用户名: 密码: 验证码:
颗粒材料的离散颗粒模型与离散—连续耦合模型及数值方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
颗粒材料是自然界分布与工程应用最广泛的物质之一。但颗粒材料物理性质非常复杂,人们对颗粒材料的认识还处于比较初级的阶段。近年来颗粒材料力学行为的研究及颗粒材料力学的发展引起了众多科研工作者的注意。
     颗粒材料力学最终目的之一是建立颗粒材料宏观行为与微观量之间的联系,基于离散颗粒模型的离散单元法由于方便处理颗粒层次的物理量,成为颗粒材料力学行为数值研究的主要工具。颗粒材料离散单元法的核心是颗粒之间接触力的计算,但是接触颗粒之间的相对运动机制,特别是切向滑动与滚动仍没有达成共识,为此本文对不同半径的圆形颗粒在接触点处相对运动作了系统地分析,定义了相对运动的测度,区分了单个颗粒的角速度、相对滚动速度、相对滑动速度、相对滚动位移、相对滑动位移等概念。在此基础上应用弹簧-粘壶-滑片模型给出了滚动阻矩、滚动阻力、滑动阻力、法向力及切向力的计算公式,形成一个适用于颗粒材料动力模拟的离散颗粒模型。考虑到目前文献中对滚动机制的物理及数值研究不足,该模型强调了滚动机制在颗粒材料破坏中重要性。此外为了表征每个颗粒相对于周围颗粒的运动,基于连续介质理论定义了颗粒的名义有效应变及名义体积应变。
     可破碎土具有特殊的力学和工程特性。对土体颗粒破碎的力学机理和工程效应的研究关系到各种大型工程建筑的安全和正常工作。同时细观尺度上颗粒破碎和材料宏观非线性行为有直接的联系,研究颗粒破碎对土力学的完善有重要意义。并且破碎机理的研究可以促进制粒技术的发展。本文在所建议传统离散颗粒模型基础上引入了多尺度分级模型,定义了不同尺度级别的基本颗粒和颗粒簇。在统计断裂力学Weibull分布公式基础上应用名义应力给出了多尺度分级模型意义下颗粒破碎概率;结合颗粒簇的解簇模型建议了一个可模拟颗粒破碎的颗粒分级离散颗粒模型。
     目前应用离散单元法对颗粒材料的研究主要集中在单相颗粒材料或干颗粒材料领域。但一方面少量液体即可引起干土壤颗粒粘性及抗剪性能的很大变化,另一方面由于对干颗粒材料研究的深入,近年来基于离散单元法对湿相颗粒材料的研究逐渐得到了重视。结合固相离散颗粒模型间隙水存在两种数学模型,即液-桥模型与连续介质模型。液.桥模型较为简单,通常以粘性体现湿相影响,但是一方面液桥模型只适合较少量液体的情况,另一方面液桥模型无法模拟间隙水流动。本文基于连续途径的颗粒材料间隙水N-S方程描述及Darcy定律描述,借鉴特征线方案发展了用于求解颗粒材料液相的特征线SPH方案。形成了基于离散颗粒模型及特征线SPH方案的饱和含液颗粒材料数值求解体系。在引入被动空气假设的前提下,进一步模拟了降雨条件下非饱和颗粒材料含液量的变化。同时基于固相连续介质概念,讨论了颗粒材料孔隙度变化与体积应变之间的关系,给出了孔隙水压力与体积应变及颗粒材料胀缩之间的关系。
     概言之,论文的主要工作包括:发展了一个强调滚动机制的颗粒材料离散颗粒模型,并在此基础上引入基本颗粒与颗粒簇的概念,形成了一个能够模拟颗粒破碎的颗粒分级离散颗粒模型;为含液颗粒材料的液固耦合分析发展了离散.连续耦合模型,即应用离散颗粒模型模拟固相,而应用基于平均N-S方程或Darcy定律的连续介质模型模拟液相。进一步发展了基于离散单元方案与特征线SPH的数值求解过程。
     为了论文的完整性,本文还简单介绍了颗粒材料及颗粒材料力学的一些基本概念,讨论了离散单元法刚性球模型与软球模型的区别与联系。此外,还综述了常用的描述接触点力-位移关系的本构模型及颗粒材料的常用边界条件提法。
Granular material is one kind of matter, which exists most widely in nature and is comprehensively applied to engineering practices. However, the physical properties of granular material are so complicated that it still remains as one among a few most less-understood materials. In the recent years, the researches on mechanical behavior of granular materials and the developments in mechanics of granular materials have attracted comprehensive attentions in many scientific and engineering fields.
