用户名: 密码: 验证码:
固液混合铸造ZA60合金显微组织及其性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用固液混合铸造技术制备了ZA60合金锭坯,研究了合金熔体过热度、粉末加入量和粉末粒度对ZA60合金显微组织的影响,优化了固液混合铸造ZA60合金的工艺参数;同时,对ZA60合金金属型铸造、半固态铸造和固液混合铸造三种铸造工艺下的合金的显微组织的变化规律进行了探讨;利用TCL金相分析软件对合金在不同的工艺条件下材料的平均晶粒度进行了测量,同时也利用软件对初生α相的体积分数进行了测量,对ZA60合金的物相进行了分析,最后对ZA60合金的硬度、室温拉伸性能和高温拉伸性能进行了研究。通过研究得出了以下结论:
     1. ZA60金属型铸造的晶粒比较粗大,半固态铸造显微组织相对金属型铸造组织有一定程度的球化和细化,ZA60合金固液混合铸造合金组织相对其他两种工艺组织球化和细化程度是最好的,且组织比较均匀。在ZA60合金固液混合铸造过程中,分别研究了合金熔体过热度、粉末粒度和粉末加入量对合金显微组织的影响,考虑合金组织的细化和均匀性及宏观压铸质量,当合金熔体过热度为40℃、粉末粒度为-200~+400目及粉末加入量为40%的条件下,ZA60合金显微组织得到较好的细化和球化。
     2.ZA60合金凝固过程中主要生成相有α(富Al)相、β(Al基固溶体)相、η(富Zn)相和ε(金属间化合物)相。ZA60合金金属型铸造、半固态铸造,固液混合铸造三种制备工艺中形成相的种类是完全一样,但是数量不同,金属型铸造初生α相数量最少,固液混合铸造最多。在ZA60合金固液混合铸造过程中,不同的参数时初生α相数量也有很大不同,合金熔体过热度越高,初生相越少;粉末加入量越多,初生α相数量越多;粉末越细,初生α相越多。初生α相数量不同主要跟合金凝固过程中的冷却速度有关,也与粉末加入增加了非均匀形核有一定关系。
     3.ZA60合金的室温抗拉强度固液混合铸造最高(415Mpa),半固态铸造居中(360Mpa),金属型铸造最低(285Mpa),延伸率固液混合铸造最高(6.0%),半固态居中(3.5%),金属型最低(1.2%)。ZA60合金断裂属于脆性断裂,金属型铸造断口具有明显的解理断裂特征,半固态铸造和固液混合铸造断口上有解理台阶同时,也有少许撕裂棱,具有准解理断裂的特征。
     4.ZA60合金固液混合铸造和半固态铸造的高温强度普遍低于金属型铸造的强度。在应变速率不变(6.67×10-5s-1)的情况下,随着温度的升高,高温强度呈现下降的趋势,在温度不变(200℃)的情况下,高温抗拉强度随着应变速率的增大而增大。ZA60合金高温拉伸断口分析,金属型铸造断裂方式属于沿晶断裂,半固态铸造断裂方式属于准解理断裂,固液混合铸造在不同的参数条件下,都表现出了解理断裂的特征,三种铸造工艺下材料的高温断裂都属于脆性断裂。
The ZA60 ingots were fabricated by solid-liquid mixed casting technology, the microstrctures of ZA60 alloys were researched in different fusant degree of superheat、powder addition and powder particle size, and the technological parameters of solid-liquid mixed casting of ZA60 alloys were optimized. At the same time, the microstrctures evolution regularity of ZA60 alloys was discussed in metal casting、semi-solid casting and solid-liquid mixed casting; the average grain size and the volume fraction of primaryαphase were measured by using TCL metallographical analysis software. The phases of ZA60 alloys were analyzed. The hardness、room temperature tensile-strength and high temperature tensile-strength of ZA60 alloys were studied in the last. Through these studies, results were concluded as below:
     1. The grain size of ZA60 alloys in metal-casting was larger than semi-solid casting and solid-liquid mixed casting, the grain size of ZA60 alloys was refined and spheroidized in a certain extent in semi-solid casting, the grain size of ZA60 alloys in solid-liquid mixed casting was refined and spheroidized best, and morphology was homogeneous. The microstructures were studied in different technological parameters (fusant degree of superheat、power patical size、powder addition) in the process of solid-liquid mixed casting, considerations in grian size and uniformity, when the fusant degree of superheat was 40℃、the power patical size was -200~+400 mesh and the powder addition was 40% , the microstructures of ZA60 alloys were better refined and spheroidized.
