用户名: 密码: 验证码:
Fe_3O_4或γ- Fe_2O_3@Au核—壳结构纳米颗粒的制备,表征,及其在乙型肝炎病毒基因诊断上的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文用晶种调制的方法在分散良好的磁性氧化铁纳米颗粒表面异质生长金壳层,从而制备了水溶性Fe3O4或γ-Fe2O3@Au核-壳结构纳米颗粒。从透射电镜照片可以看出,这些复合纳米颗粒相互间分散得很好,而且,它们大致可分为直径小于和大于10纳米的两类颗粒。尽管因金的电子密度比氧化铁的要大,透射电镜较难显示复合纳米颗粒的核-壳结构,但能谱显示在大小粒径两类纳米颗粒中Fe和Au都同时存在。高梯度磁分离的结果分析表明,产物纳米颗粒中纯金颗粒的数目与总量相比完全可以忽略不计。这一结果证实了金壳层在大小粒径纳米颗粒表面的形成,同时也表明,对于大粒径纳米颗粒,其主要成分是金;而小粒径纳米颗粒的主要成分则是氧化铁。通过对金壳层较薄的小粒径纳米颗粒的选区电子衍射花样的研究,我们发现,其衍射环在跟磁性氧化铁和纯金纳米颗粒的衍射环不完全吻合的同时,也具有纯金纳米颗粒的面心立方晶体结构特征。进一步的对比分析表明,这些颗粒的较薄金壳层发生了约12%晶格压缩。我们认为,金壳层之所以发生晶格压缩的驱动力就在于异质界面附近的相干应变,它使得壳层上的金原子以比其通常更紧密的方式排列,以适应磁性氧化铁核纳米颗粒的晶格参数。此外,借助于高梯度磁过滤,我们还研究了合成条件对产物纳米颗粒的影响,发现反应时所用磁性氧化铁晶种纳米颗粒的浓度对纯金纳米颗粒的产率有至关重要的作用;而柠檬酸三钠/金离子摩尔比的作用则主要表现在复合纳米颗粒的金壳层平均厚度上。要使纯金纳米颗粒的产率最小化和复合颗粒有一个适当的壳层厚度,我们认为超顺磁性氧化铁纳米颗粒原液的使用量应介于0.7~1.0毫升之间,而柠檬酸三钠/金离子摩尔比最好限38.85~124.16的范围内。最后,我们还用金纳米颗粒和金包磁性氧化铁纳米颗粒制备了乙型肝炎病毒(hepatitis B virus,HBV)的脱氧核糖核酸(deoxynucleic acid, DNA)探针,并做了简易、经济、快捷地检测HBV DNA的有益尝试。
In this thesis, we describe the synthesis of water-soluble Fe3O4 orγ-Fe2O3@Au nanoparticles through a seed-mediated approach, by which gold shells were hetergeneuously grown onto surfaces of magnetic iron oxide nanoparticles. From TEM images, it is found that these composite nanoparticles are dispersed quite well from each other. Furthermore, the product particles can always be assigned into two categories, one is the particles with a diameter less than 10 nanometer; while the other of relatively larger sizes. Though TEM hardly shows the core-shell structure of these particles (due to the higher electronic density of gold as compared to iron oxde), energy dispersive spectroscopy (EDS) verifies the coexistence of Fe and Au in the concerned particles of either the larger or smaller sizes. This is also confirmed convincingly by results of high-gradient magnetic filtration (HGMF), which demonstrates the negligible amount of pure Au nanoparticles among particles of gold characteristic. Therefore, we conclude that the gold shell do form on surface of magnetic iron oxide nanoparticles, and the large-sized particles are largely of gold character, while the smaller ones of mainly iron composition. For small-sized particles with a relatively thinner gold shell, their selected area electron diffraction (SAED) pattern shares the similarity of face-centered cubic structure with the pattern of pure Au nanoparticles on the one hand, and differs somewhat from that of magnetic iron oxide particles on the other hand. Further comparison between these SAED patterns indicates that about 12% lattice compression had occurred on the relatively thinner gold shell, and the driving force for this, we suggest, is the coherency strain, which enables the shell material at the heterostructured interface to adapt the lattice parameters of the core, causing the Au atoms nearby the heterostructured interface pack more tightly than they usually do in pure Au nanoparticles. With the aid of HGMF, we also investigate influence of the synthetic conditions on the product Fe oxide core/Au shell nanoparticles. The seed concentration is found to play a key role on minimizing the fraction of pure Au nanoparticles, while that of citrate to Au3+ mole ratio affects mainly the mean thickness of gold shell of the product composite nanoparticles. To produce magnetic Fe oxide core/Au shell nanoparticles with a minimum fraction of pure Au particles and suitable thickness of gold shell, 0.7~1.0 ml as-synthesized suspension of the seeded superparamagnetic iron oxide nanoparticles (SPION) and a citrate to Au3+ mole ratio within the 38.85 to 124.16 range are suggested. Finally, we describe preparations of DNA probes labeled with pure Au and composite nanoparticles, as well as their applications in easy, cheap, and fast diagnosis of HBV DNA.
