用户名: 密码: 验证码:
基于纳米压痕技术的涂层残余应力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钻探机具是工程地质勘探中不可缺少的设备,磨损、腐蚀和疲劳等常见的表面失效严重影响其服役安全性和使用寿命。采用先进的表面工程技术对钻具零部件表面进行再制造,提高其耐磨、耐蚀以及抗疲劳性能,是保证钻探机具服役安全的有效途径。激光熔覆层和超音速等离子喷涂层具有优异的耐磨、耐蚀和抗疲劳性能,适合用于对钻具进行再制造。然而,制备过程中产生的残余应力对再制造涂层的力学性能和服役持久性具有重要影响。因此,研究再制造涂层中的残余应力大小以及分布规律对提高其使用寿命和揭示其失效机制具有重要的意义。
     本文采用纳米压痕技术,基于自主设计的新型等双轴残余应力施加装置,对单晶铜和45钢施加不同应力后进行纳米压痕试验,研究残余应力对压痕参数(加载、卸载曲线,压痕周围的凸起变形以及压痕接触面积)的影响规律。研究发现:相对于无应力状态,残余拉应力在固定载荷模式下会使压入深度明显增大,而在固定深度模式下,会使压入载荷明显减小;且无论何种压入模式,残余拉应力均会减小卸载时的弹性回复、压痕周围的凸起变形高度以及压痕真实接触面积。而残余压应力对压痕参数的影响则表现出相反的规律。
     真实接触面积是纳米压痕法测定残余应力的重要特征参量,但传统的O&P模型在计算真实接触面积时忽略了压痕周围的凸起变形面积,从而引入严重的误差。针对这一问题,本文基于几何算法,将压痕的真实接触面积看为凸起变形部分的面积与传统O&P法计算的三角形面积之和,建立了新的适用于压痕周围发生凸起变形的材料的真实接触面积计算模型,很好地修正了O&P模型的误差。
     基于新型的等双轴残余应力施加装置,对比分析了Suresh的固定载荷和固定深度模型,以及Lee模型在残余应力测试时的准确性和适用范围,发现Suresh和Lee模型均不适用于软质材料的残余应力计算。而对于硬质材料,Suresh的固定载荷模型计算出的残余应力值偏大,Lee模型计算出的拉应力结果存在较大误差,而采用Suresh的固定深度模型计算硬质材料的残余应力最为准确。
     基于Suresh固定深度模型,系统研究了Fe90激光熔覆层和FeCrBSi超音速等离子喷涂层表面以及截面上的残余应力大小和分布规律,并用X射线衍射法进行了辅助验证。发现纳米压痕法能够精确测量出致密激光熔覆层中的残余应力和孔隙较少的喷涂层表面残余应力,而对于孔隙相对较多的喷涂层截面,计算的残余应力值可能存在一定的误差。
Drilling implement is indispensable equipment in engineering geological exploration. Thesecurity and service life of drilling implement are seriously affected by common surface failuresuch as wear, corrosion and fatigue. Advanced surface engineering technologies are often used toremanufature the drilling implement to improve the wear resistance, corrosion resistance andfatigue resistance, which is an effective way to ensure the service safety. Laser cladding coatingsand supersonic plasma spraying coatings having excellent wear resistance, corrosion resistanceand fatigue resistance are suitable for remanufaturing of drilling implement. However, theresidual stresses produced in the preparation process have important influence on the mechanicalproperties and service persistence of remanufatured coatings. Therefore, the study on the residualstresses of remanufatured coatings has important significance to improve the service life andreveal the failure mechanism.
     In this dissertation, nanoindentation tests were performed on the single crystal copper and1045steel after applied to different stresses by a new designed stress-applying device. Theeffects of residual stresses on the nanoindentation parameters such as loading and unloadingcurves, pile-up deformation around indents, and contact area were researched. The resultsshowed that compared with stress-free state, tensile stress will increase the indentation depthwhen the load is fixed, and will decrease the indentation load when the depth is fixed. No matterwhich indentation mode, the residual tensile stress will reduce the elastic recovery whenunloading, the pile-up height and contact area. While the influence of residual compressive stresson the indentation parameters shows the opposite law.
