用户名: 密码: 验证码:
生物和非生物胁迫条件下拟南芥AtCBP60g表达特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钙离子作为第二信使,参与植物生长、发育、抗逆等多种生理反应。钙调素作为一类钙离子中继传感器,主要通过与CaM结合蛋白(CaMBP)结合来调节细胞内的一些生理生化反应,在Ca~(2+)信号系统中发挥至关重要的作用。拟南芥有至少200种CaMBPs,其中CBP60s是一个由7个成员组成的家族。2002年Reddy等人从激发子处理的拟南芥cDNA文库中筛选到5个成员,但是另外两个成员:At4g31000和At5g26920(即AtCBP60g)至今功能未知,尚未在其它植物中发现其同源基因。本研究以拟南芥野生型、AtCBP60g基因敲除突变体(cbp60g)以及AtCBP60g过表达纯合体为实验材料,探讨了拟南芥AtCBP60g基因对病原微生物和非生物胁迫的响应。结果表明:
     1、Atcbp60g中T-DNA插入位点在基因的第二个内含子上,Northern杂交表明cbp60g为完全敲除突变纯合体。
     2、AtCBP60g表达受丁香假单胞菌(毒性和无毒)、植物激素(SA、ABA、JA)以及氧化胁迫诱导。
     3、野生型、cbp60g以及过表达株系OE26-1、OE17-10接种无毒或毒性丁香假单胞菌后,PR基因的诱导表达情况均存在以下关系:突变体中的诱导表达量﹤野生型中的诱导表达量﹤过表达株系中的诱导表达量。对于受avr Rpt2诱导的基因AIG1来说,三者之间区别不明显。
     4、过表达株系OE26-1、OE17-10在苗期对ABA以及高温胁迫更敏感。钙调素作为钙受体在,信号系统中起着重要的作用近年来,随着对钙调素生理根据以上实验结果,推测拟南芥AtCBP60g参与了病原菌和非生物胁迫介导的信号转导途径。
Calcium is known as a second messenger involved in plant growth, development, stress resistance and other physiological responses. And calmodulin as a calcium channel relay sensor, mainly by binding to CaM-binding protein (CaMBP) to regulate the cell physiological and biochemical reactions, plays a crucial role in Ca~(2+) signaling system. In Arabidopsis, at least 200 CaMBPs are ecoded in the genome. Five members in a small family, CBP60s, were studied by Reddy et al in 2002. But the other two members, At4g31000 and At5g26920 (ie AtCBP60g) has unknown function so far. In this study, Arabidopsis wild-type Columbia, knockout mutant of AtCBP60g gene (cbp60g) and homozygote of AtCBP60g overexpression lines were used as materials to check the reponses AtCBP60g on biotic and abiotic stress. The results showed:
     1、The T-DNA insertion site located at the second intron, and the mutant was a tanscript null knockout by northern blot analysis.
     2、AtCBP60g were induced by Pseudomonas syringae(virulent and avirulent), plant hormones(SA、ABA、JA),and oxidative stress.
     3、In wild type, cbp60g and overexpression lines OE26-1, OE17-10, the PR gene expression levels after virulent and avirulent P. syringae infection are: cbp60g      4、At seedling stage, the AtCBP60g overexpression lines became more sensitive to heat stress and ABA compared with wild type.
     The above results suggest that Arabidopsis AtCBP60g was involved in biotic and abiotic stress-mediated signal transduction pathways.