引文
[1] 张志馄,崔作林.纳米材料与纳米技术.第四版. 北京:国防工业出版社, 2001.7: 4-6
    [2] 张立德,牟季美.纳米材料与纳米结构.第二版.北京:科学出版社,2001.3: 2-3
    [3] 徐辉碧.纳米医药.第一版. 北京:清华大学出版社,2004.1:299-301
    [4] Christof M. Niemeyer. Self-assembled nanostructures based on DNA: towards the development of nanobiotechnology. Current Opinion in Chemical Biology 2000, 4: 609-618
    [5] Christof M. Niemeyer. Nanoparticles, Proteins, and Nucleic Acids: Biotechnology Meets Materials Science. Angew. Chem. Int. Ed. 2001, 40: 4128-4158
    [6] 白木,周洁. 纳米磁性材料及其应用. 信息记录材料,2002, 3(2):38-39
    [7] M. G. Bawendi, M. L. Steigerwald, L.
    [8] E. Brus. The quantum mechanicsof larger semiconductor clusters (“quantum dots”). Annu. Rev. Phys. Chem. 1990, 41: 477-496
    [9] Junu Chatterjee, Yousef Haik, Ching-Jen Chen. Polythylene magnetic nanoparticle: a new magnetic material for biomedical applications. Journal of Magnetism and Magnetic Materials. 2002, 246: 382-391
    [10] R. S. Molday, L .L. Molday. Separation of cells labeled with immunospecific iron dextran microspheres using high magnetic chromatography. FEBS. 1984, 170 (2): 232-237
    [11] N.Cem Balci, Mustafa Sirvanci, Cihan Duran, et al. Hepatic adenomatosis MRI demonstration with the use of superparamagnetic iron oxide. Journal of Clinical Imaging. 2002, 26: 35-38
    [12] Maire-France Bellin, Catherine Beigelman, Sophie Precetti-Morel. Iron oxide-enhanced MR lymphography: initial experience. European Journal of Radiology.2000, 34: 257-264
    [13] Marie-Christine Daniel, Didier Astruc. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chem. Rev. 2004, 104: 293-346
    [14] James J. Storhoff, Robert Elghanian, Robert C. Mucic, et al. One-Pot Colorimetric Differentiation of Polynucleotides with Single Base Imperfections Using Gold Nanoparticle Probes. J. Am. Chem. Soc. 1998, 120: 1959-1964
    [15] T. Andrew Taton, Chad A. Mirkin, Robert L. Letsinger. Scanometric DNA Array Detection with Nanoparticle Probes. Science 2000, 289: 1757-1760
    [16] So-Jung Park, T. Andrew Taton, Chad A. Mirkin. Array-Based Electrical Detection of DNA with Nanoparticle Probes. Science 2002, 295: 1503-1506
    [17] YunWei Charles Cao, Rongchao Jin, Chad A. Mirkin. Nanoparticles with Raman Spectroscopic Fingerprints for DNA and RNA Detection. Science 2002, 297:1536-1540
    [18] J. Manuel Perez, Lee Josephson, Terence O’Loughin, et al. Magnetic relaxation switches capable of sensing molecular interactions. Nature Biotechnology, 2002, 20: 816-820
    [19] Lee Josephson, J. Manuel Perez, Ralph Weissleder. Magnetic Nanosensors for the Detection of Oligonucleotide Sequences. Angew. Chem. Int. Ed. 2001, 40: 3204-3206
    [20] H. Lin, D. Michael, Sheila R. Musick, et al. Colloidal Au-Enhanced Surface Plasmon Resonance for Ultrasensitive Detection of DNA Hybridization. J. Am. Chem. Soc. 2000, 122: 9071-9077
    [21] Yossi Weizmann, Fernando Patolsky, Eugenii Katz, et al. Amplified DNA Sensing and Immunosensing by the rotation of Functional Magnetic Particles. J. Am. Chem. Soc. 2003, 125: 3452-3454
    [22] Joseph Wang, Ronen Polsky, Arben Merkoci, et al. “Electroactive Beads” for Ultrasensitive DNA Detection. Langmuir 2003, 19: 989-991
    [23] Joseph Wang, Danke Xu, Ronen Polsky. Magnetically-Induced Solid-State Electrochemical Detection of DNA Hybridization. J. Am. Chem. Soc. 2002, 124: 4208-4209
    [24] I. Alexandre, S. Dufour, J. Collet, et al. Colorimetric Silver Detection of DNA Microarrays. Analytical Biochemistry. 2001, 295: 1-8
    [25] Shubo Han, Jianqiao Lin, Feimeng Zhou, et al. Oligonucleotide-Capped Gold Nanoparticles for Improved Atomic Force Microscopic Imaging and Enhanced Selectivity in Polynucleotide Detection. Biochemical and Biophysical Research Communications. 2000, 279: 265-269