     The real contact area is an important characteristic parameter for the determination ofresidual stresses, but the traditional O&P model ignores the pile-up area in the calculation of thereal contact area, and thus serious errors will be introduced. Aiming at this problem, thisdissertation considered the real contact area as the sum of pile-up area and the triangle areacalculated by O&P model. The new proposed method is suitable for the area calculation ofmaterials that pile up, which well corrects the error of O&P model.
     Based on the new designed stress-applying device, the accuracy and applicability of theSuresh models (fixed load model and fixed depth model) and the Lee model were compared andanalyzed in the calculation of residual stresses. The Suresh models and Lee model were not suitable for soft materials. For hard materials, the residual stresses calculated by the fixed loadSuresh model were too large; the tensile stresses determined by the Lee model had big errors.The stresses calculated by the fixed depth Suresh model were the most accurate.
     Based on the fixed depth Suresh model, the surface and cross-section residual stresses of Fe90laser cladding coating and FeCrBSi supersonic plasma spraying coating were studied andverified by traditional X-ray diffraction method. The results showed that nanoindentation methodcan accurately measure the surface and cross-section residual stresses of the Fe90laser claddingcoating with dense structure, as well as the surface residual stress of FeCrBSi coating with lesspores. However, for the cross-section of supersonic plasma spraying coating with relatively morepores, the calculated stress value may have certain errors.
引文
Atar E, Sarioglu C, Demirler U, et al. Residual stress estimation of ceramic thin films by X-ray diffraction andindentation techniques. Scripta Materialia,2003,48:1331-1336.
    Bolshakov A, Oliver W C, Pharr G M. Influences of stress on the measurement of mechanical properties usingnanoindentation: II. Finite element simulations. Journal of Materials Research,1996,11:760-768.
    Bolshakov A, Pharr G M. Influences of pileup on the measurement of mechanical properties by load and depthsensing indentation techniques. Journal of Materials Research,1998,13:1049-1058.
    Chen J, Guo C, Zhou J. Microstructure and tribological properties of laser cladding Fe-based coating on pureTi substrate. Transactions of Nonferrous Metals Society of China,2012,22:2171-2178.
    Clifford S, Jansson N, Yu W, et al. Thermoviscoelastic anisotropic analysis of process induced residualstresses and dimensional stability in real polymer matrix composite components. Composites: Part A,2006,37:538-545.
    Doerner M F, Nix W D. A method of interpreting the data from depth-sensing indentation instruments. Journalof Materials Research,1986,1(4):601-609.
    Ghosh S, Rana V P S, Kain V, et al. Role of residual stresses induced by industrial fabrication on stresscorrosion cracking susceptibility of austenitic stainless steel. Materials and Design,2011,32:3823-3831.
    Giannakopoulos A E, Suresh S. Determination of elastoplastic properties by instrumented sharp indentation.Scripta Materialia,1999,40(10):1191-1198.
    Javadi Y, Akhlaghi M, Najafabadi M A. Using finite element and ultrasonic method to evaluate weldinglongitudinal residual stress through the thickness in austenitic stainless steel plates. Materials and Design,2013,45:628-642.
    Jiang W, Woo W, An G, et al. Neutron diffraction and finite element modeling to study the weld residualstress relaxation induced by cutting. Materials and Design,2013,51:415-420.
    Ju J, Lee J, Jang J, et al. Determination of welding residual stress distribution in API X65pipeline using amodified magnetic Barkhausen noise method. International Journal of Pressure Vessels and Piping,2003,80:641-646.
    Kese K O, Li Z C, Bergman B. Influence of residual stress on elastic modulus and hardness of soda-lime glassmeasured by nanoindentation. Journal of Materials Research,2004,19:3109-3119.
    Kese K, Rowcliffe D J. Nanoindentation method for measuring residual stress in brittle materials. Journal ofAmerican Ceramic Society,2003,86:811-816.
    Khan M K, Fitzpatrick M E, Hainsworth S V, et al. Effect of residual stress on the nanoindentation response ofaerospace aluminium alloys. Computational Materials Science,2011,50:2967-2976.
    Kirchlechner C, Martinschitz K J, Daniel R, et al. X-ray diffraction analysis of three-dimensional residualstress fields reveals origins of thermal fatigue in uncoated and coated steel. Scripta Materialia,2010,62:774-777.
    Knight M J, Brennan F P. Fatigue life improvement of drill collars through control of bore eccentricity.Engineering Failure Analysis,1999,6:301-319.