     A final goal in the study of the mechanics of granular materials is to formulate their macro-behavior in terms of micro-quantities. The discrete element method (DEM) based on the discrete particle model (DPM) has been widely accepted as a useful tool in numerical simulation of mechanical behavior of granular materials owing to its easy to determine physical quantities at grain level. The calculation of contact forces between particles is the core part of DEM, however, a universally accepted view on the mechanism of relative movement between two typical particles in contact, especially for the sliding and rolling movement in tangential direction, has not been achieved. One of the objectives of this thesis is to propose a discrete particle model for granular materials. Each grain in the particulate system under consideration is assumed as rigid and circular. Starting with kinematical analysis of relative movements of two typical grains with different radius in contact, measurements to describe both the relative rolling and sliding motions, including the translational and angular velocities (displacements), are defined. Further, Both the rolling and sliding friction tangential forces, and the rolling friction resistance moment, which are constitutively related to the defined relative motion measurements respectively, are formulated and integrated into the framework of dynamic model of DEM. In view of the fact that the rolling resistance mechanism described in currently available models in the literature is inadequate in both physical and numerical aspects, the proposed model is thus focused on an adequate description of the rolling resistance mechanism. Moreover, the definitions of nominal effective and volumetric strains are proposed on the formalism of the continuum theory to illustrate the movements of each particle relating to its surrounding particles in a particulate system.
     The crushable soil possesses special characters in mechanical and engineering properties. The studies on crushing mechanism of soil granules and its engineering effects are strongly related to safety and work in order to be ensured for engineering constructions with large scales. Meanwhile, the particle crushing at micro-scale directly influences upon macroscopic nonlinear behavior of granular materials, studies on particle crushing possess a scientific significance in advancing the theory of soil mechanics. In addition, the studies will be also beneficial to improve the granulation technology. Based on the proposed conventional discrete particle model, a hierarchical multi-scale model for granular materials, in which basic particles and particle clusters are defined for simulation of particle crushing in different scales, is presented in this thesis. The particle crushing probability in the model is derived on the basis of the Weibull distribution formula in the frame of statistical fracture mechanics with the nominal particle stress concept. With the de-cluster mechanism of the particle clusters the proposed model can be used to simulate particle crushing phenomenon in failure analysis of granular materials.
     At present, the discrete element methods are mostly concerned with single-phase granular materials or dry granular materials. However, it is well known that the addition of liquid to a dry granular medium, even in small quantity, can modify in a significant way its behavior when compared to the dry state. Moreover, with deep and intensive investigations on dry granular medium by means of DEM, the numerical simulation for wet granular materials based on DEM has been paid more attentions in recent years. In the frame of discrete particle model for modeling of granular materials, there exist two main types of mathematical models for modelling interstitial liquid, i.e. the discrete (liquid-bridge)and continuum models. The liquid-bridge model is mainly used for low moisture content, i.e. the pendular and funicular state of interstitial liquid, which exists as liquid-bridges around the contacts between solid particles and exerts the adhesion and suction effects at liquid-air interfaces. Although the fluid phase in a porous medium is inherently discrete at the microscopic level and the discrete (i.e. the liquid-bridge) model takes into account the effect of capillary liquid surrounding the contacts between solid particles on inter-particle adhesion, it is noticed that the discrete models for interstitial liquid are not able to model the fluid transport within a porous medium and can be only used in the case of low liquid content. On the other hand, with an increasing degree of liquid saturation in the medium, the capillary and droplet states of interstitial liquid develop and the voids are fully or nearly saturated with liquid. In such cases, the liquid-bridge model is no longer valid. To model fluid flow through a porous medium and its interaction with the solid grains of the medium, a continuum model should be employed. In this thesis, a coupled discrete particle-continuum model for wet granular materials is developed. The motion of the interstitial fluid phase and its interaction with the solid phase are described by means of the two parallel continuum schemes govemed by the averaged incompressible N-S equations and Darcy's law respectively. In light of SPH approach, the characteristic based SPH method is presented for numerical modelling of pore fluid flow. A numerical Solution procedure based on DEM and characteristic based SPH for saturated granular materials is formulated. Furthermore, as the passive air phase assumption is introduced, the change of water content in unsaturated granular materials can be simulated. In addition, based on the concepts of continuum theory the relation between the voidage variation and volumetric stain is discussed, the equation to determine the pore water pressure depending on volumetric strain and dilation (or contraction) of particulate assemblage are given.
