用户名: 密码: 验证码:
基于MCMC的Chirp信号参数估计及其在SAR成像中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
线性调频(chirp)信号广泛地应用于雷达、声纳、通信、地震学、医学成像等领域,因而研究chirp信号参数估计具有重要的理论意义和实用价值。本论文在最大似然估计的框架下研究高斯白噪声中单分量和多分量chirp信号参数估计新算法,并将新算法应用到合成孔径雷达(Synthetic Aperture Radar, SAR)成像当中。论文工作的主要成果和创新点如下:
    
    将马尔可夫链蒙特卡洛(Markov Chain Monte Carlo, MCMC)方法应用到单分量chirp信号参数估计,并逐渐加以改进,提高算法效率,提出三种基于MCMC的实现单分量chirp信号最大似然参数估计的新方法。这些方法计算量适中,联合估计各参数,无误差传递效应,可适用于小样本数量的参数估计,具有较宽的参数估计范围。仿真实验表明三种方法的估计性能在较低信噪比时达到Cramer-Rao界(CRB)。
    定义平均第一阶效率来衡量MCMC算法的效率,并利用平均第一阶效率通过仿真实验验证了Metropolis-Adjusted-Langevin’s (MAL)算法比随机移动Metropolis-Hastings算法效率更高,即收敛速度更快。
    提出一种基于MCMC的实现多分量chirp信号最大似然参数估计的新方法,该方法采用基于模拟退火的单元素随机移动Metropolis-Hastings算法。它解决了多分量估计中的交叉量问题,联合估计各参数,无误差传递效应,具有较宽的参数估计范围,可适用于小样本数量的参数估计,并且计算量适中。仿真实验表明其估计性能可在较低信噪比下达到CRB,信噪比门限比基于重要采样的多分量chirp信号参数估计算法低2dB。
    将基于MCMC的chirp信号参数估计新算法分别应用到SAR对静止点目标和动目标成像上,在成像过程中用来估计目标的多普勒参数,以
    
    
    形成聚焦函数,进行方位向聚焦。利用参数估计新算法,对静止点目标和动目标的实际数据分别进行成像实验,获得一定的成像效果。
Chirp signals are widely used in radar, sonar, communications, seismology, medical imaging and other applications. Hence the research of parameter estimation of chirp signals has its great theoretical significance and practical value. In the framework of maximum likelihood estimation (MLE), this thesis studies new algorithms of parameter estimation of mono-component and multi-component chirp signals in additive Gaussian white noise. And the new algorithms are also applied to synthetic aperture radar (SAR) imaging. The main contributions and innovations of this thesis are shown as follows:
    By applying Markov Chain Monte Carlo (MCMC) algorithms to parameter estimation of mono-component chirp signals and making improvements to enhance the algorithm efficiency, three novel methods based on MCMC approaches are proposed, which can attain the maximum likelihood estimates of mono-component chirp parameters. The computational burdens of the methods are modest. The proposed methods jointly estimate the chirp parameters, so there is no error propagation effect. They are also applicable to the estimation problem of short data records. Moreover, they can estimate over a wide range of parameter values. Simulations show that the Cramer-Rao bound (CRB) can be attained by the proposed methods even at low signal-to-noise ratio (SNR).
    Average first-order efficiency is defined in order to measure the efficiencies of MCMC algorithms. Through this measure, numerical simulations verify that the Metropolis-Adjusted-Langevin’s (MAL) algorithm is more efficient than the random walk Metropolis-Hastings algorithm, i.e. the MAL algorithm is faster to converge than the random walk Metropolis-Hastings algorithm.
    A new method based on MCMC approaches to achieve the MLE of multi-component chirp signals is proposed, which uses the simulated
    