引文
1 Hetherington AM , Brownlee C. The generation of Ca2 + signals in plants. Annu Rev Plant Biol [J], 2004 , 55 : 401- 427
    2 Harper J F , Breton G, Harmon A. Decoding Ca2 + signals through plant protein kinases.Annu Rev Plant Biol[J] , 2004 , 55 :263 -288
    3 Reddy VS , Reddy AS. Proteomics of calcium-signaling components in plants. Phytochemistry[J] , 2004 , 65 : 1745 -1776
    4 McCormack E , Tsai YC , Braam J .Handling calcium signaling :Arabidopsis CaMs and CMLs. Trends Plant Sci[J] , 2005 , 10 :383 -389
    5 Yang T , Poovaiah BW. Calcium/ calmodulin-mediated signal network in plants. Trends Plant Sci[J] , 2003 , 8 : 505 -512
    6刘曼,毛国红,孙大业.植物钙调素亚型.植物生理学通讯[J].2005 41(1):1-5
    7唐军,郭毅,孙大业.植物钙调素结合蛋白(CaMBPs)的研究概况.细胞生物学杂志, 1995, 37(3):129
    8孙大业.植物细胞信号转导研究进展.植物生理学通讯.1996 (32)2: 81-91
    9 Anireddy S.N.et al, Solation and Characterization of a Novel Calmodulin-binding Protein from Potato[J].The Journal of Biological Chemistry. 2002,277,4206-4214
    10宋春分,吕佩源,孙大业.钙调素结合蛋白定位研究进展[J].解剖科学进展2000,6(1):11-13
    11段瑞君,熊辉岩.植物细胞钙靶蛋白的研究进展[J].青海大学学报(自然科学版) 2004,22(6)27-30
    12毛国红.白芷细胞外钙调素结合蛋白(ECBP21) cDNA克隆和鉴定.河北师范大学博士学位论文, 2003
    13郭振清.拟南芥花器管酵母双杂交文库构建及钙调素结合蛋白筛选与鉴定.河北师范大学硕士学位论文, 2004
    14肖逸群.一种编码拟南芥钙调素结合蛋白基因的载体构建及其初步表达.华中师范大学硕士学位论文, 2007
    15 Klaus P. Hoeflich and Mitsuhiko Ikura. Calmodulin in Action: Diversity in Target Recognition and Activation Mechanisms[J]. Cell, 2002, 108:739–742
    16叶正华,郭季芳,孙大业.小麦黄化胚芽鞘的细胞壁钙调素和钙调素结合蛋白[J].植物生理学报. 1989,03
    17 Tang J , Wu SP , Bai J , Sun DY . Extracellular calmodulin-binding proteins in plants :purification of a 21-kDa calmodulin-binding protein. Planta , 1996,198 : 510-516
    18毛国红.白芷细胞外钙调素结合蛋白(ECBP21)cDNA克隆和鉴定.河北师范大学博士学位论文.2003
    19 Du L, Poovaiah B.w. Ca2+/calmodulin is critical for brassinosteroid biosynthesis and plant growth[J] .Nature, 2005,437:741-745
    20 ALLEN R. RHOAD and FRLIX FRIEDBERG. Sequence motifs for calmodulin recognition[J]. FASEBJ, 1997, 11:331-340
    21 Danton H. CaMBOT: profiling and characterizing calmodilin-binding proteins[J], 2003, 15(4): 347-354
    22王朝晖,孙大业.植物钙调素研究进展,植物学通报[J], 1997,14(1):1-7
    23毛国红,宋林霞,孙大业.植物钙调素结合蛋白研究进展.植物生理与分子生物学[J] 2004.30,481-488.
    24 Bouche N, Yellin A, Snedden WA, Fromm H Plant-specific calmodulinbinding proteins[J]. Annu Rev Plant Biol 2005, 56: 435–466.
    25 Ali , Reddy , Differential expression of genes encoding calmodulin-binding proteins in response to bacterial pathogens and inducers of defense responses[J]. Plant Mol Biol 2003, 51:803–815.
    26 Reddy , Ali , Characterization of a pathogen-induced calmodulin–binding protein: mapping of four Ca2+-dependent calmodulinbinding domains[J]. Plant Mol Biol 2003, 52: 143–159.
    27 Reddy , Ali , . Genes encoding calmodulin-binding proteins in the Arabidopsis genome[J]. Biol Chem .2002, 277: 9840–9852.