     The main work of the present thesis can be summarized as follows. A discrete particle model for granular materials in which the rolling mechanism is particularly emphasized is first developed. With introduction of the concepts of basic grain and the cluster into the model, a hierarchical discrete particle model capable of modeling particle crushing phenomenon is formulated. To model the coupled response of discrete solid particles with pore fluid a discrete particle-continuum model for wet granular materials is further developed, in which the solid phase is modelled by the discrete particle model while the interstitial liquid is modelled by the two continuum schemes based on the averaged incompressible N-S equations or the Darcy's law respectively. Finally a numerical solution procedure on the basis of the DEM and characteristic based SPH is developed.
     For "self-completeness" of present thesis, fundamental concepts of both granular material and mechanics of granular material are briefly introduced; differences and relations between rigid-particle models and soft-particle models are discussed. In addition, most comprehensively used constitutive models for displacement-force relation at contacts and the boundary condition presentations in common use for granular assemblages are summarized.
引文
[1] Vanel L, Claudin Ph, Bouchaud JPh, Cares ME, Clement E and Wittmer JP. Stresses in Silos: Comparison Between Theoretical Models and New Experiments. Phys. Rev. Letters 2000(84) 1439-1442
    [2] Rosato A, Strandburg KJ, Prinz F and Swendsen RH. Why the Brazil nuts are on top: Size segregation of particulate matter by shaking. Phys. Rev. Letters 1987(58) 1038-1040
    [3] Duran J, Rajchenbach J and Clement E. Arching effect model for particle size segregation. Phys. Rev. Letters 1993(70) 2431-2434
    [4] Duran J, Mazozi T, Clement E and Rajchenbach J. Size segregation in a two-dimensional sandile: Convection and arching effects. Phys. Rev. E 1994(50) 5138-5141
    [5] Knight JB, Jaeger HM, and Nagel SR. Vibration-induced size separation in granular media: The convection connection. Phys. Rev. Letters 1998(70) 3728-3781
    [6] Shinbrot T and Muzzio FJ. Reverse Buoyancy in Shaken Granular Beds. Phys. Rev. Letters 1998(81) 4365-4368
    [7] Mobius ME, Lauderdale BE, Nagel SR and Jaeger HM. Brazil-nut effect: Size separation of granular particles. Nature 2001(414) 270-270
    [8] Yah X, Shi Q, Hou M, Lu K and Chan CK. Effects of Air on the Segregation of Particles in a Shaken Granular Bed. Phys. Rev. Letters 2003(91) 3021-3024
    [9] Melo F, Umbanhowar PB and Swinney HL. Hexagons, Kinks and Disorder in Oscillated Granular Layers. Phys. Rev. Letters 1995(75) 3838-3841
    [10] Bak P, Tang C, and Wiesenfeld K. Self-organized criticality Phys. Rev. A 1988(38) 364-374
    [11] Jaeger HM, Nagel SR Granular solids, liquids, and gases. Rev. Mod. Phys. 1996(68) 1259-1273
    
    [12] 鲍德松,张训生.颗粒物质与颗粒流.浙江大学学报.2003(30)514-517
    
    [13] Cundall PA, Strack ODL. A discrete numerical model for granular assemblies. Geotechnique 1979(29) 47-65
    [14] Iwashita K, Oda M. Rolling resistance at contacts in simulation of shear and development by DEM. Journal of engineering mechanics, 1998(124) 285-292
    [15] Zhou YC, Wright BD, Yang RY, Xu BH, YU AB. Rolling friction in the dynamic simulation of sandpile formation. Physica A, 1999(269) 536-553
    [16] Mikami T, Kamiya H and Horio M. Numerical simulation of cohesive powder behavior in a fluidized bed. Chemical Engineering Science. 1998(53) 1927-1940
    [17] Zhang D, Whiten WJ. An efficient calculation method for particle motion in discrete element simulations, Powder Technology, 1998(98) 223-230
    [18] Campbell CS, Brennen CE. Computer simulation of granular shear flows. J Fluid Mech. 1985,151:167-188.
    [19] Campbell CS, Brennen CE. Chute flows of granular materials: some computer simulations. J. Appl. Mech. 1985 (52) 172-178
    [20] Yang RY, Zou RP and Yu AB. Computer simulation of the packing of fine particles. Phys. Rev. E 2000(62) 3000-3009
    [21] Rothenburg L, Bethurst RJ. Numerical simulation of idealized granular assemblies with plane elliptical particles. Comput. Geotech. 1991 (11) 315-329
    [22] Stefano DT, Paolo S. Two-dimensional mathematical and numerical model for the dynamics of granular avalanches. Cold Regions Sci. Tech. 2005(43) 36-48
    [23] Konrad N and Huang WX. A study of localized deformation pattern in granular media. Comput. Meth. Appl. Mech. Engrg. 2004(193) 2719-2743
    [24] Xikui Li, Xihua Chu, YT Feng. A discrete particle model and numerical modeling of the failure modes of granular materials. Engineering Computations 2005; 22(8): 894-920
    [25] Stroeven M, Askes H, Sluys, LJ. Numerical determination of representative volumes for granular materials. Comput. Meth. Appl. Mech. Engrg. 2004(193) 3221-3238
    [26] Terzaghi K. Die berechnung der durchleessigkeitszifter des tones aus dem verlauf der hydrodynamishen spannungeserscheinungen. Sitsber. Akad. Wiss. Vienna, Abt. II 132 1923.