    [26] Frank Caruso. Nanoengineering of Particle Surfaces. Adv. Mater. 2001, 13: 11-22
    [27] R. E. Cavicchi, R. H. Silsbee. Coulomb Suppression of Tunneling Rate from Small Metal Particles. Phys. Rev. Lett. 1984, 52(5): 1453-1457
    [28] Daniel L. Feldheim, Christine D. Keating. Self-assembly of single electron transistors and devices. Chem. Soc. Rew. 1998, 27: 1-12
    [29] P. Ball, L. Garwin. Science at the atomic scale. Nature. 1992, 355: 761-766
    [30] 沈良, 江国华. 磁性纳米功能材料研究进展. 杭州师范学院学报, 2001, 18 (5): 40~44
    [31] S. Grimm, M. Schultz, S. Barth, et al. Flame pyrolysis – a preparation route for ultrafine pureγ-Fe2O3 powders and the control of their particle size and properties. J. Mater. Sci. 1997, 32: 1083-1092
    [32] 李春忠,朱以华,车阿小等. 掺硅对铁黄合成过程及铁黄形态的影响Ⅰ:掺硅时间和掺硅量的影响. 华东理工大学学报,1997, 23 (5):571-574
    [33] 关有生,金鑫,朱簇音.控制铁黄(α-FeOOH)长度的方法研究-分散剂对α-FeOOH生成的影响. 应用科学学报, 1990, S (1):76-79
    [34] 王世敏,许祖勋,傅晶. 纳米材料制备技术. 第一版. 化学工业出版社,2002. 15-17
    [35] 刘祖黎,杜玉卿,李震.超小型超顺磁性氧化铁磁共振对比剂的制备及性能研究. 功能材料,2005,1:3-6
    [36] Z. L. Liu, H. B. Wang, Q. H. Lu, et al. Synthesis and characterization of ultrafine well-dispersed magnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 2004, 283: 258–262
    [37] Z. L. Liu, X. Wang, K. L. Yao, et al. Synthesis of magnetite nanoparticles in W/Omicroemulsion. Journal of Material Science, 2004, 39: 2633 – 2636
    [38] N. Feltin, M. P. Peleni. New Technique for Synthesizing Iron Ferrite Magnetic Nanosized Particles. Langumuir. 1997, 13( 15): 3927-3933
    [39] J. B. Dai, J. Q. Wang, C. Sangregorio, et al. Magnetic coupling induced increase in the blocking temperature of γ-Fe2O3 nanoparticles. J. Appl. Phys. 2000, 87 (10): 7397-7399
    [40] C. Pascal, J. L. Pascal, F. Favier, et al. Electrochemical Synthesis for the Control ofγ-Fe2O3 Nanoparticle Size, Morphology, Microstructure, and Magnetic Behavior. Chem. Mater. 1999, 11: 141-147
    [41] J. Rockenberger, E. C. Scher, A. P. Alivisatos, A New Nonhydrolytic Single-Precursor Approach to Surfactant-Capped Nanocrystals of Transition Metal Oxides. J. Am. Chem. Soc. 1999, 121: 11595-11596
    [42] T. Hyeon, S. S. Lee, J. Park, et al. Synthesis of Highly Crystalline and Monodisperse Maghemite Nanocrystallites without a Size-Selection Process. J. Am. Chem. Soc. 2001, 123: 12798-12801
    [43] S. Sun, H. Zeng. Size-Controlled Synthesis of Magnetite Nanoparticles. J Am. Chem. Soc. 2002, 124: 8204-8205
    [44] S. Sun, H. Zeng, D. B. Robinson, et al. Monodisperse MFe2O4 (M=Fe, Co, Mn) Nanoparticles. J Am. Chem. Soc. 2004, 126: 273-279
    [45] N. Pinna, S. Grancharov, P. Beato, et al. Magnetite Nanocrystals: Nonaqueous Synthesis, Characterization, and Solubility. Chem. Mater. 2005, 17 (11): 3044-3049
    [46] 王乐勤,赵开弘,李耀辉.硅烷化铁磁粉固定的胰蛋白酶研究. 武汉大学学报 1999, 45 (2): 203-206
    [47] J. M. Perez, T. O'Loughin, F. J. Simeone, et al. DNA-Based Magnetic Nanoparticle Assembly Acts as a Magnetic Relaxation Nanoswitch Allowing Screening of DNA-Cleaving Agents. J. Am. Chem. Soc. 124 (12): 2856-2857
    [48] F. Poduslo Joseph, M. Wengenack Thomas, L. Curran Geoffry, et al. Molecular Targeting of Alzheimer’s Amyloid Plaques for Contrast-Enhanced Magnetic Resonance Imaging. Neurobiology of Disease, 2002, 11: 315–329
    [49] Youssef Zaim Wadghiri, Einar M. Sigurdsson, Marcin Sadowski, et al. Detection of Alzheimer’s Amyloid in Transgenic Mice Using Magnetic Resonance Microimaging. Magnetic Resonance in Medicine. 2003, 50: 293–302
    [50] H. Kiwada, J. Sato, S. Yamada, et al. Feasibility of magnetic liposomes as a targeting device for drugs. Chem. Pharm. Bull. (Tokyo). 1986, 34 (10): 4253-4258.