    28 . Reddy , Takezawa , Poovaiah Isolation and characterization of two cDNAs that encode for calmodulin-binding proteins from corn root tips[J]. Plant Science. 1993, pp 109–117.
    29 Lu Y-THH Isolation of tobacco cDNA clones encoding calmodulinbinding proteins and characterization of a known calmodulin-binding domain[J]. Plant Physiol Biochem. 1994, pp 413–422.
    30 Dash S, Niemaczura W, Harrington HM. Characterization of the basic amphiphilic alpha-helix calmodulin-binding domain of a 61.5 kDa tobacco calmodulin-binding protein[J]. Biochemistry 1997,36: 2025–2029.
    31 Jane Glazebrook, Lin Wang, Kenichi Tsuda. Arabidopsis CaM Binding Protein CBP60g Contributes to MAMP-Induced SA Accumulation and Is Involved in Disease Resistance against Pseudomonas syringae[J]. PLOS 2009.5(2): 1-14
    32 Crute I, Beynon J, et al. Microbial pathogenesis of Arabidopsis. In Arabidopsis EM Meyerowitz and CR Somerville (eds) [M]. Cold Spring Harbor: Cold Spring Harbor Laboratory Press, 1994. 705-747
    33 Flor H H.Current status of the gene-for-gene concept. Annu RevPhytopathol,1971,9:275-296.
    34 DE W P J G M. Mo lecular characterization of gene-for-gene system s in p lant-fungus interaction and the application of avirulence genes in contro l of plant pathogens[J ]. AnnuRev Phytopathology, 1992, 30: 3912481.
    35 STA SKAW ICZ B J , AU SUBEL F M , BA KER B J , et al. Molecular genetics of plant disease resistance [J].Science, 1995, 268: 6612667.
    36周建明,朱群,白永延.高等植物防卫反应的信号转导.植物学通报[J]. 1999,16(3):228-237
    37张茵.植物三型信号分泌系统下的抗病基因防御机制.植物保护科学[J].2007.23(6):504-507
    38 Mackey D, Belkhadir Y, Alonso JM, et al. Arabidopsis RIN4 is a target of the typeⅢvirulence effector AvrRpt2 and modulates RPS2-mediated resistance. Cell ,2003,112,379 -389
    39 Morel, J.-B., and Dangl, J.L. (1997). The hyper sensitive response and the induction of cell death in plants. Cell Death Differ. 19, 17-24.
    40 . Rushton PJ, Torres JT, Parniske M, Wernert P, Hahlbrock K, Somssich IE: Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes. Embo J 1996, 15(20):5690-5700.
    41 Van Loon L.C.The nomenclature of pathogenesis-related proteins[J].Playsiol.Mol. Plant Pathol, 1990,(37): 229-230.
    42 Uknes S , Mauch2Mani B , Moyer M, Potter S , Williams S , Dincher S , Chandler D , Slusarenko A , Ward E , Ryals J . Acquired resistance in Arabidopsis . Plant Cell , 1992 , 4 : 645 - 656.
    43 Delaney T P , Uknes S , Vernooij B , Friedrich L , Weymann K, Ne grotto D , Gaffney T, Gut2Rella M, Kessmann H , Ward E , Ryals J .A central role of salicylic acid in plant disease resistance. Science, 1994,266 :1247-1250.