    Kuroda S, Clyne T W. The quenching stress in thermally sprayed coatings. Thin Solid Films,1991,200:49-66.
    Laamouri A, Sidhom H, Braham C. Evaluation of residual stress relaxation and its effect on fatigue strength ofAISI316L stainless steel ground surfaces: Experimental and numerical approaches. International Journalof Fatigue,2013,48:109-121.
    Lee Y-H, Kwon D. Estimation of biaxial surface stress by instrumented indentation with sharp indenters. ActaMaterialia,2004,52:1555-1563.
    Lee Y-H, Kwon D. Measurement of residual-stress effect by nanoindentation on elastically strained (100) W.Scripta Materialia,2003,49:459-465.
    Lepienski C M, Pharr G M, Park Y J, et al. Factors limiting the measurement of residual stresses in thin filmsby nanoindentation. Thin Solid Films,2004,447-448:251-257.
    Mahmoodi M, Sedighi M, Tanner D A. Investigation of through thickness residual stress distribution in equalchannel angular rolled Al5083alloy by layer removal technique and X-ray diffraction. Materials andDesign,2012,40:516-520.
    Mainjot A K, Schajer G S, Vanheusden A J, et al. Residual stress measurement in veneering ceramic byhole-drilling. Dental Materials,2011,27:439-444.
    Masláková K, Trebuňa F, Frankovsky P, et al. Applications of the strain gauge for determination of residualstresses using Ring-core method. Procedia Engineering,2012,48:396-401.
    Miscow G F, de Miranda P E V, Netto T A, et al. Techniques to characterize fatigue behaviour of full size drillpipes and small scale samples. International Journal of Fatigue,2004,26:575-584.
    Nix W D, Gao H. Indentation size effects in crystalline materials: a law for strain gradient plasticity. Journal ofthe Mechanics and Physics of Solids,1998,46(3):411-425.
    Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load anddisplacement sensing indentation experiments. Journal of Materials Research,1992,7(6):1564-1583.
    Oliver W C, Pharr G M. Measurement of hardness and elastic modulus by instrumented indentation: Advancesin understanding and refinements to methodology. Journal of Materials Research,2004,19(1):3-20.
    Saha R, Nix W D. Soft films on hard substrates—nanoindentation of tungsten films on sapphire substrates.Materials Science and Engineering A,2001,319-321:898-901.
    Salgueiredo E, Almeida F A, Amaral M, et al. CVD micro/nanocrystalline diamond (MCD/NCD) bilayercoated odontological drill bits. Diamond&Related Materials,2009,18:264-270.
    Singh D R P, Deng X, Chawla N, et al. Residual stress characterization of Al/SiC nanoscale multilayers usingX-ray synchrotron radiation. Thin Solid Films,2010,519:759-765.
    Suárez A, Amado J M, Tobar M J, et al. Study of residual stresses generated inside laser cladded plates usingFEM and diffraction of synchrotron radiation. Surface&Coatings Technology,2010,204:1983-1988.
    Suresh S, Giannakopoulos A E. A new method for estimating residual stresses by instrumented sharpindentation. Acta Materialia,1998,46:5755-5767.
    Swadener J G, Taljat B, Pharr G M. Measurement of residual stress by load and depth sensing indentation withspherical indenters. Journal of Materials Research,2001,16:2091-2102.
    Tabor D. The hardness of metals. Oxford: Clarendon Press,1951.
    Tandon R. A technique for measuring stresses in small spatial regions using cube-corner indentation:Application to tempered glass plates. Journal of the European Ceramic Society,2007,27:2407-2414.
    Tsui T Y, Oliver W C, Pharr G M. Influences of stress on the measurement of mechanical properties usingnanoindentation: I. Experimental studies in an aluminum alloy. Journal of Materials Research,1996,11:752-759.
    Tuck J, Korsunsky A M, Bull S J, et al. Application of the Work-of-Indentation Approach to Depth-SensingIndentation Experiments in Coated Systems. Surface&Coatings Technology,2001,137:217-224.
    Webster G A, Wimpory R C. Non-destructive measurement of residual stress by neutron diffraction. Journal ofMaterials Processing Technology,2001,117:395-399.
    Widjaja S, Yip T H, Limarga A M. Measurement of creep-induced localized residual stress in soda-lime glassusing nano-indentation technique. Materials Science and Engineering A,2001,318:211-215.