    
    annealing based single element random walk Metropolis-Hastings algorithm. The proposed method solves the cross-term problem in the multi-component estimation. It jointly estimates the chirp parameters, so there is no error propagation effect. It can estimate over a wide range of parameter values. The proposed method can also deal with the estimation problem of short data records and the computational burden is modest. Simulations show that its estimation performance can attain the CRB even at low SNR and the threshold SNR of the proposed method is 2dB lower than that of the multi-component chirp estimation algorithm based on importance sampling.
    The proposed parameter estimation algorithms of chirp signals based on MCMC approaches are applied to the SAR imaging of stationary point targets and moving targets respectively. In the imaging process, they estimate the Doppler parameters of the targets in order to form the autofocus function and perform the azimuth autofocus. Imaging experiments on the raw data of stationary point targets and moving targets are performed by using the proposed estimation methods and good imaging results are acquired.
引文
丁鹭飞. 雷达原理. 西北电讯工程学院出版社, 1984
    Curlander J.C., McDonough R.N. Synthetic aperture radar: systems and signal processing. New York: Wiley, 1991
    刘永坦. 雷达成像技术. 黑龙江:哈尔滨工业大学出版社, 1999
    Blahut R.E., Miller W., Wilcox C.H. Radar and sonar. New York : Springer-Verlag, 1991
    Xia X.G. System identification using chirp signals and time-variant filters in the joint time-frequency domain. IEEE Transactions on Signal Processing, 1997, 45(8): 2072~2084
    Boushash B., Whitehouse H.J. Seismic applications of the Wigner-Ville distribution. In Proceedings of IEEE International Symposium on Circiuts and Systems, San Jose, CA, USA, 1986: 34~37
    Jaynes E.T. Bayesian spectrum and chirp analysis. In: Smith C.R., Frichson G.J. Maximum-Entropy and Bayesian Spectral Analysis and Estimation Problems. D. Reidel Publishing Company, 1987
    邹虹. 多分量线性调频信号的时频分析:[博士学位论文]. 西安:西安电子科技大学,2000
    Raney R.K. Synthetic aperture imaging radar and moving targets. IEEE Transactions on Aerospace and Electronic System, 1971, 7(3): 490~505
    Tretter S. Estimating the frequency of a noisy sinusoid by linear regression. IEEE Transactions on Information Theory, 1985: 832~835
    Djuric P.M., Kay S.M. Parameter estimation of chirp signals. IEEE Transactions on Acoustics, Speech, & Signal Processing, 1990, 38(12): 2118~2126
    Djuric P.M., Kay S.M. A simple frequency rate estimator. In Proceedings of 1989 International Conference on Acoustics, Speech, and Signal Processing, (ICASSP’89), 1989: 2254~2257
    Slocumb B.J., Kitchen J. A polynomial phase parameter estimation-phase unwrapping algorithm. In Proceedings of 1994 International Conference on Acoustics, Speech, and Signal Processing, (ICASSP’94), 1994: 129~132
    Jones H.E. Weighting coefficients for chirp rate estimation. IEEE Transactions on Signal Processing, 1995, 43(1): 366~367
    
    Fiore P.D., Lang S.W. Efficient phase-only frequency estimation. In Proceedings of 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing, (ICASSP’96), 1996: 2809~2812
    Lang S.W., Musicus B.R. Frequency estimation from phase differences. In Proceedings of 1989 International Conference on Acoustics, Speech, and Signal Processing, (ICASSP’89), 1989: 2140~2143
    Guarino C.R. Robust method for estimating the parameters of a linear FM waveform. In Proceedings of International Geoscience and Remote Sensing Symposium, 1992: 380~383
    Oliveira P.M., Barroso V. Sequential extraction of components of multicomponent PPS signals. In Proceedings of 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing, (ICASSP’99), 1999: 1821~1824
    Peleg S., Porat B. Estimation and classification of polynomial-phase signals. IEEE Transactions on Information Theory, 1991, 37(2): 422~430
    Peleg S., Porat B. Linear FM signal parameter estimation from discrete-time observations. IEEE Transactions on Aerospace and Electronic Systems, 1991, 27(4): 607-616
    Peleg S., Friedlander B. The discrete polynomial-phase transform. IEEE Transactions on Signal Processing, 1995, 43(8): 1901~1914
    Porat B., Friedlander B. Asymptotical statistical analysis of the high-order ambiguity function for parameter estimation of polynomial-phase signals. IEEE Transactions on Information Theory, 1996, 42: 995~1001
    Golden S., Friedlander, B. A modification of the discrete polynomial transform. IEEE Transactions on Signal Processing, 1998, 46(5): 1452~1455
    Ikram M.Z., Abed-Meraim K., Hua Y. Estimating the parameters of chirp signals: an iterative approach. IEEE Transactions on Signal Processing, 1998, 46(12): 3436-3441
    Peleg S., Friedlander B. Multicomponent signal analysis using the polynomial-phase transform. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(1): 378~387
    Porat B., Friedlander B. Estimation of frequency in the presence of nonrandom interference. IEEE Transactions on Signal Processing, 1996, 44(3): 640~651
    Porat B., Friedlander B. Accuracy analysis of estimation algorithms for parameters of multiple polynomial-phase signals. In Proceedings of 1995 International Conference on Acoustics, Speech, and Signal Processing, (ICASSP’95), 1995: 1800~1803
    Wang Y., Zhou G.T. On the use of high-order ambiguity function for multi-component polynomial phase signals. Signal Processing, 1998, 65(2): 283~296
    