     2. The phases of ZA60 alloys included:α(aluminum rich)phase、β(Al base sosolid)phase、η(znic rich)phase andε(intermetallic compound)phase. The same phases were formed in metal-casting、semi-solid casting and solid-liquid mixed casting, but the quantity of the phases was different, in the three casting techniques, the primaryαphase quantity in semi-solid casting was more than the metal-casting, in the solid-liquid mixed casting theαphase quantity was most. In the process of solid-liquid mixed casting, different technological parameters had important effect on primaryαphase, the higher the fusant degree of superheat was, the less the primaryαphase quantity; the more th powder addition was, the more the primaryαphase quantity was; the smaller the powder size was, the more the primaryαphase quantity was. The quantity of primaryαphase was relative to the cooling velocity of the solidification, at the same time, it was relative to increase of the nonuiform nucleation partical which was supplied by added powder.
     3. The room-temperature tensile strength of ZA60 alloys which fabricated by solid-liquid mixed casting was highest(415Mpa), semi-solid casting was higher(360Mpa), and the metal casting was lowest(285Mpa). Elongation of ZA60 alloys which fabricated by solid-liquid mixed casting was highest(6.0%), semi-solid casting was higher(3.5%), and the metal casting was lowest(1.2%). The fracture mechanics of ZA60 alloys was brittle fracture, the cleavage feature existed in the fracture of metal casting, besides the cleavage setback existed in the fracture of semi-solid casting and solid-liquid mixed casting, there were some tearing arris in the fracture, it had the feature of quasi-cleavage.
     4. The high-temperature strength of the ZA60 alloys which was fabricated by metal-casting was higher than semi-solid casting and solid-liquid mixed casting. In the same rate of extension(6.67×10-5s-1), the higher the tensile temperature, the lower the tensile strength of ZA60 alloys was, in the same tensile temperature(200℃), the higher the rate of extension was, the higher the tensile strength of ZA60 alloys was. The fracture of ZA60 alloys of metal-casting was intercrystalline cracking、semi-solid casting was quasi-cleavage crack and the crack features of solid-liquid mixed casting was cleavage. They were brittle facture.
引文
[1] 安继儒.中外常用金属材料手册[M].西安:西安交通大学出版社,1990: 43-45
    [2] 程巨强.金属型铸造ZA50合金的力学性能和组织[J]. 特种铸造及有色合金,2006,26(7):452-454
    [3] 冯建情,曾建民,邹勇志等. 高铝锌基合金的力学性能与显微组织研究[J].机械工程材料,2004,28(11):43-48
    [4] 杨留栓,扬红敏,陈全德. 高铝锌基合金[M]. 西安:西北工业大学出版社,1997:50-70
    [5] Flemings M C. Behavior of metal alloys in the semi-solid state [J]. Metall Trans, 1991,22(A):957-978
    [6] Aashuri H. Globular structure of ZA27 by thermomechanical and semi-solid treatment[J]. Materials Science and Engineering,2005,391(A):77-85
    [7] 陈振华. Al-Si合金固液混合铸造[J]. 中国有色金属学报,2000,10(6):49