    Xu Z-H, Li X. Estimation of residual stresses from elastic recovery of nanoindentation. PhilosophicalMagazine,2006,86:2835-2846.
    Xu Z-H, Li X. Influence of equi-biaxial residual stress on unloading behaviour of nanoindentation. ActaMaterialia,2005,53:1913-1919.
    Yen C, Jian S, Lai Y, et al. Mechanical properties of the hexagonal HoMnO3thin films by nanoindentation.Journal of Alloys and Compounds,2010,508:523-527.
    Zhao X, Xiao P. Residual stresses in thermal barrier coatings measured by photoluminescencepiezospectroscopy and indentation technique. Surface&Coatings Technology,2006,201:1124-1131.
    Zheng B J, Chen X M, Lian J S. Microstructure and wear property of laser cladding Al+SiC powders onAZ91D magnesium alloy. Optics and Lasers in Engineering,2010,48:526-532.
    Zhou L, Yao Y. Single crystal bulk material micro/nano indentation hardness testing by nanoindentationinstrument and AFM. Materials Science and Engineering A,2007,460-461:95-100.
    Zhu L N, Xu B S, Wang H D, et al. Determination of hardness of plasma-sprayed FeCrBSi coating on steelsubstrate by nanoindentation. Materials Science and Engineering A,2010,528(1):425-428.
    Zhu L N, Xu B S, Wang H D, et al. Effect of residual stress on the nanoindentation response of (100) coppersingle crystal. Materials Chemistry and Physics,2012,136:561-565.
    Zhu L N, Xu B S, Wang H D, et al. Indentation size effect on the mechanical properties of supersonic plasmasprayed NiCr-Cr3C2coating. Rare Metal Materials and Engineering.2012,41(S1):296-298.
    Zhu L N, Xu B S, Wang H D, et al. Measurement of mechanical properties of1045steel with significantpile-up by sharp indentation. Journal of Materials Science,2011,46(4):1083-1086.
    Zhu L N, Xu B S, Wang H D, et al. Measurement of residual stress in quenched1045steel by thenanoindentation method. Materials Characterization,2010,61(12):1359-1362.
    Zhu L N, Xu B S, Wang H D, et al. Microstructure and nanoindentation measurement of residual stress inFe-based coating by laser cladding. Journal of Materials Science,2012,47(5):2122-2126.
    Zhu L N, Xu B S, Wang H D, et al. On the evaluation of residual stress and mechanical properties of FeCrBSicoatings by nanoindentation. Materials Science and Engineering A,2012,536:98-102.
    Zhu X, Liu S, Tong H, et al. Experimental and numerical study of drill pipe erosion wear in gas drilling.Engineering Failure Analysis,2012,26:370-380.
    Zong Z, Lou J, Adewoye O O, et al. Indentation size effects in the nano-and micro-hardness of fcc singlecrystal metals. Materials Science and Engineering A,2006,434:178-187.
    崔忠圻,覃耀春.金属学与热处理.北京:机械工业出版社,2007.
    樊雄.残余应力对切削加工精度的影响及消除.装备制造技术.2011,(1):115-117.
    黄向红.焊接残余应力对结构性能的影响.现代机械.2011,(1):67-70.
    季霞,周建忠,郭华锋,等.同轴送粉激光熔覆件质量影响因素的研究.工具技术.2007,41(8):27-31.
    姜德英,刘晓阳,朱明章,等.铀矿勘查岩心钻探系列钻头的研制、开发与应用.铀矿地质.2007,23(4):244-248.
    蒋刚,谭明华,王伟明,等.残余应力测量方法的研究现状.机床与液压,2007,35(6):213-216.
    刘宝林,彭鹏,高德利,等.油气钻探技术中耐磨材料的研究进展.硅酸盐通报,2009,28(3):553-557.
    刘翠荣,孙述利,王成文.磁性法测定A633D钢焊接接头残余应力的研究.太原重型机械学院学报,2002,23(1):16-21.
    刘永刚,陈绍安,李齐富,等.复杂深井钻具失效研究.石油矿场机械,2010,39(9):13-16.
    马咸尧,吴金山.利用磁声发射法对钢铁件微观损伤与残余应力的研究.武钢技术,1994,(7):29-32.