    Zhou G.T., Wang Y. Exploring lag diversity in the high-order ambiguity function for polynomial phase signals. IEEE Signal Processing Letters, 1997, 4(8): 240~242
    Xia X.G. Dynamic range of the detectable parameters for polynomial phase signals using multiple-lag diversities in high-order ambiguity functions. IEEE Transactions on Information Theory, 2001, 47(4): 1378~1384
    Ikram M.Z., Abed-Meraim K., Hua Y. Iterative parameter estimation of multiple chirp signals. Electronics Letters, 1997, 33(8): 657-659
    Barbarossa S., Schiappa G. Analysis of multicomponent signals by multilinear time-frequency representation. In Proceedings of 1994 IEEE International Conference on Acoustics, Speech and Signal Processing, (ICASSP’94), 1994: 337~340
    Barbarossa S., Petrone V. Analysis of polynomial-phase signals by the integrated generalized ambiguity function. IEEE Transactions on Signal Processing, 1997, 45(2): 316~327
    Barbarossa S., Porchia A., Scaglione A. Multiplicative multi-lag high order ambiguity function. In Proceedings of 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing, (ICASSP’96), 1996: 3022~3025
    Barbarossa S., Scaglione A., Giannakis G.B. Product high-order ambiguity function for multicomponent polynomial-phase signal modeling. IEEE Transactions on Signal Processing, 1998, 46(3): 691~708
    Barbarossa S., Mameli R., Scaglione A. Adaptive detection of polynomial-phase signals embedded in noise using high-order ambiguity functions. In Conference Record of the Thirty-First Asilomar Conference on Signals, Systems and Computers, 1998: 1228~1232
    Scaglione A., Barbarossa S. Statistical analysis of the product high-order ambiguity function. IEEE Transactions on Information Theory, 1999, 45(1): 343~356
    Zhou J., Leyman A.R. Coefficient estimation of multicomponent polynomial phase signal (PPS) using MAML-HAF. In Proceedings of International Conference on Information, Communications and Signal Processing, 1997: 1393~1396
    Ikram M.Z., Zhou G.T. Order determination and parameter estimation of multicomponent polynomial phase signals. IEEE Signal Processing Workshop on Statistical Signal and Array Processing,1998: 352~355
    Ikram M.Z., Zhou G.T. Estimation of multicomponent polynomial phase signals of mixed orders. Signal Processing, 2001, 81(11): 2293~2308
    
    Tichavsky P., Handel P. Estimating parameters of polynomial phase signals by tracking algorithms. IEEE Signal Processing Workshop on Statistical Signal and Array Processing, 1998: 348~351
    Tichavsky P., Handel P. Multicomponent polynomial phase signal analysis using a tracking algorithm. IEEE Transactions on Signal Processing, 1999, 47(5): 1390~1395
    Cohen L. Time-frequency distributions-A review. Proceedings of IEEE, 1989: 941~981
    Hlawatsch F., Boudreaux-Bartels G.F. Linear and quadratic time-frequency signal representations. IEEE Signal Processing Magazine, 1992, 9(2): 21~67
    Barbarossa S. Detection and imaging of moving objects with synthetic aperture radar Part 2: Joint time-frequency analysis by Wigner-Ville distribution. IEE Proceedings, Part F: Radar and Signal Processing, 1992, 139(1): 89~97
    Barbarossa S. Parameter estimation of undersampled signals by Wigner-Ville analysis. In Proceedings of 1991 IEEE International Conference on Acoustics, Speech, and Signal Processing, (ICASSP’91), 1991: 3253~3256
    Barbarossa S. Analysis of multicomponent LFM signals by a combined Wigner-Hough transform. IEEE Transactions on Signal Processing, 1995, 43(6): 1511~1515
    Wood J.C., Barry D.T. Radon transformation of time-frequency distributions for analysis of multicomponent signals. IEEE Transactions on Signal Processing, 1994, 42(11): 3166~3177
    Ristic B., Boashash B. Kernel design for time-frequency signal analysis using the Radon transform. IEEE Transactions on Signal Processing, 1993, 41(5): 1996~2008.
    Wang M., Chan A.K., Chui C.K. Linear frequency-modulated signal detection using Radon-ambiguity transform. IEEE Transactions on Signal Processing, 1998, 46(3): 571~586
    Boashash B., O'Shea P. Use of the cross Wigner-Ville distribution for estimation of instantaneous frequency. IEEE Transactions on Signal Processing, 1993, 41(3): 1439~1445
    Garudadri H., Velez E. A comparison of smoothing kernels for computing bilinear time-frequency representations. In Proceedings of 1991 IEEE International Conference on Acoustics, Speech and Signal Processing, (ICASSP’91), 1991: 3221~3224
    Ivanovic V.N., Dakovic M., Stankovic L. Performance of quadratic time-frequency distributions as instantaneous frequency estimators. IEEE Transactions on Signal Processing, 2003, 51(1): 77~89
    Kay S.M. Fundamentals of Statistical Signal Processing: Estimation Theory. Englewood Cliffs, NJ: Prentice-Hall, 1993
    