    [51] 樊祥山,张东生,郑杰. 磁性脂质体在肿瘤治疗研究中的应用. 国外医学肿瘤学分册 2003, 30 (2) :147-149.
    [52] A. A. Kuznetsov, V. I. Filippov, R. V. Alyautdin, et al. Application of magnetic liposomes for magnetically guided transport of muscle relaxants and anti-cancer photodynamic drugs. J. Magn. Magn. Mater. 2001, 225 (12): 95-100.
    [53] M. Shinkai, M. Yanase, M. Suzuki, et al. Intracellular hyperthermia for cancer using magnetite cationic liposomes. J. Magn. Magn. Mater. 1999, 194 (13): 176-184.
    [54] M. Yanase, M. Shinkai, H. Honda, et al. Anticancer immunity induction by intracellular hyperthermia using magnetic cationic liposomes. Jpn. J. Cancer Res. 1998, 89 (7): 775-782.
    [55] T. Kubo, T. Sugita, S. Shimose, et al. Targeted delivery of anticancer drugs with intravenously administered magnetic liposomes in osteosarcoma-bearing hamsters. Int. J. Oncol, 2000, 17 (2): 309-315.
    [56] F. M. Rocha, S. C. de Pinho, R. L. Zollner. Preparation and characterization of affinity magnetoliposomes useful for the detection of antiphospholipid antibodies. J. Magn. Magn. Mater. 2001, 225 (1-2): 101-108.
    [57] 李铁福,邓英杰,王雨青. 磁性脂质体的研究进展. 药学进展 2002, 26(1): 5-10
    [58] D. Koelle, R. Kleine, F. Ludwig, et al. High-transition-temperature superconducting quantum interference devices. Rev. Mod. Phys. 1999, 71: 631-678
    [59] J. Lange, R. Ktitz, A. Haller, et al. Magnetorelaxometry-a new binding specific detection method based on magnetic nanoparticles. J. Magn. Magn. Mater. 2002, 252: 381-383
    [60] J. I. Taylor, C. D. Hurst,M. J. Davies, et al. Application of magnetite and silica–magnetite composites to the isolation of genomic DNA. J. Charomatogr. A,2000, 890: 159-166
    [61] 何晓晓,王柯敏,谭蔚江.超顺磁性DNA纳米富集器应用于痕量寡核苷酸的富集. 高等学校化学学报 2003, 24 (1): 40-42
    [62] 朱以华,王强斌,古宏晨.表面功能化磁性微球的制备及在核酸分离与固定化酶中的应用. 中国医学科学院学报 2002, 24 (2): 118-120
    [63] L. A. Perrin-Cocon, S. Chesne, I. Pignot-Paintrand, et al. Use of magnetic nanobeads to study intracellular antigen processing. J. Magn. Magn. Mater. 2001, 225: 161-168
    [64] L. Josephson, C.-H. Tung, A. Moore, et al. High-Efficiency Intracellular Magnetic Labeling with Novel Superparamagnetic Tat-Peptide Conjugates. Bioconjugate Chem. 1999, 10 (2): 86-191
    [65] F. Antonii. Panacea Aurea-Auro Potabile. Bibliopolio Frobeniano: Hamburg. 1618
    [66] M. Faraday. Experimental Relations of Gold (and other Metals) to Light. Philos. Trans. R. Soc. 1857, 147: 145-181
    [67] D. H. Brown, W. E. Smith. The Chemistry of the Gold Drugs Used in the Treatment of Rheumatoid Arthritis. Chem. Soc. Rev. 1980, 9: 217-240
    [68] J. Turkevitch, P. C. Stevenson, J. Hillier. Nucleation and Growth Process in the Synthesis of Colloidal Gold. Discuss. Faraday Soc. 1951, 11: 55-75
    [69] G. Frens. Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions. Nature: Phys. Sci. 1973, 241: 20-22
    [70] K. J. Watson, J. Zhu, S. B. T. Nguyen, et al. Hybrid Nanoparticles with Block Copolymer Shell Structures. J. Am. Chem. Soc. 1999, 121: 462-463
    [71] M. A. Hayat. Colloidal Gold, Principles, Methods and Applications; Academic Press: New York, 1989
    [72] Clusters and Colloids: G. Schmid, Ed.; VCH: Weinheim, 1994
    [73] J. S. Bradley. In Clusters and Colloids; G. Schmid, Ed.; VCH: Weinheim, 1994, Chapter6: 459-544
    [74] G. Schmid. Large Clusters and Colloids. Chem. Rev. 1992, 92: 1709-1727
    [75] G. Mie. Beitrage zur Optik Truber Medien, Speziell Kolloidaler Metallosungen. Ann. Phys. 1908, 25: 377-445
    [76] A. P. Alivisatos. Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science. 1996, 271: 933-937
    [77] M. Brust, C. G. Kiely. Some Recent Advances in Nanostructure Preparations from Gold and Silver: A Short Topical Review. Colloids Surf. A: Physicochem. Eng. Asp. 2002, 202: 175-186
