用户名: 密码: 验证码:
小环空条件下钻柱动力学及可靠性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国内外研究表明,钻柱失效大多发生在轴向载荷和扭矩载荷最小的底部钻具部位上,这种现象和钻具的转速以及钻具和井壁之间的环空间隙密切相关。论文结合国家自然基金资助项目《复杂钻井条件下钻井新技术研究》(50234030),对小环空条件下钻柱的动力学和可靠性进行了深入研究,所取得的成果在石油钻井行业有良好的应用前景。本论文的主要研究内容总结如下:
     (1)考虑环空间隙的钻柱动力学理论分析
     直井中的旋转钻柱是一个多支点的十分复杂的自激横振系统。对这样一个系统进行理论分析和数值模拟十分困难。论文首先研究了单根钻柱的运动状态以及由涡动所引起的弯曲应力。
     钻柱的横向振动是在钻井液中发生的,钻井液对钻柱横向振动的影响不可忽略,论文从理论上研究了考虑环空间隙的情况下钻井液对钻柱横向振动固有频率的影响。
     钻柱的纵向振动是研究钻柱的动力学特性一个重要方面,论文对钻柱系统的纵向振动进行了系统分析,使用有限元方法对钻柱纵向振动模型进行了数值仿真,同时对钻柱的纵向振动以及其谐响应特性进行了动力学模拟。钻柱的涡动与钻柱的动力学特性密切相关,涡动过程中的钻柱会消耗更多的能量,钻柱的涡动特性和钻柱与井壁之间的间隙密切相关,论文对底部钻具组合的涡动特性进行了分析。
     (2)钻柱与井壁碰撞的拉格朗日模型和ALE流固耦合模型
     依据钻柱与井壁之间碰撞的特点,将拉格朗日方法引入钻柱与井壁碰撞的分析中。利用动量方程、质量守恒方程和能量方程,采用时间积分方法,求解了应力与位移之间关系的微分方程,得到了考虑参考构形和当前构形的三维空间钻柱和井壁的常应变多项式的位移函数。采用8节点6面体单元建立了钻柱和井壁碰撞的整体刚度矩阵。研究了钻柱与井壁碰撞机理,以及碰撞过程中钻柱的应力场和应变场的变化情况。
     建立井眼、钻柱、地层与钻井液系统的混合欧拉-拉格朗日方法的流固耦合计算模型。用ALE(任意欧拉-拉格朗日)方法分析碰撞过程中钻柱—钻井液系统的动力响应,ALE方法可允许流体区域变形与移动。描述流体区可采用ALE参考系,固体区用拉格朗日参考系。得出了考虑钻井液影响下的钻柱与井壁碰撞时的应力应变变化情况。
     (3)环空间隙对普通钻井和套管钻井的影响
     研究了在普通钻井和套管钻井中钻柱和套管的涡动频率、磨损以及疲劳失效分析,从而分析环空间隙对钻柱和套管的力学参数的影响。随着环空间隙的减小和转盘转速的增加,钻柱的疲劳强度是降低的,套管钻井中的套管比钻杆更容易发生疲劳失效事件。
     (4)考虑环空间隙的钻柱可靠性研究
     结合国内外在钻柱可靠性研究方面的成果,并基于论文的研究进展,率先将环空间隙对钻柱动力学的影响以及数值仿真技术引入钻柱的可靠性分析中。套管钻井过程的环空间隙比正常钻井时要小,论文讨论了环空间隙这一钻井参数对套管钻井可靠性的影响以及如何避开钻柱振动的共振区。
The domestic and foreign research indicated that, the position with failure of the drill pipe mostly occurs in the part which the axial load and the torque load is in the smallest spot, some scholars and the overseas research facility think it is closely related with rotational speed and clearance between the drilling tool and the wall of a well. This article unifies the national natural fund subsidization project“the new drilling engineering research under complex drilling condition well”(50234030), and study dynamic and reliability research of drill stem considered clearance between drill stem and formation, the achievement obtained had the good application prospect in the petroleum well drilling profession. The summary in the present paper research is as follows:
     (1) Theory analysis of drill stem considered clearance between drill and formation
     The rotary stem in vertical well is a very complex self exciting vibration system with much supporting. It is extremely difficult to carry on the theoretical analysis and the numerical simulation to this kind of system. This article first studied the transverse vibration as well as the bending stress of a single drill stem which caused by the whirling motion.