    [27] Terzaghi K. Principles of soil mechanics. Eng. Naws Record, 17 1925.
    [28] Bolton MD. The role of micro-mechanics in soil mechanics. Presented at the international workshop on soil crushability Yamaguchi University, Japan, July 1999
    [29] Gennes PGD. Reflectionson the mechanics of granular matter. Physica A 1998(261) 267-293
    [30] Gennes PGD. Granular matter: a tentative view. Rev. Mod. Phys. 1999(71) S374-S382
    [31] Oda M, lwashita K. Mechanics of Granular Materials, A. A. Ballkema, Rotterdam, 1999
    [32] Gavrilov D. Discrete Mechanics of Granular Matter. PHD Thesis. The University of Calgary. 1999
    [33] Meenakshi D. Numerical studies of substrate friction in granular materials. PHD Thesis. Duke University. 2002
    [34] Berryman JG. Definition of dense random packing. Advances in the mechanical and the flow of granular materials - Vol. I, M. Shahinpor (ed.) Trans Tech Publications, D-3392 Clausthal, Germany, 1983, p1-18
    [35] Babic M, Shen HH and Shen HT. The stress tensor in granular shear flows of uniform, deformable disks at high solids concentrations. J. Fluid Mech. 1990(219) 81-118
    [36] Samdadani A. Segregation, Avalanching and metastability of dry and wet granular materials. PHD Thesis. Clark University. 2002
    [37] Nedderman RM. In static and kinetic of granular matter. Cambridge University Press. 1992
    [38] Coulomb CA. Application des regles des maximis et minimis a quelques problems de statique, Relatifs a l'architecture. Mem. de l'Acad, des, Sc. Paris: 1773.
    [39] Coulomb CA. Essai surune application des regles de maximis et minimis a quelques. problemes de statique, relatifs at'architecture. Memoires de Mathematique & de. Physique 1776(7) 343-382
    [40] Rankine WJM On the stability of loose earth. Tran. Royal Soc. London 1857
    [41] Fellenius W. Erdstatische Berechnungen. Berlin. W. Ernst u. Sogn. 1927
    [42] Wood DM. Soil behavior and critical state soil mechanics. Cambridge University Press. 1990
    [43] Blot MA. General theory of three-dimensional consolidation, J. Appl. Phys., 1941, 12: 155-164
    [44] Blot MA. Theory of propagation of elastic waves in a fluid-saturated porous solid, J Acoust Soc, Am., 1956, 28(2): 166-191
    [45] Biot MA. Mechanics of deformation and acoustic propagation in porous media, J Appl physic Bd Ⅲ/Ⅰ, Springer Verlag, 1960.
    [46] Biot MA. Generalized theory of acoustic propagation in porous dissipation media. J Acoust Soc. Of America, 1962, 34: 1254-1264
    [47] 武文华.非饱和土中热—水力—力学—传质耦合过程模拟及土壤环境工程中的应用,博士论文,大连理工大学,2002.
    [48] 刘泽佳.多孔介质中化学—热—水力—力学耦合分析与混合元方法,博士论文,大连理工大学,2005.