    [8] 陈振华,严红革,陈刚等. 耐热铝合金固液混合铸造[J]. 中国有色金属学报,2002,12(3):422
    [9] 程相飞,严红革,陈振华等.固液混合铸造制备Al-10Cr合金的研究[J].特种铸造及有色合金,2005,25(2):85-87
    [10] 何建军,陈振华,严红革. 固液混合铸造技术[J].铸造,2005,54(3):217-221
    [11] 刘永红,张忠明,刘宏昭等.锌铝合金的研究现状及应用概况[J].铸造技术,2001,1:42-45
    [12] 张忠明,王锦程,徐东辉等.铝,铜,镁对铸态锌基合金组织和阻尼性能的影响[J].中国有色金属学报,1999,9(1):1-6
    [13] 周明,赵玉涛,周伯仪等. Mn对ZA27合金组织与性能的影响[J]. 江苏理工大学学报,1998,9(1):1-6
    [14] 顾春雷,张伟强,金花子等.锌及锌铝合金研究及应用现状[J].有色金属,2003,11:44-47
    [15] 闫承俊,王吉岱. 锌铝合金的研究现状及应用[J]. 中国铸造装备与技术, 2005,4:4-7
    [16] 张新志. 高强锌基合金的研制与应用[J]. 机械工程材料,1988,6:29
    [17] 张福全,舒震. 高铝锌合金加铈变质的研究[J]. 特种铸造及有色合金, 1992,2:1-2
    [18] 陆伟,严彪. 铸造锌铝合金的研究进展及应用[J]. 上海有色金属. 2004,3:13-17
    [19] Apelian D, Paliwal M,Herrschaft D C. Castings with Zinc Alloys[J]. Metals,1987,96:12-20
    [20] 刘或. 稀土锌基合金超塑性成型制造技术[J]. 兵器材料科学与工程,1992, 8:36-40
    [21] 何景素,王燕文. 金属的超塑性[M]. 北京:科学出版社,1986:86-143
    [22] Torisaka Y,Kojima S. Superplasticity and Internal Friction of a Su-perplastic Zn-22%Al Eutectoid Alloy[J]. Acta. Metall,1991,39(5):947-954
    [23] 田卫平. 稀土对锌铝合金晶粒的细化作用[J]. 昆明理工大学学报, 2003,28(1):28-30
    [24] 钟家湘,郑秀华,刘颖. 金属学教程[M]. 北京:北京理工大学出版社,1995:314-316
    [25] 苏德煌.锂对ZA27合金高温力学性能的影响[J].特种铸造及有色合金,1998,6:26-27
    [26] Savas M A,Ahintas S.The microstructural control of cast and mechanical properties of zinc- aluminium alloys [J]. Materials Science,1993,28:1775-1780
    [27] 许广济,陆松,陈体军.硼,钛对半固态ZA27组织演变的影响[J].甘肃工业大学学报,2000,1:19-22
    [28] 陆松,许广济,陈体军.等温处理对半固态ZA27组织演变的影响[J].热加工工艺,2000,1:42-44
    [29] 骆灼旋,陈华信,吴春苗.提高锌铝铸造合金性能的途径[J].铸造, 1992,4:28-32
    [30] 黄俊,袁中岳,张忠明等. 稀土变质高锌铝合金的组织和性能[J].热加工工艺,2002,1:6-8
    [31] 赵沛廉,赵兴国,赵浩峰. 稀土对 ZA27 合金高温性能的影响[J]. 中国稀土学报,1998,1:41-44
    [32] Zhang Z M,Yang G C,Wang J C, et al. Microstructural Evolution of the Supersatruated ZA27 Alloy and Its Danmping Capacities[J]. Materials Science, 2000,35(13):3383-3388
    [33] 刘盛斌,于以繁. 锌铝合金的发展与应用[J]. 材料导报,1994, 5:30-32
    [34] Prasad B K , Pat W A , Yegneswaran A. Microstructure property Characterization of Some ZnAl Alloy:Effect of heat Treatment Parameters[J]. Z Metallkd,1996,87(12):967-971
    [35] Tagami M,Ohtani T. Effect of heat Treatment,ContentofCuand-Mg,and Rolling Reduction on the Damping Capacity and Mechanical Properties of Zn-22%AlAlloy[J]. Light Metals,1988,38(2):107-113
    [36] 陈体军,郝远,陆松等. ZA27 合金在 SIMA 处理过程忠形变量和等温温度对组织的影响[J]. 金属热处理学报,2000,1:26-31
    [37] 刘国钧,张奎,张景新等. 搅拌铸造 ZA27 合金的组织与性能[J]. 特种铸造及有色合金,2000,1:10-13
    [38] 王俊,陈峰,张力宁等. 高能超声制备 Al2O3/ZA22 复合材料与性能研究[J]. 铸造,1997,5:1-3
    [39] 李德成,张照文,曹英杰等. 石墨柱 ZA27 复合自润滑轴套(瓦)工艺研究[J]. 铸造,1996,2:24-25
    [40] 李德成,李玉圣,赵芳欣. 铸造高强锌基合金 ZA27 的挤压加工[J]. 材料科学与工艺,1996,2:34
    [41] R.Lyon(王洪敏等译). 第二十五届机械国际年会文集[M]. 北京:机械工业出版社
    [42] 吴秀铭. 21 世纪最有发展的现代加工新技术[J]. 有色金属工业,2000,7:38-39
    [43] Anacleto de figeredo. Science and technology of semi-solid metal processing[C]. Wprcester Polytechnic Institute Worcester, MA,2004