    O’Ruanaidh J.J.K., Fitzgerald W.J. Numerical Bayesian Methods Applied to Signal Processing. New York: Springer-Verlag, 1996
    Fitzgerald W.J. The Bayesian approach to signal modeling. IEE Colloquium on Non-Linear Signal and Image Processing, 1998: 9/1-9/5
    Smith C.R., Erickson G.J., Neudorfer P.O., Parameter estimation in chirped signals. IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, 1989: 538~539
    Li H.T., Djuric P.M. MMSE parameter estimation of multiple chirp signals. In Proceedings of 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing, (ICASSP’96), 1996: 2606-2609
    Li H.T., Djuric P.M. MMSE estimation of nonlinear parameters of multiple linear/quadratic chirps. IEEE Transactions on Signal Processing, 1998, 46(3): 796~800
    Li H.T., Djuric P.M. An iterative MMSE procedure for parameter estimation of damped sinusoidal signals. Signal Processing, 1996, 51: 105~120
    Doucet A., Duvaut P. Bayesian estimation of instantaneous frequency. In Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis, 1996: 5~8
    Theys C., Vieira M., Ferrari A. Bayesian estimation of the parameters of a polynomial phase signal using MCMC methods. In Proceedings of 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing, (ICASSP '97), Los Alamitos, CA, USA, 1997: 3553~3556.
    Lin C.C., Djuric P. M. Estimation of chirp signals by MCMC. In Proceedings of 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing, (ICASSP '00), Piscataway, NJ, USA, 2000: 265~268.
    Theys C., Ferrari A, Vieira M. Marginal Bayesian analysis of polynomial-phase signals. Signal Processing, 2001, 81: 69~82
    Abatzoglou T.J. Fast maximum likelihood joint estimation of frequency and frequency rate. IEEE Transaction on Aerospace and Electronic Systems, 1986, 22(6): 708~715
    DiMonte C.L., Arun K.S. Tracking the frequencies of superimposed time-varying harmonics. In Proceedings of 1990 IEEE International Conference on Acoustics, Speech, and Signal Processing, (ICASSP’90), 1990: 2539~2542
    Liang R.M., Arun K.S. Parameter estimation for superimposed chirp signals, In Proceedings of 1992 IEEE International Conference on Acoustics, Speech and Signal Processing, (ICASSP’92), 1992: 273~276
    