    [49] Hill R. Acceleration waves in solids. J. Mech. Phys. Solids. 1963 (10) 1-16
    [50] Rice JR. The localization of plastic deformation. Proc. 14~(th) IUTAM Congr. 1976, Delft, 207-220
    [51] Rudnicki JW, Rice JR. Conditions for the localization of deformation in pressure-sensitive dilatant material. J. Mech. Phys. Solids. 1975(23) 371-394
    [52] Roscoe KH. The influence of strains in soil mechanics. Geotechnique 1970(20) 129-170
    [53] Muhlhaus HB, Vardoulakis I. The thickness of shear bands in granular materials. Geotechnique. 1987(37) 271-283
    [54] Bardet JP, Proubet J. A numerical investigation of the structure of persistent shear hands in granular media. Geotechnique 1991(41) 599-613
    [55] 李锡夔Cescotto S.梯度塑性的有限元分析及应变局部化模拟.力学学报.1996(28)575-584
    [56] Anderson TB, Jackson R. A fluid mechanical description of fluidized beds. I&EC Fundam. 1967(6) 527-539
    [57] Enwald H, Peirano E and Almstedt AE. Eulerian two-phase flow theory applied to fluidization. Int. J. Multiphase flow. 1996(22), Suppl. 21-66
    [58] Gidaspow D. Hydrodynamics of fluidization and heat transfer: supercomputer modeling. App. Mech. Rev. 1986(39) 1-22
    [59] 张政,谢灼利.流体-固体两相流的数值模拟.化工学报.2001(52) 1-12
    [60] Chang CS, Ma L. Modeling of discrete granulates as micropolar continua. J. Eng. Mech. 1990(116) 2703-2721
    [61] Puffy J. A differential stress-strain for the hexagonal close packed array. ASME J. Appl. Mech. 1959(26) 88-94
    [62] Duffy J, Mindlin RD. Stress-stain relation and vibrations of granular media. ASME J. ADD1. Mech. 1957(24) 593-595
    [63] Deresiewicz H. Stress-strain relations for simple model of a granular medium. ASME J. Appl. Mech. 1958(25) 402-406
    [64] Digby PJ. The effective elastic moduli of porous granular rocks. ASME J. Appl. Mech. 1981(48) 803-808
    [65] Chang CS. Micromechanical modeling of constitutive relations for granular materials. In: Micromechanics of granular materials. Stake M and Jenkins JT. Eds. Elesvier. Amsterdam, The Netherlands. 1988 p271-279
    [66] Jenkins JT. Volume change in small strain axisymmetric deformations of granular materials. In: Micromechanics of granular materials. Stake M and Jenkins JT. Eds. Elesvier. Amsterdam, The Netherlands. 1988 p143-152
    [67] Rothenberg L, Selvadurai APS. Micromechanical definition of the Cauchy stress tensor for particulate media. In: Mechanics of structured media. Seivadurai APS. Eds, Elesvier. Amsterdam, The Netherlands. 469-486
    [68] Erigen AC, Suhubi ES. Nonlinear theory of simple microelastic solid, part I. Int. J. Eng. Sci. 1964(2) 189-204
    [69] Erigen AC, Suhubi ES. Nonlinear theory of simple microelastic solid, part Ⅱ. Int. J. Eng. Sci. 1964(2) 389-404
    [70] Stojanovic. On the mechanics of materials with microstructure, Acta Mech. 1972(15) 261-273
    [71] Huhlhuas HB. Application of Cosserat theory in numerical solutions of limit load problems. Ing. Arch 1989(59) 124-137
    [72] 张兆,刘元雪.应变局部化理论及在岩土工程中的应用.后勤工程学院学报.2004,12-15
    [73] Xikui Li, Hongxiang Tang. A consistent return mapping algorithm for pressure-dependent elastoplastic Cosserat continua and modelling of strain localization. Computers and Structures, 2005; 83(1): 1-10
    [74] Granik VT, Ferrai M. Microstructural mechanics of granular media. Mech. Mater. 1993(15) 301-322
    [75] Mehrabadi MM, Nemat-Nasser S, Stress, dilatancy and fabric in granular materials. Mech. Mater. 1983(2) 155-161
    [76] Oda M. Significance of fabric in granular mechanics. In: Cowin CS and Satake M, Eds, Proc. US-Tapan. Sem. Cont. -Mech. Statist. Appr. Mech. Gran. Matter. Tokyo. pp7-26
    [77] Christoffersen J, Mehrabadi MM and Nemat-Nasser S. A Micromechanical description of granular material behavior. J. Appl. Mech, 1981, 48: 339-344
    [78] Chang CS, Chang Y and Kabir MG. Micromechanics modeling for stress-strain behavior of granular soils. Ⅰ: Theory; Ⅱ: Evaluation. J. Geotech. Engrg. 1992(120) 1959-1974; 1975-1992
    [79] Satake M. New formulation of graph-theoretical approach in the mechanics of granular materials. Mech. Mater. 1993(16) 65-72
    [80] Bagi K. Stress and strain in granular assemblies. Mech. Mater. 1996(22) 165-177.