    [78] P. R. Andres, T. Bein, M. Dorogi, et al. “Coulomb Staircase” at Room Temperature in a Self-Assembled Molecular Nanostructure. Science. 272: 1323-1325
    [79] Fine Particles Science and Technology—From Micro-to New Particles. E. Pellizzetti Ed. Kluwer: Dordrecht, 1996: 371-383
    [80] J. E. Beesley. Colloidal Gold. A New Perspective for Cytochemical Marking, Royal Microscopical Society Handbook 17: Oxford Science Publication, Oxford University Press: Oxford. 1989
    [81] N. Toshima, T. Yonezawa. Bimetallic Nanoparticles: Novel Materials for Chemical and Physical Applications. New J. Chem. Mater. 1998, 1179-1201
    [82] J. H. Fendler. Self-Assembled Nanostructured Materials. Chem. Mater. 1996, 8: 1612-1624
    [83] A. Henglein. Physicochemical Properties of Small Metal Particles and the Atom-to-Metal Transition. J. Phys. Chem. 1993, 97: 5457-5471
    [84] J. Belloni. Metal Nanocolloids. Curr. Opin. Colloid Interface Sci. 1996, 1:184-196
    [85] M. M. Alvarez, J. T. Khoury, T. G. Schaaff, et al. Optical Absorption Spectra of Nanocrystal Gold Molecules. J. Phys. Chem. B 1997, 101: 3706-3712
    [86] S. L. Logunov, T. S. Ahmadi, M. A. El-Sayed, et al. Electron Dynamics of Passivated Gold Nanocrystals Probed by Subpicosecond Transient Absorption Spectroscopy. J. Phys. Chem. B 1997, 101: 3713-3719
    [87] T. G. Schaaf, M. N. Shafigullen, J. T. Khoury, et al. Isolation of Smaller Nanocrystal Au Molecules: Robust Quantum Effects in Optical Spectra. J. Phys. Chem. B 1997, 101: 7885-7891
    [88] J. S. Melinger, V. D. Kleiman, D. McMorrow, et al. Ultrafast Dynamics of Gold-Based Nanocomposite Materials. J. Phys. Chem. A 2003, 107: 3424-3431
    [89] A. C. Templeton, J. J. Pietron, R. W. Murray, et al. Solvent Refractive Index and Core Charge Influences on the Surface Plasmon Absorbance of Alkanethiolate Monolayer-Protected Gold Clusters. J. Phys. Chem. B 2000, 104: 564-570
    [90] S. Link, M. B. Mohamed, M. A. El-Sayed. Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of their Aspect Ratio and the Effect of the Medium Dielectric Constant. J. Phys. Chem. B 1999, 103: 3073-3077
    [91] P. Mulvaney. Surface Plasmon Spectroscopy of Nanosized Metal Particles. Langmuir 1996, 12: 788-800
    [92] The Theory of the Photographic Process, 4th ed; T. H. James Ed.; MacMillan Press: New York, 1977
    [93] M. Kerker. The Scattering of Light and Other Electromagnetic Radiation: Academic Press: New York, 1969
    [94] C. F. Bohren, D. R. Huffman. Absorption of Light by Small Particles: Wiley: New York, 1983
    [95] T. Yonezawa, T. Kunitake. Practical Preparation of Anionic Mercapto- Ligand-Stabilized Gold Nanoparticles and Their Immobilization. Colloids Surf. A: Physicochem. Eng. Asp. 1999, 149: 193-199
    [96] G. Schmid, R. Pfeil, R. Boese, et al. [Au55﹛P (C6H5)3﹜12Cl6]—A Gold Cluster of Unusual Size. Chem. Ber. 1981, 114: 3634-3642
    [97] M. Giersig, P. Mulvaney. Preparation of ordered colloid monolayers by electrophoretic deposition. Langmuir 1993, 9: 3408-3413
    [98] M. Brust, M. Walker, D. Bethell, et al. Synthesis of Thiol-Derivatized Gold Nanoparticles in a Two-Phase Liquid-Liquid System. J. Chem. Soc., Chem. Commun. 1994, 801-802
    [99] M. Brust, J. Fink, D. Bethell, et al. Synthesis and Reactions of Functionalized Gold Nanoparticles. J. Chem. Soc., Chem. Commun. 1995, 1655-1656
    [100] W. W. Weare, S. M. Reed, M. G. Warner, et al. Improved Synthesis of Small (dcore≈1.5 nm) Phosphine-Stabilized Gold Nanoparticles. J. Am. Chem. Soc. 2000, 122: 12890-12891
    [101] M. Yamamoto, M. Nakamoto. New Type of Monodispersed Gold Nanoparticles Capped by Myristate and PPh3 Ligands Prepared by Controlled Thermolysis of[Au (C13H27-COO) (PPh3)]. Chem. Lett. 2003, 32: 452-453
    [102] M. Green, P. O’Brien. A Simple One Phase Preparation of Organically Capped Gold Nanocrystals. Chem. Commun. 2000, 183-184