    44 Lay FT,Anderson MA. 2005. Defensins-comPonents of the innate immune system in Plants. Curr. Protein PePt. Sci. 6:85-101
    45 Thomma BPHJ,Cammue BPA,Thevissen K. 2002. Plant defensins. Planta 216:193-202
    46 Bohlmann H.1994.The role of thionins in Plant Protection. Crit.Rev.Plant Sei.13: l-16
    47 EPPle P,APel K,Bohlmann H.1997. Over expression of an endogenous thionin enhanees resistance of Arabidopsis against Fusarium oxys Porum[J] .Plant Cell 9: 509-20
    48 Zhongqin Zhang, Qun Li, Zhimiao Li, and Zuhua He. Dual Regulation Role ofGH3.5 in Salicylic Acid and Auxin Signaling during Arabidopsis-Pseudomonas syringae Interaction. 2007,145, 450-464
    49 Cao H, Glazebrook J, Clarke JD, Volko S, Dong X The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 1997,88: 57–63
    50 Achuo EA, Audenaert K, Meziane H, Hofte M. The salicylic aciddependent defence pathway is effective against different pathogens in tomato and tobacco. Plant Pathol. 2004,53: 65–72
    51 Delaney TP, Uknes S, Vernooij B, Friedrich L, Weymann K, Negrotto D,Gaffney T, Gut-Rella M, Kessmann H, Ward E, et al. A central role of salicylic acid in plant disease resistance. Science. 1994,266: 1247–1250
    52 Steven H. Spoel, Jessica S. Johnson, and Xinnian Dong. Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. PNAS. 2007, 104 (47): 18842–18847
    53 Mur LA, Kenton P, Atzorn R, Miersch O, Wasternack C. The Outcomes ofConcentration -Specific Interactions between Salicylate and Jasmonate Signaling Include Synergy, Antagonism, and Oxidative Stress Leading to Cell Death. Plant Physiol. 2006, 140(2) :49-62.
    54 Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ,Ehlert C, Maclean DJ, Ebert PR, Kazan K: Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 2004, 16(34):60-79.
    55 Truman W, Bennett MH, Kubigsteltig I, Turnbull C, Grant M. Arabidopsis systemic immunity uses conserved defense signaling pathways and is mediated by jasmonates.Proc Natl Acad. Sci USA 2007, 104(10) :75-80
    56 Segarra G, Jauregui O, Casanova E, Trillas I: Simultaneous quantitative LC-ESI-MS/MS analyses of salicylic acid and jasmonic acid in crude extracts of Cucumis sativus under biotic stress. Phytochemistry 2006, 67:395-401.
    57 Tomo Yoshida, Noriyuki Nishimura, Nobutaka Kitahata, Takashi Kuromori, Takuya Ito, Tadao Asami,Kazuo Shinozaki, and Takashi Hirayama.ABA-Hypersensitive Germination3 Encodes a Protein Phosphatase 2C (AtPP2CA) That Strongly Regulates Abscisic Acid Signaling during Germination among Arabidopsis Protein Phosphatase 2Cs. Plant Physiology, 2006, 140:115–126,
    58 Pei-Chi Lin2, San-Gwang Hwang2, Akira Endo, Masanori Okamoto, Tomokazu Koshiba, and Wan-Hsing Cheng. Ectopic Expression of ABSCISIC ACID 2/GLUCOSE INSENSITIVE 1 in Arabidopsis Promotes Seed Dormancy and Stress Tolerance. Plant Physiology, 2007, 143: 745–758
    59 Xiang-Chun Yu, Sai-Yong Zhu, Gui-Feng Gao, Da-Peng Zhang. Expression of a grape calcium-dependent protein kinase ACPK1 in Arabidopsis thaliana promotes plant growth and confers abscisic acid-hypersensitivity in germination, postgermination growth, and stomatal movement. Plant Mol Biol .2007, 64:531–538
    60 Sai-Yong Zhu,Xiang-Chun Yu,Xiao-Yan Zhang, and Da-Peng Zhang2 Two Calcium -Dependent Protein Kinases, CPK4 and CPK11, Regulate Abscisic Acid Signal Transduction in Arabidopsis. The Plant Cell, 2007,19:3019–3036