    [81] Chang CS, Kuhn MR. On virtual work and stress in granular media. Int. J. Solids and Structures. 2005(42) 3773-3793
    [82] Saxce GD, Fortin J and Millet O. About the numerical simulation of the dynamics of granular media and the definition of the mean stress tensor. Mech. Mater. 2004(36) 1175-1184
    [83] Fortin J, Millet 0 and Saxce GD. Construction of an averaged stress tensor for a granular medium. European Journal of Mechanics - A/Solids. 2003(22) 567-582
    [84] Cambou B, Chaze M, Dedecker F. Change of scale in granular materials. European Journal of Mechanics - A/Solids. 2000(19) 999-1014
    [85] Cambou B, Dubujet P, Emeriault F and Sidorofe F. Homogenization for granular materials. European Journal of Mechanics - A/Solids. 1995(14) 255-276
    
    [86] Kuhn M. Structured deformation in granular materials. Mech. Mater. 1999(31) 407-429
    [87] Kruyt NP. Statics and kinematics of discrete Cosserat-type granular materials. Int. J. Solids Struct. 2003(40) 511-534
    [88] Kruyt NP, Rothenburg L. Micromechanical definition of strain tensor for granular materials. J. Appl. Mech. 1996(118) 706-711
    [89] Liao CL, Chang TP, Young DH and Chang CS. Stress-strain relationship for granular materials based on the hypothesis of best fit. Int. J. Solids Struct. 1997(34) 4087-4100
    [90] Satake M. Mirco-Mechanical definition of strain tensor for granular assembles. 15~(th) ASCE Engineering Mechanics conference. June 2-5. 2002. Columbia University. New York
    [91] Bagi K. Analysis of microstructural strain tensors for granular assemblies. Int. J. Solids Struct.2006 (43) 3166-3184
    [92] Chang CS, Liao CL. Constitutive relation for a particulate medium with the effect of particle rotation. Int. J. Solids Struct. 1990 (26) 437-453
    [93] Chang CS, Gao J. Second-gradient constitutive theory for granular material with random packing structure. Int. J. Solids Struct. 1995 (32) 2279-2293
    [94] Chang CS, Ma L. A micromechanical-based micropolar theory for deformation of granular materials. Int. J. Solids Struct. 1991(28) 67-86
    [95] Chang CS, Misra A. Effective elastic moduli of heterogeneous granular solids. Int. J. Solids Struct. 1993(18) 2547-2566
    [96] Liao CL, Chan TC, Suiker ASJ and Chang CS. Pressure-dependent elastic moduli of granular assemblies. Int. J. Numer. Anal. Meth. Geomech. 2000(24) 265-279
    [97] Chang CS, Gao J. Kinematic and static hypotheses for constitutive modelling of granulates considering particle rotation. Acta Mechanica 1996(115) 213-229
    [98] Rothenburg L, Bathurst RJ. Micromechanical features of granular assemblies with planar elliptical particles. Geotechnique. 1992(42) 79-95
    [99] Rothenburg L, Bathurst RJ. Analytical study of induced anisotropy in idealized granular materials. Geotechnique. 1989(39) 601-614
    
    [100] Kruyt NP, Rothenburg L. Statistical theories for the elastic moudui of two-dimensional assemblies of granular materials. Int. J. Engrg. Sci. 1998(36) 1127-1142
    [101] Bouchaud JP. Cates ME, RaviPrakash J, and Edwards SF. Hystereis and metastability in a continuum sandpile model. Phys. Rev. Lett. 1995(74) 1982-1985
    [102] Makse HA, Cizeau P, and Stanley HE. Possible stratification mechanism in granular mixtures. Phys. Rev. Left. 1997(78) 3298-3301
    [103] Makse HA, Havlin S, King PR and Stanley HE. Spontaneous Stratification in Granular Mixtures. Nature 1997(386) 379-381
    [104] Bouchaud JP, Cares ME. Triangular and uphill avalanches of a tilted sandpile. Granular matter. 1998(1) 101-103
    [105] Coppersmith SN, Liu CH, Majumdar S, Narayan O, and Witten TA. Model for force fluctuations in bead packs. Phys. Rev. E 1996(53)4673-4685
    [106] Bouchaud JP, Claudin P, Cates ME, Wittmer JP. Models of stress propagation in granular media. In: Physics of dry granular media. Herrmann HJ, Hovi JP and Luding S. Eds. NATO Advanced Study Institute, Kluwer, 1998. 97-122
    [107] Jenkins JT, Savage SB. A theory for the rapid flow of identical smooth nearly elastic particles, J. Fluid Mech. 1983(130) 187-189
    [108] Lun CKK, Savage SB. A simple kinetic theory for granular flow of rough, inelastic, spherical particles. Trans. ASME. J. Appl. Mech. 1987(54) 47-53
    [109] Campbell CS. Rapid granular flows. Annu. Rev. Fluid Mech. 1990(22) 57-92
    [110] 吴清松,胡茂彬.颗粒流的动力学模型和实验研究进展.力学进展.2002(32)250-258
    [111] Herrmann HJ, Hovi JP and Luding S. Physics of dry granular media. NATO Advanced Study Institute, Kluwer, 1998
    [112] 文玉华,朱如曾,周富信,王崇愚.分子动力学模拟的主要技术.力学进展.2003(33) 65-73
    [113] Luding S.Molecular dynamics of simulation of granular materials. http://Www.ical.uni-stuttgart.de/~lui/PAPERS//luding mdl.pdf
    [114] Vinogradov O, Sun Y. A Multiody approach in granular dynamics simulations. Computational Mechanics. 1997(19) 287-296
    [115] Moreau JJ. Some numerical methods in Multibody dynamics: application to granular materials. Eur. J. Mech. A/Solids. 1994(13) 93-114
    [116] 7ean M. The non-smooth contact dynamics method. Comput. Methods Appl. Mech. Engrg. 1999(17) 235-257
    [117] 吴爱祥,孙业志,刘湘平.散体动力学理论及其应用.冶金工业出版社.2002
    [118] Muller M, Herrmann HJ. DSMC-a stochastic algorithm for granular matter. In: Physics of dry granular media. Herrmann HJ, Hovi JP and Luding S. Eds. NATO Advanced Study Institute, Kluwer.