    [103] P. R. Selvakannan, S. Mandal, S. Phadtare, et al. Capping of Gold Nanoparticles by the Amino Acid Lysine Renders Them Water Dispersible. Langmuir 2003, 19: 3545-3549
    [104] A. Ahmad, S. Senapati, M. I. Khan, et al. Extracellular Biosynthesis of Monodisperse Gold Nanoparticles by a Novel Extremophilic Actinomycete: Thermomonospora sp. Langmuir 2003, 19: 3550-3553
    [105] A. Lattes, I. Rico, A. de Savignac, et al. A Water Substitute in Micelles and Microemulsions: Structural Analysis Using a Diels-Alder Reaction as a Chemical Probe. Tetrahedron. 1987, 43: 1725-1735
    [106] B.-H. Sohn, J. M. Choi, S.-H. Yun, et al. Direct Self-Assembly of Two Kinds of Nanoparticles Utilizing Monolayer Films of Diblock Copolymer Micelles. J. Am. Chem. Soc. 2003, 125: 6368-6369
    [107] F. Chen, G.-Q. Xu, T. S. A. Hor. Preparation and Assembly of Colloidal Gold Nanoparticles in CTAB-Stibilized Reverse Microemulsion. Mater. Lett. 2003, 57: 3282-3286
    [108] A. Manna, T. Imae, T. Yogo, et al. Synthesis of Gold Nanoparticles in a Winsor Ⅱ Type Microemulsion and Their Characterization. J. Colloid Interface Sci. 2002, 256: 297-303
    [109] N. R. Jana, L. Gearheart, C. J. Murphy. Evidence for Seed-Mediated Nucleation in the Chemical Reduction of Gold Salts to Gold Nanoparticles. Chem. Mater. 2001, 13: 2313-2322
    [110] T. K. Sau, A. Pal, N. R. Jana, et al. Size Controlled Synthesis of Gold Nanoparticles Using Photochemically Prepared Seed Particles. J. Nanopart. Res. 2001, 3: 257-261
    [111] S. Meltzer, R. Resch, B. E. Koel, et al. Fabrication of Nanostructures byHydroxylamine Seeding of Gold Nanoparticle Templates. Langmuir 2001, 17: 1713-1718
    [112] G. Carrot, J. C. Valmalette, C. J. G. Plummer, et al. Gold Nanoparticle Synthesis in Graft Copolymer Micelles. Colloid Polym. Sci. 1998, 276: 853-859
    [113] B. D. Bushee, S. O. Obare, C. J. Murphy. An Improved Synthesis of High-Aspect-Ratio Gold Nanorods. Adv. Mater. 2003, 15: 414-416
    [114] K. Mallick, Z. L. Wang, T. Pal. Seed-Mediated Successive Growth of Gold Particles Accomplished by UV Irradiation: a Photochemical Approach for Size-Controlled Synthesis. J. Photochem. Photobiol. 2001, 140: 75-80
    [115] Y. Zhou, C. Y. Wang, Y. R. Zhu, et al. A Novel Ultraviolet Irradiation Technique for Shape-Controlled Synthesis of Gold Nanoparticles at Room Temperature. Chem. Mater. 1999, 11: 2310-2312
    [116] Y. Niidome, A. Hori, T. Sato, et al. Enormous Size Growth of Thiol-Passivated Gold Nanoparticles Induced by Near-IR Laser Light. Chem. Lett. 2000, 310-311
    [117] J. A. Reed, A. Cook, D. J. Hallas, et al. The Effects of Microgravity on Nanoparticle Size Distributions Generated by the Ultrasonic Reduction of an Aqueous Gold-Chloride Solution. Ultrason. Sonochem. 2003, 10: 285-289
    [118] W. Chen, W. P. Cai, C. H. Liang, et al. Synthesis of Gold Nanoparticles Dispersed Within Pores of Mesoporous Silica Induced by Ultrasonic Irradiation and its Characterization. Mater. Res. Bull. 2001, 36: 335-342
    [119] W. Chen, W. Cai, C. Liang, et al. Sonochemical Processes and Formation of Gold Nanoparticles within Pores of Mesoporous Silica. J. Colloid Surf. Sci. 2001, 238: 291-295
    [120] V. G. Pol, A. Gedanken, J. Calderro-Mereno. Deposition of Gold Nanoparticles on Silica Spheres: A Sonochemical Approach. Chem. Mater. 2003, 15: 1111-1118
    [121] Y. Mizukoshi, K. Okitsu, Y. Maeda, et al. Sonochemical Preparation of Bimetallic Nanoparticles of Gold/Palladium in Aqueous Solution. J. Phys. Chem. B. 1997, 101: 7033-7037
    [122] A. Henglein, D. Meisel. Radiolytic Control of the Size of Colloidal Gold Nanoparticles. Langmuir 1998, 14: 7392-7396
    [123] A. Dawson, P. V. Kamat. Complexation of Gold Nanoparticles with Radiolytically Generated Thiocyanate Radicals (SCN) 2-. J. Phys. Chem. B 2000, 104: 11842-11846