     Because the drill stem vibrates in the drilling fluid, the influence caused by the drilling fluid can not be ignored. This article studied how the drilling fluid influences the transverse vibration natural frequency thinking of clearance between the drill stem and the formation.
     The longitudinal vibration is important in the dynamic character. This article studied the longitudinal vibration of the drill stem and numerical simulation of longitudinal vibration is calculated using finite element method. This method can simulate longitudinal vibration and the harmonic response of the drill stem. The whirl of the drill stem can affect the dynamic character of drill stem greatly, it is thought more energy would be used to overcome the friction while whirling. The whirl character is greatly correlated with clearance between the drill stem and formation. The whirl character of the bottom hole assembly is studied in this article.
     (2) Lagrange model and ALE fluid and solid coupling model of collision between drill stem and the wall of a well
     Based on the collision characteristic between the drill stem and the wall of a well, the Lagrange method was introduced to the collision analyzes between the drill stem and the wall of a well. The matrix differential equations containing strain and stress were obtained using the momentum equation, the mass-conservation equation, the energy equation and time integral method. The non-polynomial displacement function considering the reference configuration and the current configuration three-dimensional space drill stem and the wall of a well also found. The integral stiff matrix was established using 8-node hexahedron solid elements to solve the collision between the drill stem and formation. This article studied collision mechanism and stress field and the strain field change situation during the contact process.
     The arbitrary Lagrange-Euler (ALE) fluid-solid coupling model of well, stem and formation is established. The drill-drilling fluid system in collision is studied by ALE method The ALE method allows deformation and displacement in fluid area. This article uses ALE method to describe the fluid, and use Lagrange to describe the solid area. Stress and strain of the drill stem is obtained considering the fluid influence.
     (3) How the clearance influencing the normal drilling and casing drilling
     This article finally discussed how the clearance influences the normal drilling and casing drilling, from whirling frequency, tool wear and fatigue failure of drill stem. When the clearance between the drill stem and formation decreased and the rotate speed increased, the fatigue strength of drill tem will decrease. The fatigue failure in casing drilling occurs more than normal drilling.
     (4) The drill stem reliability research considering clearance
     This article using clearance analysis and CAE technology studied the drill stem reliability, combining the domestic and foreign research aspect the achievement and based on this article research progress. Casing drilling reliability considering clearance and how to avoid casing and drill stem resonance point also was taken into account , because the clearance in normal drilling process are different from casing drilling process.
引文
[1] Finnie I, Bailey J. An Experimental Study of drill Sting Vibration. J.of Engr. for Industry, Tran.ofthe ASME, May 1960, 82(13): 117~121
    [2] Bailey JJ,Finnie I.An Analytical Study of Drill String Vibration. J.of Engr. for Industry, Tran.of the ASME, May 1960, 82(13): 122~128
    [3] Paslay P R,Bogy D B.Drill String Vibration Due to Intermittent Contact of Bit Teeth. J. of Engr. for Industry, Tran. of ASME, May 1963, 85(5): 110~115
    [4] Dareing D W, Livesay B H. Longitudinal and Angular Drill String Vibrations With Damping. Pape No. 68-Pet-30, Presented at the Petroleum Mechanical Engineering and First Pressure Vessel and Piping Conference. Dallas, TX, Sept. 1968
    [5] Huang T, Dearing D W. Bucking and Lateral Vibration of Drill Pipe. J. of Engr. for Industry, Tran. of the ASME. Nov. 1968, 90(13): 130~136
    [6] Huang T, Dareing D W. Bucking and Frequencies of Long Vertical Pipes. J. of Engr. Mech. Div. Procedings of ASCE, Feb. 1969, 95(3):52~61
    [7] 李子丰,蒋恕,阳鑫军.油气井杆管柱力学研究现状和发展方向.石油机械,2002;30(12):30~35.