    [119] Kishino Y. Disc model analysis of the granular media. In: Micromechanics of granular materials. Satake M, Jenkins JT (Eds) 143-152
    [120] Kishino Y. Computer analysis of dissipation mechanism in granular media. In: Powders and Grain. Biarez & Gourves (Eds) 1984 323-330
    [121] 徐泳,孙其诚,张凌,黄文彬.颗粒离散元法研究进展.力学进展.2003(33) 251-250
    [122] Elperin T, Golshtein E. Comparison of different models for tangential forces using the particle dynamics method. Physica A. 1997 (242) 332-340
    [123] Zhang D, Whiten WJ. A new calculation method for particle motion in tangential direction in discrete simulations. Powder Technology. 1999(102) 235-243
    [124] Feng YT, Han K and Owen DRJ. Some computational issues numerical simulation of particulate systems. Fifth world congress on computational mechanics, July 7-12, 2002,Vienna, Austira
    [125] Thornton. C. Interparticle sliding in the presence of adhesion. Phys. D. 1991(24) 1942-1946
    [126] Vu-Quoc L, Zhang X. An elastoplastic contact force - displacement model in the normal direction: displacement - driven version, Proceedings of the Royal Society of London, Series A 1999(455) 4013-4044
    [127] Vu-Quoc L, Zhang X, Lesburg L. Normal and tangential force - displacement relations for frictional elasto-plastic contact of spheres. Int. J. Solids and Structures, 2001(38) 6455-6489
    [128] Jiang MJ, Yu HS, Harris D. A novel discrete model for granular material incorporating rolling resistance. Computers and Geotechnics. 2005(32) 340-357
    [129] Fortin J, Millet O, Saxce GD. Numerical simulation of granular materials by an improved discrete element method. Int. J. Numer. Meth. Engng. 2005 (62) 639-663
    [130] Oda M, Konishi J, Nemat-Nasser S. Experimental micromechanical evaluation of strength of granular materials: effects of particular rolling. Mech. Mater. 1982 (1) 269-283
    [131] Bardet JP. Observations on the effects of particle rotations on the failure of idealized granular materials. Mechanics of Materials. 1994 (18) 159-182
    [132] Campbell CS. Computer simulation of powder flows. In: Powder technology handbook. Iinoya K, Gotoh K, Higashitani K (Eds) 1997, p777-794
    [133] Vu-Quoc L, Zhang X, Walton OR. A 3-D discrete-element method for dry granular flows of ellipsoidal particles. Comput. Methods Appl. Mech. Engrg. 2000(187) 483-528
    [134] Dziugys A, Peters B. A new approach to detect the contact of two-dimensional elliptical particles. Int. J. Numer. Anal. Meth. Geomech. 2001(25) 1487-1500
    [135] Shodja HM, Nezami EG. A micromechanical study of rolling and sliding contacts in assemblies of oval granules. Int. J. Numer. Anal. Meth. Geomech. 2003 (27) 403-424
    [136] Ouadfel H, Rothenburg L. Stress-force-fabric relationship for assemblies of ellipsoids. Mech. Mater. 2001 (33) 201-221
    [137] Johnson S, Williams JR. Contact resolution algorithm for an ellipsoid approximation for discrete element modeling. Engineering computation. 2004(21) 215-234
    [138] Hogue C. Shape representation and contact detection for discrete element simulation of arbitrary geometries. Engineering computation. 1998(18) 374-390
    [139] Thomas PA, Bray JD. Capturing nonspherical shape of granular media with disk clusters. J. Geotech. Geoenvi. Engng. 1999 (125) 169-178
    [140] Ting JM, Mahmood Khwaja, Larry R M and Rowell J D. An ellipse-based discrete element model for granular materials. Int. J. Numer. Anal. Methods Geomech. 1993(17) 603-623