    61 Hao Chen, Jingyu Zhang, Michael M. Neff, Suk-Whan Hong, Huiyong Zhang,.Integration of light and abscisic acid signaling during seed germination and early seedling development. PNAS, 2008,105(11): 4495-4500
    62 Christophe Laloi, Monika Stachowiak, Emilia Pers-Kamczyc, Irene Murgia and Klaus Apel.Cross-talk between singlet oxygen- and hydrogenperoxide-dependent signaling of stress responses in Arabidopsis thaliana. PNAS, 2007,104(2): 672–677
    63 Yee-yung Charng, Hsiang-chin Liu, Nai-yu Liu, Wen-tzu Chi and Chun-neng Wang, A Heat-Inducible Transcription Factor, HsfA2, Is Required for Extension of Acquired Thermotolerance in Arabidopsis. Plant Physiology,2007, 143: 251–262,
    64 Jane Larkindale, Jennifer D. Hall, Marc R. Knight, and Elizabeth Vierling Heat Stress Phenotypes of Arabidopsis Mutants Implicate Multiple Signaling Pathways in the Acquisition of Thermotolerance. Plant Physiology, 2005, 138: 882–897,
    65 Yee-yung Charng*, Hsiang-chin Liu2, Nai-yu Liu2, Fu-chiun Hsu2, and Swee-suak Ko. Arabidopsis Hsa32, a Novel Heat Shock Protein, Is Essential for Acquired Thermotolerance during Long Recovery after Acclimation. Plant Physiology, 2006, 140:1297–1305
    66 Lin Wang, Kenichi Tsuda, Masanao Sato,, Jane Glazebrook. Arabidopsis CaM Binding Protein CBP60g Contributes to MAMP-Induced SA Accumulation and Is Involved in Disease Resistance against Pseudomonas syringae. PLoS Pathogens. 2009, 5(2):1-14
    67 Ramamurthy Mahalingam, Nigam Shah, Alexandra Scrymgeour and Nina Fedoroff. Temporal evolution of the Arabidopsis oxidative stress response.. Plant Molecular Biology[J],2005,57:709–730
    68 Raskin I. Salicylic acid, a new plant hormore. Plant Physiol, 1992,99:799
    69林忠平,胡鸢雷.植物抗逆性与水杨酸见到的信号转导途径的关系.植物学报,1997,39(2):185-188
    70 De Boer JG, Dicke ML. The role of methyl salicylate in prey searching behavior of the predatory mitePhytoseiulus persimil-is. J Chem Ecol, 2004, 30(2): 255-27
    71 Prithiviraj B, Bais HP, Weir T, et al. Down regulation of viru-lence factors ofpseudomonas aeruginosaby salicylic acid attenu-ates its virulence onArabidopsis thaliana and Caenorhabditis el-egans. Infect Immun, 2005, 73(9): 5319-5328
    72 Yalpani N, Enyedi AJ, Leo J. Ultroviolet light and ozone stimulate accumulation of salicylic acid, pathogenesis-related proteins and virus resistance in tobacco. Planta, 1994, 193:372-376
    73马德华,庞金安,李淑菊,霍振荣.温度逆境锻炼对高温下黄瓜幼苗胜利的影响.园艺学报, 1998, 25(4): 350-355
    74许明丽,孙晓艳,文江祁.水杨酸对水分胁迫下小麦幼苗叶片膜损伤的保护作用.植物生理学通讯. 2000,36:35-36
    75张士功,高吉寅,宋景芝.水杨酸和阿司匹林对小麦盐害的缓解作用.植物生理学报,1999,25:159-164
    76 Janda TG, Szalai IT, Padi E. Hydroponic treatment with salicylic acid decrease the effects of chilling injury in maize plants planta, 1999,208:175-180
    77 Mishra A, Choudhuri MA. Effects of salicylic acid on heavy medal-induced membrane deterioration mediated by lipoxygenase in rice. Biologia Plantrum,1999,42:409-415
    78 Shulaev V, Leon J, Raskin I, Is salicylic acid a trandlocated signal of systemic acquired resistance in tobacco? Plant Cell, 1995,7:1691-1701
    79 Ward ER, Uknes SJ, et al. Coordinate gene activity in response to agents that induce systemic acquired resistance.. Plant Cell[J], 1991, Vol. 3:1085-1094
    80 TURNER J G, ELLIS C ,DEVOTO A. The jasmonate signal pathway[J]. Plant Cell ,2002,14 (5):153-164
    81 Sembdner G, Parth ier B. The biochem istry and the physio logical and pmolicular actions of jasmonates. Annu. Rev.Plant Phy siol Plant Mol.Biol. 1993, 44: 569-589.