    [8] 况雨春.牙轮钻头与井壁碰撞的室内实验研究.天然气工业,2002;22(1):55~57.
    [9] 王朝晋.减振器作用分析及新型吸振器.天然气工业,2002;22(4):53~56.
    [10] 朱才朝,谢永春,刘清友,秦大同.牙轮钻头纵向横向扭转振动动力学仿真研究.振动与冲击,2002;21(1):46~52.
    [11] 朱才朝,谢永春,刘清友.钻头钻柱系统非线性耦合动力学仿真.兵工学报,2003,24(1):85~89.
    [12] 林元华等.考虑钻柱运动状态的疲劳寿命预测研究.天然气工业,2004;24(5):57~60.
    [13] 刘清友,马德坤,汤小文.钻柱纵向振动模型的建立及求解方法.西南石油学院学报,1998,20(4):55~58.
    [14] 刘巨保, 丁皓江, 张学鸿.间隙元在钻柱瞬态动力学分析中的应用.计算力学学报,2002,19(4):456~460
    [15] 李子丰.近期国内钻柱静动力分岔研究及存在问题.石油机械,2004,32(6):68~71.
    [16] 况雨春,吴泽兵,马德坤.牙轮钻头横向振动动力学仿真模型.石油机械,1999,27(1):7~10.
    [17] Mikkheim KK,Apostal M C.The Effect of Bottomhole Assembly Dynamics on the Trajectory of a Bit. JPT, Dec.SPE 9222,1981:2323~2339
    [18] Mikkheim KK, Apostal M C. How BHA Dynamics Affect Bit Trajectory. Word Oil, May 1981, 92(6): 183~205
    [19] Millheim KK. Computer Simulation of the Directional Drilling Process. SPE9990
    [20] Kane J E. Dynamic Lateral Bottom Hole Forces Aid Drilling. Drilling, Aug. 1984, 45(11): 43~48
    [21] Dunayevsky VA, et al. Onset of Drillstring Procession in a Directional Borehole. SPE 13027:1~8.
    [22] Dunayevsky VA, et al. Dynamic Stability of Drllstring Under Fluctuating Weights-on-Bit. SPE 14329,1993:84~93.
    [23] Bairde JA, et al. GEODYN2: A Bottomhole Assembly/ Geological Formation Dynamic Interaction Computer Program. SPE 14328:1~12.
    [24] Birades M. Static and Dynamic Tridimensional BHA Computer Models, SPEDE. June 1988,SPE 15466:160~167.
    [25] Brakel JD, Azar JJ. Prediction of Wekkbore Trajectory Considering Bottomhole Assembly and Drill Bit Dynamics. SPEDE June 1989 (SPE/IADC 16172):109~119.
    [26] Mitchell RF. Allen MB. Case Studies of BHA Vibration Failure. SPE 16675:237~241.
    [27] Skaugen E. The Effects of Quasi-Random Drill Bit Vibrations Upon Drillstring Dynamic Behavior. SPE16660:105~117.
    [28] Vandiver JK, et al. Case Studies of the Bending Vibration and Whirling Motion of Drill Collars. SPE/IADC18652:282~296.
    [29] Veeken C.A.M.,et al. Sand Production Prediction Review: Developing an Integrated Approach. SPE22792,1991:335~346.
    [30] MC Apostal, et al. A Study To Determine the Effect of Damping of Finite-Element-Based, Forced-Frequency-Response Models for Bottomhole Assembly Vibration Analysis. SPE 20458:537~551.
    [31] Jansen JD. Whirl and Chaotic Motion of Stabilized Drill Collars. SPE 20930:107~131.