    马志军,杨延清,朱艳,等.连续纤维增强钛基复合材料热残余应力的研究进展.稀有金属材料与工程,2004,33(12):1248-1251.
    孟庆武,秦学民,万泰力.金属表面激光熔覆技术在油田的应用.油气田地面工程,2003,22(1):63-64.
    米谷茂.残余应力的产生与对策.北京:机械工业出版社,1983.
    彭成勇,楼一珊,朱亮,等.钻铤螺纹联接载荷分布规律与疲劳失效.断块油气田,2006,13(6):58-61.
    朴钟宇.再制造的等离子喷涂层接触疲劳寿命评估理论与方法研究:[博士学位论文]:秦皇岛:燕山大学,2011.
    冉启芳,吕克茂.磁性法和超声法测残余应力的基本原理和各种方法比较.理化检验-物理分册,2007,43(6):317-320.
    阮海龙,沈立娜,蒋卫焱,等.海底沉积地层保真取样钻具的设计及应用.探矿工程,2013,40(2):12-14.
    石成刚,马卫国,陈定玺,等.爆炸喷涂WC-Co涂层研究及在螺杆钻具中的应用.石油机械,2005,33(5):19-22.
    孙承志,李文智,胡晓天.气动潜孔锤钻进技术在基岩地区水文钻探中的应用.探矿工程,2007,(8):15-16.
    孙光爱,陈波.中子衍射残余应力分析技术及其应用.核技术,2007,30(4):286-289.
    陶文哲.残余应力测量技术及在凸膜中的应用.舰船科学技术,2002,24(4):57-60.
    涂德銮,王燕华,蔡镜仑.激光熔覆技术及其在井下工具中的应用.石油钻探技术,1996,24(4):36-37.
    王炳英,薄国公.螺杆钻具主轴的断裂失效分析.材料热处理技术,2010,39(14):183-184.
    王成彪,刘家浚,韦淡平,等.摩擦学材料及表面工程.北京:国防工业出版社,2012.
    王海斗,朱丽娜,徐滨士.纳米压痕法测量等离子喷涂铁基涂层表面的残余应力.机械工程学报,2013,49(7):1-4.
    王海军.热喷涂技术问答.北京:国防工业出版社,2006.
    王海军.热喷涂实用技术.北京:国防工业出版社,2006.
    王洪祥,王景贺,马恩财,等. KDP晶体超精密加工表面硬度压痕尺寸效应研究.哈尔滨工业大学学报,2006,38(6):856-858.
    徐滨士,朱绍华.表面工程的理论与技术.北京:国防工业出版社,2010.
    徐滨士.装备再制造工程的理论与技术.北京:国防工业出版社,2007.
    许刘万,伍晓龙,王艳丽.我国地热资源开发利用及钻进技术.探矿工程,2013,40(4):1-5.
    杨胶溪,刘华东. U71Mn钢轨表面激光熔覆Fe基合金组织与性能研究.铁道工程学报,2010,(7):34-37.
    殷凤玲,于卫东,孙伟,等.螺杆钻具马达转子不同处理工艺的应用.石油矿场机械,2010,39(3):82-84.
    于翔,刘宝林,王成彪.载能粒子沉积用于钻探机具的硬质润滑薄膜.探矿工程,2009,(S1):74-81.
    张海.冷轧辊回火工艺及残余应力的研究.热加工工艺,2009,38(22):135-138.
    张津,高振桓,牟建雷,等.晶体材料内部残余应力衍射法无损检测的研究进展.理化检验-物理分册,2010,46:695-700.
    张巨川.铁路钻探钻杆柱磨损分析.中国水运,2008,8(3):183-184.
    赵书远.等离子弧粉末堆焊在石油钻杆接头修复中的应用研究:[硕士学位论文].天津:天津大学,2005.
    朱庆流.石油钻杆接头的疲劳分析:[硕士学位论文].哈尔滨:哈尔滨工程大学,2009.
    朱伟,彭大暑,杨立斌,等.超声波法测定残余应力的原理及其应用.计量与测试技术,2001,(1):25-26.
    祝效华,刘少胡,陈绍安,等.气体钻井钻铤磨损后的安全性分析.石油钻探技术,2011,39(6):95-98.
    祝效华,杨眉,刘清友,等.冷喷涂技术及其在油气装备中的应用展望.天然气工业,2004,24(12):80-81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700