    [124] E. Gachard, H. Remita, J. Khatouri, et al. Radiation-Induced and Chemical Formation of Gold Clusters. New J. Chem. 1998, 1257-1265
    [125] C. A. Mirkin, R. L. Letsinger, R. C. Mucic, et al. DNA-Based Method for Rationally Assembling Nanoparticles into Macroscopic Materials. Nature 1996, 382: 607-609
    [126] A. P. Alivisatos, K. P. Johnsson, X. Peng, et al. Organization of Nanocrystal Molecules Using DNA. Nature 1996, 382: 609-611
    [127] J. Wang, F. Song, F. Zhou. Silver-Enhanced Imaging of DNA Hybridization at DNA Microarrays with Scanning Electrochemical Microscopy. Langmuir 2002, 18: 6653-6658
    [128] D. Iacopino, A. Ongaro, L. Nagle, et al. Imaging the DNA and Nanoparticle Components of a Self-Assembled Nanscale Architecture. Nanotechnology 2003, 14: 447-452
    [129] H. Q. Zhao, L. Lin, J. R. Li, et al. DNA Biosensor with High Sensitivity Amplified by Gold Nanoparticles. J. Nanopart. Res. 2001, 3: 321-323
    [130] F. Patolsky, K. T. Ranjit, A. Lichtenstein, et al. Dendritic of DNA Analysis by Oligonucleotide-Functionalized Au-Nanoparticles. Chem. Commun. 2000, 1025-1026
    [131] M. Su, S. Li, V. P. David. Microcantilever Resonance-Based DNA Detection with Nanoparticle Probes. Appl. Phys. Lett. 2003, 82: 3562-3564
    [132] T. Liu, J. Tang, M. Han, et al. A Novel Microgravimetric DNA Sensor with High Sensitivity. Biochem. Biophys. Res. Commun. 2003, 304: 98-100
    [133] K. Glynou, P. C. Ioannou, T. K. Christopoulos, et al. Oligonucleotide- Functionalized Gold Nanoparticles as Probes in a Dry-Reagent Strip Biosensor for DNA Analysis by Hybridization. Anal. Chem. 2003, 75: 4155-4160
    [134] M. J. Natan, L. A. Lyon. Surface Plasmon Resonance Biosensing with Colloidal Au Amplification. In Metal Nanoparticles-Synthesis, Characterization and Applications; D. L. Feldheim, A. F. Jr. Colby. Ed. Marcel Dekker; New York, 2002: 183-205
    [135] N. T. K. Thanh, Z. Rosenzweig. Development of an Aggregation-BasedImmunoassay for Anti-Protein A Using Gold Nanoparticles. Anal. Chem. 2002, 74: 1624-1628
    [136] C. Zhang, Z. Zhang, B. Yu, et al. Application of the Biological Conjugate between Antibody and Colloid Au Nanoparticles as Analyte to Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2002, 74: 96-99
    [137] B. H. Schneider, E. L. Dickinson, M. D. Vach, et al. Highly Sensitive Optical Chip Immunoassays in Human Serum. Biosens. Bioelectron. 2000, 15: 13-22
    [138] B. H. Schneider, E. L. Dickinson, M. D. Vach, et al. Optical Chip Immunoassays for hGG in Human Whole Blood. Biosens. Bioelectron. 2000, 15: 497-604
    [139] T. A. Taton, Nanostructures as Tailored Biological Probes. Trends Biotechnol. 2002, 20: 277-279
    [140] C.-C. Lin, Y.-C. Yeh, C.-Y. Yang, et al. Selective Binding of Mannose-Encapsulated Gold Nanoparticles to Type 1 Pili in Escherichia coli. J. Am. Chem. Soc. 2002, 124: 3508-3509
    [141] J. M. De la Fuente, A. G. Barrientos, T. C. Rojas, et al. Gold Glyconanoparticles as Water-Soluble Polyvalent Models to Study Carbohydrate Interactions. Angew. Chem. Int. Ed. 2001, 40: 2257-2261
    [142] T. C. Rojas, J. M. De la Fuente, A. G. Barrientos, et al. Gold Glyconanoparticles as Building Blocks for Nanomaterials Design. Adv. Mater. 2002, 14: 585-588
    [143] K. Esumi, T. Hosoya, A. Suzuki, et al. Spontaneous Formation of Gold Nanoparticles in Aqueous Solution of Sugar-Persubstituted Poly (amidoamine) dendrimers. Langmuir 2000, 16: 2978-2980
    [144] R. Wilson. Haptenylated Mercaptodextran-Coated Gold Nanoparticles for Biomolecular Assays. Chem. Commun. 2003, 108-109
    [145] D. C. Hone, A. H. Haines, D. A. Russell. Rapid Quantitative Colorimetric Detection of a Lectin Using Mannose-Stabilized Gold Nanoparticles. Langmuir 2003, 19: 7141-7144