    [44] Yurko J A,Martinez R A,Flemings M C.Commercial development of the semisolid rheocasting(SSRTM) process[J]. Metallurgical Science and Technology,2003,21(1):10-15
    [45] Flemings M C,Martinez R A,Figueredo A M.Metal alloy compositions and process [P].US Patent,20020096231,2002
    [46] 吴炳尧. 半固态金属铸造工艺的研究相撞及发展前景[J]. 铸造,1999,3:45-50
    [47] 蒋鹏,贺小毛,张秀峰. 半固态金属成型技术的研究概况[J]. 塑性工程学报,1998,5(3):1-6
    [48] Oblak J M,Rand W H. solid-liquid phase characterization of several rheocast high performance alloys[J]. Metal Trans, 1976,7B:699-703
    [49] Chen C Y,Sekhar J A,Bachman D C. Thixoforging of aluminum alloys[J]. Maler Sci Eng,1979,40:265-272
    [50] Brown S B,Flemings M C. Nel-ahape forming via sem-solid processing[J]. Advanced Materials & Processes, 1993,1:36-39
    [51] Young K P,Riek R G,Flemings M C. Structure and properties of thixocast steels[J]. Metals Technology,1979,4:130-137
    [52] 朱鸣芳,苏华钦. 半固态铸造技术研究现状[J]. 特种铸造及有色合金,1996,2:29
    [53] 杨为佑. 固液混合铸造过共晶Al-Si合金的研究:[中南工业大学硕士学位论文]. 长沙:中南工业大学,2001,4
    [54] 吴艳军. Al-8.7Fe-1.6V-1.3Si固液混合铸造组织及性能研究:[中南工业大学硕士学位论文]. 长沙:中南工业大学,2001,5
    [55] 谢建新. 材料加工新技术与新工艺[M]. 北京:冶金工业出版社,2004:97
    [56] Spencer D B, Mehrabian R, Flemings M C. Theological behavior of Sn-15pct Pb in the crystallization range[J]. Metall Trams,1972,3(7):1925
    [57] 铁军,韩至成. 半固态金属的流变性质及其应用[J]. 轻金属,1996,10:57-60
    [58] Flemings M C. Behavior of Alloy in the Semi - solid State[J]. Metall TransB,1991,22:957
    [59] Chiarmetta G. Thixoforming of Automoble Componet A. Kirkwood D H,Kapranos P. The 4th Int. Conf. on Semi-Solid Processing of alloys and Composites,the University of Sheffield,England,June 19 21,1996. UK:The Department of Engineering Materials,University of Sheffield,1996,204-207
    [60] Kyonka C. Status of Semi-Solid Metalworking at Alumax A. Kirkwood D H,Kaparnos P. The 4th Int. Conf. on Semi-Solid Processing of Alloys and Compositions,The University of Sheffiedld,England,Jane 19 21,1996. UK:The Department of Engineering Materials,University of Sheffield,1996,256-259
    [61] Decker R F,Camahan R D,Vining R,et al. Progress in Thixomolding A. Kirkwood D H,Kaparanos P. The 4th Int. Conf. o n Semi-Solid Processing of Alloys and Compositions,The University of Sheffiedld,England,Jane 19 21,1996. UK:The Department of Engineering Materials,University of Sheffield,1996,221-224
    [62] Asquith B M. The Use of Process Monitoring to Reduce Scrap in the Die Casting Process A. The NADCA 19th International Die Casting Congress and Expositing,Minneapolis , Minnesota. USA : North America Die Casting Association Transactions,1997,163-169
    [63] Venkatasamy V,Brevick J,Mobley C,et al. Die Cavity Sensors for Monitor-ing Die Casing Processes A. The NADCA 19th International Die Casting Congress and Expositing , Minneapolis , Minnesota. USA : North America Die Casting Association Transactions,1997,89-96