    [32] Zamudio CA, et al. Self-Excited Vibration in Drillstring. SPE16661:117~125.
    [33] Lubinski A, Halsey OW. A Study of Slip/Stick Motion of the Bit. SPEDE, Dec, 1988,SPE16659:369~374.
    [34] Kyllingstad A. Dynamic Loading of Drillpipe During Tripping. IADC/SPE 17211:975~983.
    [35] Halsey GW, et al. Torque Freeback Used to Cure Slip-Stick Motion. SPE18049:277~282.
    [36] J. Ford Brett. The Genesis of Torsional Drillstring Vibrations. SPE/IADC 21943:168~174.
    [37] Harney P, Wassell M. The Design of Steerable BHA’s to Minimize the Adverse Effect of Motor Imbalance and Drilling Forces. SPE 22565:287~298.
    [38] Skeem MR, et al. Drillstring Dynamics During Jar Operationg. SPE 7521: 1381~1386.
    [39] 张炎,陈平,施太和.深井中钻柱动力学机理研究.石油机械,1998;26(7):18~24.
    [40] Shoei-sheng chen 著.冯振宇,张希农译.圆柱结构的流动诱发振动.北京:石油工业出版社,1993:27~29.
    [41] 屈展.井下温度对钻柱横向振动固有频率的影响.石油机械,1997;25(8):41~43.
    [42] 张光伟.钻柱在钻井液反馈影响下的横向振动.石油机械,1997;25(3):8~12.
    [43] 吴天新,陆鑫森.钻柱内外沿轴向流动的钻井液对钻柱横向振动的影响.振动与冲击,1995;54(2):1~6.
    [44] 冯军刚,李军强.钻井液影响下多扶正器钻柱振动理论分析.石油机械,1999;27(9):43~46.
    [45] J.D. Jansen. Whirl and Chaotic Motion of Stabilized Drill Collars. SPE 20930,1992:107~130.
    [46] 章扬烈著.钻柱运动学与动力学.北京:石油工业出版社,2001.
    [47] 钟一谔等编译.转子动力学.北京:清华大学出版社,1987.
    [48] 吴福光,蔡承武,徐兆.振动理论.北京:高等教育出版社,1987.
    [49] Wolf, S. F., Zacksenhouse, M., and Arian A. Field Measurements of Downhole Drillstring Vibration, SPE14330:22~25.
    [50] 高德利,高宝奎,耿瑞平.钻柱涡动特性分析.石油钻采工艺,1996;18(6):9~13.
    [51] 高德利等.滚动钻柱摩阻研究.石油大学学报(自然科学版),1998;22(2):26~28.
    [52] J.D.Jansen, Whirl and Chaotic Motion of Stabilized Drill Collars. SPE20930:107~114.
    [53] 张炎,陈 平,施太和.深井中钻柱动力学机理研究.石油机械,1998;26(7):17~20.
    [54] 赵德云,杨海波,杨月波.深井钻具纵向振动规律分析研究.钻采工艺,2002;25(1):14~16.
    [55] 赵国珍,龚伟安.钻静力学基础[M].北京:石油工业出版社,1990
    [56] 屈展,徐建学.石油钻柱纵向振动的混沌问题讨论.西安石油学院学报,1996;11(5):23~25
    [57] 于永南,韩志勇,路永明.弯曲井眼中柔性钻柱的屈曲问题[J].石油大学学报(自然科学版),1997;21(6): 32-3.
    [58] 陈 浩,刘承杰,刘清友,郭宗海.套管柱与钻柱间侧向力的分析[J].天然气工业,2001; 21(4): 63-65.
    [59] 赵国珍,龚伟安.钻静力学基础[M].北京:石油工业出版社,1998.
    [60] Robert F. Mitchell. A Buckling Criterion for Constant-Curvature Wellbores[R], SPE52901, 1999.
    [61] Wei Yong-qiu. Effect of Drill Pipe/Coiled Tubing Initial Configuration on Contact Force[R], SPE 52189,1999.