    Ikram M.Z., Abed-Meraim K., Hua Y. Fast discrete quadratic phase transform for estimating the parameters of chirp signals. In Conference Record of Thirtieth Asilomar Conference on Signals, Systems and Computers, 1997: 798~802
    Ikram M.Z., Abed-Meraim K., Hua Y. Fast quadratic phase transform for estimating the parameters of multicomponent chirp signals. Digital Signal Processing, 1997, 7(2): 127~135
    Xia X.G. Discrete chorp-fourier tranform and its application to chirp rate estimation. IEEE Transactions on Signal Processing, 2000, 48(11): 3122~3133
    Fan P.Y., Xia X.G. A modified discrete chirp-Fourier transform scheme. In Proceedings of 5th International Conference on Signal Processing, 2000: 57~60
    Fan P.Y., Feng C.X. A new discrete chirp Fourier transform. In Proceedings of 6th International Conference on Signal Processing, 2002: 49~53
    Guo X., Sun H.B., Wang S.L., Liu G.S. Comments on discrete chirp-Fourier transform and its application to chirp rate estimation [and reply]. IEEE Transactions on Signal Processing, 2002, 50(12): 3115~3116
    Angeby J. Estimating signal parameters using the nonlinear instantaneous least squares approach. IEEE Transactions on Signal Processing, 2000, 48(10): 2721~2732
    Volcker B., Ottersten B. Chirp parameter estimation using rank reduction. In Conference Record of the Thirty-Second Asilomar Conference on Signals, Systems & Computers, 1998: 1443~1446
    Volcker B., Ottersten B. Chirp parameter estimation from a sample covariance matrix. IEEE Transactions on Signal Processing, 2001, 49(3): 603~612
    Moon T.K. The expectation-maximization algorithm. IEEE Signal Processing Magazine, 1996, 13(6): 47~60
    Feder M., Weinstein E. Parameter estimation of superimposed signals using the EM algorithm. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1988, 36(4): 477~489
    Taleb A. EM algorithm applied to non-stationary noisy phase signals. In Proceedings of 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing, (ICASSP’02), 2002: 1429~1432
    Pincus M. A closed form solution for certain programming problems. Oper. Res., 1962: 690~694
    Saha S., Kay S. Maximum likelihood parameter estimation of superimposed chirps using Monte Carlo importance sampling. IEEE Transactions on Signal Processing, 2002, 50(2): 224~230
    
    Metropolis N., Rosenbluth A.W., Rosenbluth M.N., Teller A.H., Teller E. Equation of state calculations by fast computing machines. Journal of Chemical Physics, 1953, 21: 1087~1092
    Geman S., Geman D. Stochastic relaxation, Gibbs distribution and Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984, 6: 721~741
    Gelfand A.E., Smith A.F.M. Sampling based approaches to calculating marginal densities. Journal of the American Statistical Association, 1990, 85: 398~409
    Fitzgerald W.J. Markov Chain Monte Carlo methods with applications to signal processing, 2001, 81: 3~18
    Walsh B. Markov Chain Monte Carlo and Gibbs sampling. [Lecture Notes]. University of Arizona, 2002: 1~24
    Hastings W.K. Monte Carlo sampling methods using Markov Chains and their applications. Biometrika, 1970, 57: 97~109
    茆诗松, 王静龙, 濮晓龙. 高等数理统计. 北京: 高等教育出版社, 1998
    Geweke J. Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. In: Bernardo J.M., Berger J.O., Dawid A.P., Smith A.F.M. Bayesian Statistics 4. Oxford University Press, 1992: 169~193
    Gilks W.R., Richardson S., Spiegelhalter D.J. Markov Chain Monte Carlo in Practice. Chapman & Hall, 1996
    Tanner M.A. Tools for Statistical Inference. Springer-Verlag, 1993
    Kay S. M. Modern Spectral Estimation: Theory and Application. Englewood Cliffs, NJ: Prentice-Hall, 1988.
    林彦, 王秀坛, 彭应宁, 许稼, 张瓅玶, 夏香根. 基于MCMC的线性调频信号最大似然参数估计. 清华大学学报, 2004年4月, 44(4): 511~514
    林彦, 王秀坛, 彭应宁, 许稼, 张瓅玶. 一种线性调频信号参数估计的新方法. 中国合成孔径雷达会议2003, (CSAR-2003), 合肥, 中国, 2003: 231~235
    Lin Yan, Wang Xiutan, Peng Yingning. Parameter estimation of chirp signals using the metropolis-adjusted-langevin’s algorithm. International Conference on Signal Processing, (ICSP’04), Beijing, China, 2004.(已录用)
    林彦, 王秀坛, 彭应宁. 基于Metropolis-Adjusted-Langevin算法的线性调频信号最大似然参数估计. 第九届全国雷达年会,烟台,中国,2004. (已投稿)
    Roberts G.O., Rosenthal J.S. Optimal scaling of discrete approximations to Langevin’s diffusions. J. R. Stat. Soc. B, 1998, 60(1): 255~268
    
    Lin Yan, Peng Yingning, Wang Xiutan. Maximum likelihood parameter estimation of multiple chirp signals by a new markov chain monte carlo approach. In Proceedings of 2004 IEEE Radar Conference, Philadelphia, Pennsylvania, USA, April 2004: 559~562
    禹卫东. 合成孔径雷达信号处理研究:[博士学位论文]. 南京:南京航空航天大学,1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700