate techniques. Academic press.
    Holm, L. and C. Sander (1993). "Protein structure comparison by alignment of distance matrices." Journal of molecular biology 233(1):123-138.
    Holzmann, J., P. Frank, et al. (2008). "RNase P without RNA:identification and functional reconstitution of the human mitochondrial tRNA processing enzyme." Cell 135(3): 462-474.
    Hong, P., S. Koza, et al. (2012). "Size-Exclusion Chromatography for the Analysis of Protein Biotherapeutics and their Aggregates." J Liq Chromatogr Relat Technol 35(20): 2923-2950.
    Hou, Y. M. (2012). "High-purity enzymatic synthesis of site-specifically modified tRNA." Methods Mol Biol 941:195-212.
    Hou, Y. M. and J. J. Perona (2010). "Stereochemical mechanisms of tRNA methyltransferases." FEBS Lett 584(2):278-286.
    Ihsanawati, M. Nishimoto, et al. (2008). "Crystal structure of tRNA N2,N2-guanosine dimethyltransferase Trml from Pyrococcus horikoshii." J Mol Biol 383(4):871-884.
    Ishitani, R., O. Nureki, et al. (2003). "Alternative tertiary structure of tRNA for recognition by a posttranscriptional modification enzyme." Cell 113(3):383-394.
    Jackman, J. E. and J. D. Alfonzo (2013). "Transfer RNA modifications:nature's combinatorial chemistry playground." Wiley Interdiscip Rev RNA 4(1):35-48.
    Jackman, J. E., R. K. Montange, et al. (2003). "Identification of the yeast gene encoding the tRNA mlG methyltransferase responsible for modification at position 9." RNA 9(5):574-585.
    Kavanagh, K. L., H. Jornvall, et al. (2008). "Medium-and short-chain dehydrogenase/reductase gene and protein families:the SDR superfamily:functional and structural diversity within a family of metabolic and regulatory enzymes." Cell Mol Life Sci 65(24): 3895-3906.
    Kempenaers, M., M. Roovers, et al. (2010). "New archaeal methyltransferases forming 1-methyladenosine or 1-methyladenosine and 1-methylguanosine at position 9 of tRNA." Nucleic Acids Research 38(19):6533-6543.
    Kouloulias, V, G. Plataniotis, et al. (2005). "Chemoradiotherapy combined with intracavitary hyperthermia for anal cancer:feasibility and long-term results from a phase II randomized trial." Am J Clin Oncol 28(1):91-99.
    Laskowski, R. A., M. W. Macarthur, et al. (1993). "Procheck-a Program to Check the Stereochemical Quality of Protein Structures." Journal of Applied Crystallography 26: 283-291.
    Lee, C., G. Kramer, et al. (2007). "Yeast mitochondrial initiator tRNA is methylated at guanosine 37 by the Trm5-encoded tRNA (guanine-N1-)-methyltransferase." J Biol Chem 282(38): 27744-27753.
    Lim, K., H. Zhang, et al. (2003). "Structure of the YibK methyltransferase from Haemophilus influenzae (HI0766):a cofactor bound at a site formed by a knot." Proteins 51(1):56-67.
    Mccoy, A. J., R. W. Grosse-Kunstleve, et al. (2007). "Phaser crystallographic software." Journal of Applied Crystallography 40:658-674.
    Michel, G., V. Sauve, et al. (2002). "The structure of the RlmB 23S rRNA methyltransferase reveals a new methyltransferase fold with a unique knot." Structure 10(10):1303-1315.
    Morris, G. M., R. Huey, et al. (2009). "AutoDock4 and AutoDockTools4:Automated docking with selective receptor flexibility." J Comput Chem 30(16):2785-2791.
    Motorin, Y. and M. Helm (2011). "RNA nucleotide methylation." Wiley Interdiscip Rev RNA 2(5): 611-631.
    Murshudov, G. N., A. A. Vagin, et al. (1997). "Refinement of macromolecular structures by the maximum-likelihood method." Acta Crystallographica Section D:Biological Crystallography 53(3):240-255.
    Murzin, A. G. (1993). "OB(oligonucleotide/oligosaccharide binding)-fold:common structural and functional solution for non-homologous sequences." Embo Journal 12(3):861-867.
    Nagy, E., T. Henics, et al. (2000). "Identification of the NAD(+)-binding fold of glyceraldehyde-3-phosphate dehydrogenase as a novel RNA-binding domain" Biochem Biophys Res Commun 275(2):253-260.
    Nureki, O., K. Watanabe, et al. (2004). "Deep knot structure for construction of active site and cofactor binding site of tRNA modification enzyme." Structure 12(4):593-602.
    Otwinowski, Z. and W. Minor (1997). "Processing of X-ray diffraction data." Methods enzymol 276:307-326.
    Purushothaman, S. K., J. M. Bujnicki, et al. (2005). "Trmllp and Trml12p are both required for the formation of 2-methylguanosine at position 10 in yeast tRNA." Mol Cell Biol 25(11): 4359-4370.
    Schubert, H. L., R. M. Blumenthal, et al. (2003). "Many paths to methyltransfer:a chronicle of convergence." Trends Biochem Sci 28(6):329-335.
    Sprinzl, M., C. Horn, et al. (1998). "Compilation of tRNA sequences and sequences of tRNA genes." Nucleic Acids Res 26(1):148-153.
    Tkaczuk, K. L., S. Dunin-Horkawicz, et al. (2007). "Structural and evolutionary bioinformatics of the SPOUT superfamily of methyltransferases." BMC Bioinformatics 8:73.
    Torabi, N. and L. Kruglyak (2011). "Variants in SUP45 and TRM10 Underlie Natural Variation in Translation Termination Efficiency in Saccharomyces cerevisiae." Plos Genetics 7(7).
    Vilardo, E., C. Nachbagauer, et al. (2012). "A subcomplex of human mitochondrial RNase P is a bifunctional methyltransferase--extensive moonlighting in mitochondrial tRNA biogenesis." Nucleic Acids Research 40(22):11583-11593.
    Winn, M. D., C. C. Ballard, et al. (2011). "Overview of the CCP4 suite and current developments." Acta Crystallogr D Biol Crystallogr 67(Pt 4):235-242.
    Wu, J., J. H. Hou, et al. (2006). "A new Drosophila gene wh (wuho) with WD40 repeats is essential for spermatogenesis and has maximal expression in hub cells." Dev Biol 296(1): 219-230.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700