    [62] 陈浩,刘承杰.大位移井套管柱磨损的探讨[J].石油矿场机械,2002;31(1):7~9.
    [63] 苏义脑.水平井眼轨道控制[M].北京:石油工业出版社,2000.
    [64] 凌道盛,徐兴.非线性有限元及程序[M].杭州:浙江大学出版社,2000.
    [65] 张光伟.钻柱与井壁振动碰撞特性的有限元分析.西安石油学院学报,1996;11(6):20~23.
    [66] 王勖成,邵敏.有限元基本原理和数值方法[M].北京:清华大学出版社,1997
    [67] 庄茁 译.连续体和结构非线性有限元[M].北京:清华大学出版社,2002.
    [68] C.A.Zamudio, J.L. Tlusty, D.W. Dareing. Self-Excited Vibration in Drillings [R]. IADC/SPE16661:117~124.
    [69] Yang Lie Zhang, et al. An Investigation of the Function of Drill Shock Absorbers [R]. IADC/SPE020324:1~12.
    [70] 章扬烈.钻柱运动学与动力学[M].北京:石油工业出版社,2001.
    [71] 王辉,岑章志,杜庆华.粘性流体中弹性板振动的有限元耦合问题.固体力学学报,1998;19(2):95~105
    [72] 张雄,陆明万,王建军.任意拉格朗日-欧拉描述法研究进展.计算力学学报,1997;14(1):91~102
    [73] 倪红坚,王瑞和,白玉湖.高压水射流破碎岩石的有限元分析.石油大学学报(自然科学版),2002;26(3):91~102
    [74] 庄茁.连续体和结构的非线性有限元[M].北京:清华大学出版社,2002.
    [75] 章扬烈.钻柱运动学与动力学[M].北京:石油工业出版社,2001.
    [76] Bob Tessari1,Casing Drilling- A Revolutionary Approach to Reducing Well Costs [R], SPE52789, 1999:1~9.
    [77] 汪海阁.降低钻井费用的革新方法—套管钻井.国外石油机械,1999;10(4):1~9.
    [78] 练章华,骆发前等.钻杆反转运动及其弯曲频率分析.西南石油学院学报,2004;26(3):75~79.
    [79] R W Hall, Jr Garkasi, Ali. Recent Advances in Casing Wear Technology, the 1994 IADC/SPE Drilling Conference held in Dallas[S].SPE27532:1~8.
    [80] White Jerry P, Dawson, Rapier.Casing Wear: Laboratory Measurements and Field Predictions [S], SPE13457, 1986:369~376.
    [81] 樊晓燕,吴兹攀,童忠舫.机械构件疲劳强度可靠性计算方法.中国机械工程.1994;5(4):28~32
    [82] 汪海阁.降低钻井费用的革新方法—套管钻井.国外石油机械,1999;10(4):1~9.
    [83] Zhong Zhihua. Finite Element Procedures for Contact-impact Prolblems. Oxford: Oxford University press, 1993
    [84] 吕海波,姚卫星.元件疲劳可靠性估算方法力学与实践.2002;22(3):15~22
    [85] 吕海波,姚卫星.元件疲劳可靠性估算的剩余强度模型.航空学报.2000;21(1):74~78
    [86] 唐利民,肖熙.结构强度随时间变化的平台结构可靠性分析.上海交通大学学报.1996;30(10):15~20
    [87] 季文美,方同著.机械振动.科学出版社,北京:1985
    [88] 王子源等编译.钻井数据手册.北京:地质工业出版社,1982.
    [89] 刘宁,吕泰仁.三维结构可靠度对随机变量的敏感性研究.工程力学.1995;12(2):119~125
    [90] E.B.豪根著.汪一麟等译.机械概率设计,机械工业出版社,北京:1985
    [91] 牟致忠.机械零件的可靠性设计.机械工业出版社,北京:1988
    [92] 徐灏.疲劳强度.北京:高等教育出版社,1988

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700