    82 Creelman R A , M ullet J E. Biosynthesis and action of jasmonates in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol.1997,48:355-381.
    83 Pieterse C M J , Loon L C van. Salicylic acid2independent p lant defence pathways. Trends Plant Sci. 1999, 4:52-58
    84 Walling L L. The myriad plant responses to herbivores. J. Plant Grow th Regul. 2000, 19: 195-216.
    85 Traw M B, Bergelson J. Interactive effects of jasmonic acid, Salicylic Acid and Gibberellin on Induction of Trichomes in Arabidopsis1.Plant Physiol.2003, 133(3):1367-1375
    86 Arimura G I,Ozawa R, Shimoda T, et al. Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature.2000, 406 (6795):512-515
    87 Chen Y C, Chang H S, Lai H M , et al. Characterization of the wound-inducible protein ipomoelin from sweet potato. Plant,Cell Environ.2005,28(2):251-259
    88 SONG L, SARAH M, ASSMANN R. Predicting essential components of signal transduction networks; a dynamic model of guard cell abscisic acid signaling. PLoS Biology[J],2006,38 (11):1-17.
    89 Aroca R, Vernieri P, Irigoyen JJ, Sanchez-Diaz M, Tognoni F, Pardossi A. Involvement of abscisic acid in leaf and root of maize (Zea mays L.) in avoiding chilling induced water stress. Plant Sci, 2003,165:671-679
    90 Ryyn?nen L Effect of absicsic acid,cold hardening and photoperiod on recovery of cryopreserved in vitro shoot tips of Silver Birch.Cryobiology,1998,36:32-39
    91 Ismail MR, Davies WJ, Awad MH. Leaf growth and stomatal sensitivity to ABA in droughted pepper plants. Sci Horticul,2002,96:313-327
    92 Saneoka H, Ishiguro S, Moghaieb J Effect of salinity and abscisic acid on accumulation of glycinebetaine and betaine aldehyde dehydrogenase mRNA in Sorghum leaves (Sorghum bicolor). Plant Physiol,2001,158:853-859
    93 Ricardo A. PertuzéYuanfu Ji Roger T. Chetelat Transmission and recombination of homeologous Solanum sitiens chromosomes in tomato. Theoretical and Applied Genetics 2003, 8: 1391-1401
    94陈忠,苏维埃等.植物热激蛋白[J].植物生理学通讯, 2000, Vol. 36(4):289-296
    95陈培琴,郁松林等.植物在高温胁迫下的生理研究进展[J].中国农学通报, 2006, Vol. 22(5):223-227
    96. Yoshioka H,Sugie K, Park HJ. Induction of plant gp91 phox homolog by fungal cell wall ,arachidonic acid ,and salicylic acid in potato[J].Mol. Plant-Microbe I nteract . ,2001 ,14 :725– 736
    97. Simon Plas,F Elma Yan T. The plasma membrane oxidase Nt rbohD is responsible for AOS production in elicited tobacco cells[J ] . Plant J . ,2002 ,31 :137 - 147..
    98. Apel K,Hirt H. Reactive oxygen species :metabolism ,oxidative stress and signal transduction[J ] .A nnu. Rev . Plant B iol . ,2004 ,55: 373-399.
    99 Ramamurthy Mahalingam, Nigam Shah, Alexandra Scrymgeour. Temporal evolution of the Arabidopsis oxidative stress response [J]. Plant Molecular Biology,2005,57:709–730

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700