    [146] B. Nolting, J.-J. Yu, G.-Y. Liu, et al. Synthesis and Characterization of Gold Nanoparticles and Biological Evaluation of Recombinant Gp 120 Interactions. Langmuir 2003, 19: 6465-6473
    [147] P. R. Levison, S. E. Badger, J. Dennis,et al. Recent developments of magnetic beads for use in nucleic acid purification. J. Chromatogr. A. 1998, 816: 107-111
    [148] E. E. Carpenter, A. Kumbhar, J. A. Wiemann, et al. Synthesis and magnetic properties of gold-iron-gold nanocomposites. Materials Science and Engineering A 2000, 286: 81-86
    [149] J. Lin, W. Zhou, A. Kumbhar, et al. Gold-Coated Iron (Fe@Au) Nanoparticles: Synthesis, Characterization, and Magnetic Field-Induced Self-Assembly. J. Solid State Chem. 2001, 159: 26-31
    [150] H. Yu, M. Chen, P. M. Rice, et al. Dumbbell-Like Bifunctional Au-Fe3O4 Nanoparticles. Nano Lett. 2005, 5: 379-382
    [151] T. Kinoshita, S. Seino, K. Okitsu, et al. Magnetic evaluation of nanostructure of gold-iron composite particles synthesized by reverse micelle method. J. Alloys & Compounds 2003, 359: 46-50
    [152] J. L. Lyon, D. A. Fleming, M. B. Stone, et al. Synthesis of Fe Oxide Core/Au Shell Nanoparticles by Iterative Hydroxylamine Seeding. Nano Lett. 2004, 4: 719-723
    [153] S-J. Cho, J-C. Idrobo, J. Olamit, et al. Growth Mechanisms and Oxidation Resistance of Gold-Coated Iron Nanoparticles. Chem. Mater. 2005, 17: 3181-3186
    [154] S-J. Cho, S. M. Kauzlarich, J. Olamit, et al. Characterization and magnetic properties of core-shell structured Fe/Au nanoparticles. J. Appl. Phys. 2004, 95: 6804-6806
    [155] M. Chen, S. Yamamuro, D. Farrell, et al. Gold-coated iron nanoparticles for biomedical applications. J. Appl. Phys. 2003, 93: 7551-7553
    [156] L. Wang, J. Luo, Q. Fan, et al. Monodispersed Core-Shell Fe3O4@Au Nanoparticles. J. Phys. Chem. B 2005, 109: 21593-21601
    [157] K. R. Brown, D. G. Walter, M. J. Natan. Seeding of Colloidal Au Nanoparticle Solutions. 2. Improved Control of Particle Size and Shape. Chem. Mater. 2000, 12: 306-313
    [158] L. Shen, P. E. Laibinis, T. A. Hatton. Bilayer Surfactant Stabilized Magnetic Fluids: Synthesis and Interactions at Interfaces. Langmuir 1999, 15: 447-453
    [159] L. Babes, B. Denizot, G. Tanguy, et al. Synthesis of Iron Oxide Nanoparticles Usedas MRI Contrast Agent: A Parametric Study. J. Colloid and Interface Sci. 1999, 212: 474-482
    [160] S. Bucak, D. A. Jones, P. E. Laibinis, et al. Protein Separations Using Colloidal Magnetic Nanoparticles. Biotechnol. Prog. 2003, 19: 477-484
    [161] X. Teng, D. Black, N. J. Watkins, et al. Platinum-Maghemite Core-Shell Nanoparticles Using a Sequential Synthesis. Nano Lett. 2003, 3 : 261-264
    [162] X. Chen, Y. Lou, A. C. Samia, et al. Coherency Strain Effects on the Optical Response of Core/Shell Heteronanostructures. Nano Lett. 2003, 3: 799-803
    [163] C. M. Lee, G. Y. Ong, S. N. Lu, et al. Durability of lamivudine-induced HBeAg seroconversion for chronic hepatitis B patients with acute exacerbation. J. Hepatol. 2002, 37: 669-674
    [164] J. Saldanha. Validation and standardization of nucleic acid amplification technology assays for the detection of viral contamination of blood and blood products. J. Clin. Virol. 2001, 20: 7-13
    [165] S. R. N. Pena, S. Raina, G. P. Goodrich, et al. Hybridization and enzymatic extension of Au nanoparticle-bound oligonucleotide. J. Am. Chem. Soc. 2002, 124: 7314~7323
    [166] D. J. Maxwell, J. R. Taylor, S. Nie. Self-assembled nanoparticle probes for recognition and detection of biomolecules. J. Am. Chem. Soc. 2002, 124: 9606~9612
    [167] S. Kae, H. Kazuo, M. Mizuo. Rapid aggregation of gold nanoparticles induced by non-cross-linking DNA hybridization. J. Am. Chem. Soc. 2003, 125: 8102~8103

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700