    [64] Clauser G L,Ravaioli,Ciselli F,et al. Advancing the Frontier of Aluminium Technology:The Maltilink Project A. Kirkwood D H,Kaparanos P. The 4th Int. Conf. o n Semi-Solid Processing of Alloys and Compositions,The University of Sheffiedld,England,Jane 19 21,1996. UK:The Department of EngineeringMaterials,University of Sheffield,1996,234-238
    [65] Moschini R. Mass Production of Fuel Rail by Pressure Die Casting in the Semi-liquid State A. Kirkwood D H,Kaparanos P. The 4th Int. Conf. o n Semi-Solid Processing of Alloys and Compositions,The University of Sheffiedld,England,Jane 19 21,1996. UK:The Department of Engineering Materials,University of Sheffield,1996,248-250
    [66] Witulski T,Winkelmann A,Hirt G. Thixoforming of Aluminuim Components for Lightweight Structures A. Kirkwood D H,Kaparanos P. The 4th Int. Conf. o n Semi-Solid Processing of Alloys and Compositions,The University of Sheffiedld,England,Jane 19 21,1996. UK:The Department of Engineering Materials,University of Sheffield,1996,242-247
    [67] Young K P. Recent Advanced in Semi-Solid Metal(SSM) Cast Aluminium and Magnesium Components A. Kirkwood D H,Kaparanos P. The 4th Int. Conf. o- n Semi-Solid Processing of Alloys and Compositions,The University of Sheffiedld,England,Jane 19 21,1996. UK:The Department of Engineering Materials,University of Sheffield,1996,229-233
    [68] 难波明彦. 半固态金属の造加工[J]. 轻金属,1995,6:346-354
    [69] 迕川正人. 金属の半熔融成型法[J]. 锻铸造と热处理,1994,3:3-10
    [70] 冈野忍. 半凝固加工ズロ.ス研究开发を终了レて[J]. 铁钢界,1994,44(12):44-50
    [71] 潘险峰. 铁基半固态合金的研究:[中科院博士学位论文]. 沈阳:中国科学院沈阳金属所,2002,20-93
    [72] Zhang K,Xu J,Shi L K, et al. Research and applications of SSP in China A. Proc of 6th Int Conference on Semi-Solid Processing of Alloys and Composite,Editors:Chiametta G L,Rosso M. Turin,Italy,2000:115-120
    [73] 毛卫民,钟学友. 半固态技术研究现状[J]. 北京科技大学学报,1998,20(3):253
    [74] Kang Y L, An L,Wang K K,et al. Experimental study on rheoforming of Semi-Solid magnesium Alloys A. Proceedings of the 7th S2P 2002,Tsukuba,Japan,2002:287-292
    [75] Lu G M, Cui J Z,Dong J,et al. Continuous casting of Al alloy 7075 for semi-solid forming A. Proceedings of the 6th international Conference on semi-solid processing of Alloys and Composites. Ediors:Chiarmetta G L,Rosso M. Turin,Italy,2000:373-377
    [76] 路贵民,董杰. 液相线半连续铸造7075Al合金二次加热与触变成形[J]. 金属学报,2001,37(11):1184-1188
    [77] Flemings M C,Rlek R G,Young D P. Rheocasting[J]. Mater Sci Eng,1976,25:103-117
    [78] 康智涛,张豪,陈振华. 6066、SiC喷射共沉积复合材料的半固态加工[J]. 中国有色金属学报. 1998,8(4):595-599
    [79] 陈振华,严红革,陈刚等. 合金和复合材料的固液混合铸造技术[P]. 中国专利:ZL01106868. 2001
    [80] 胡汉起. 金属凝固原理(第二版)[M]. 北京:机械工业出版社,2000: 91
    [81] 陈振华,陈鼎,严红革等. 固液混合铸造的研究[J]. 湖南大学学报,2002,4:20-26
    [82] 陈振华,严红革,陈刚等. Al-8.7Fe-1.6V-1.3Si耐热铝合金固液混合铸造[J]. 中国有色金属学报,2002,12(3):422-425
    [83] 程相飞. 固液混合铸造Al-10Cr合金的研究:[湖南大学硕士学位论文]. 长沙:湖南大学,2005,16
    [84] 刘文锋,王猛,林鑫等.振动冷却通道对Sn-15%Pb合金凝固组织的影响[J].铸造技术,2007,28(3):359-362

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700