    [141] ring JM. A robust algorithm for ellipse-based discrete element modeling of granular materials. Comput. Geotech. 1992 (13) 175-186
    [142] Ng TT and Lin X. Numerical simulation of naturally deposited granular soil with ellipsoidal elements, Proc. 2~(nd) Int. Conf. On Discrete Element Methods (DEM), IESL Publications, pp. 557-567
    [143] 姚玉鹏,蒋复初,王光才,刘羽,张志诚,谢宏远.关于地质学科“十五”优先资助领域的思考.地 球科学进展.2000(15) 747-750
    [144] Mcdowell GR, Bolton MD and Robertson D. The fractal crushing of granular materials. J. Mech. Phys. Solids. 1996(44) 2079-2102
    [145] Nakata Y, Hyde AFL Hyodo M and Murata H. A probabilistic approach to sand particle crushing in the triaxial test. Geotechnique. 1999(49) 567-583
    [146] Mcdowell GR, Bolton MD. On the micromechanics of crushable aggregates. Geotechnique. 1998(48) 667-679
    [147] Cheng YP, Bolton MD and Nakata Y. Crushing and plastic deformation of soils simulated using DEM. Geotechnique. 2004(54) 131-141
    [148] Robertson D, Mcdowell GR and Bolton MD A numerical representation of fracturing granular materials. Int. J. Numer. Anal. Meth. Geo. 1997 (21) 825-843
    [149] Cheng YP, Nakata Y and Bolton MD. Discrete element simulation of crushable soil. Geotechnique, 2003 (53) 633-641
    [150] 陆厚根编著,粉体工程导论.同济大学出版社,1993年第一版
    [151] Plesha ME, Edil TB and Bosscher PJ. Modeling particle damage in discrete element simulations. Computer Methods and Advances in Geomechanics, 2001: 581-585
    [152] Campbell CS and Potapov AV. Computer simulation of particle breakage. In: Powder technology handbook. Iinoya K, Gotoh K, Higashitani K (Eds) 1997, p795-809
    [153] Zienkiewicz OC, Shiomi T. Dynamic behavior of saturated porous media; the generalized Bolt formulation and its numerical solution. Int. J. Numer. Anal. Meth. Geomech. 1984 (8) 71-96
    [154] Li XK, Thomas HR, Fan YQ. Finite element method andconstitutive modelling and computation for unsaturated soils Comput. Methods Appl. Mech. Engrg. 1999(169) 135-159
    [155] Cundall PA. A computer model for simulating progressive large scale movements in blocky system. In: Muller Led, ed. Proc Symp Int Soc Rock Mechanics. Rotterdam: Balkama A A, 1971, (1) 8-12
    [156] Chateau X Mouchron P and Pitois O. Micromechanics of unsaturated granular media Journal of engineering mechanics, 2002(128) 856-863
    [157] Newitt DM, Conway-Jones JM. A contribution to the theory and practice of granulation, Trans. Inst. Chem. Engrs, London 1958(36), 422-441
    [158] Soulie F, Cherblanc F, Youssoufi MSE, Saix C. Influence of liquid bridges on the mechanical behavior of polydisperse granular materials. Int. J. Numer. Anal. Meth. Geomech 2005(30) 213-228
    [159] Lian G, Thornton C and Adams MJA. Theoretical study of the liquid bridge forces between two rigid spherical bodies. J.Colloid Interface Sci.1993 (161) 138-147
    [160] Liu SH, Sun DA. Simulating the collapse of unsaturated soil by DEM. Int. J. Numer. Anal. Meth.Geomech. 2002, 26: 633-646
    [161] Liu SH, Sun DA and Wang Y. Numerical study of soil collapse behavior by discrete element modeling. Computers and Geotechnics 2003(30) 399-408
    [162] Zhu Y, Fox PJ, Morris JP. Smoothed particle hydrodynamics model for flow through porous media. Computer Methods and Advances in Geomechanics, Yuan(ed) alkema, Rotterdam1997; 1041-1046
    [163] Masad E, Muhunthan B and Crow C. Numerical modeling of fluid flow in microscopic images of granular materials Int. J. Numer. Anal. Meth. Geomech. 2002 (26) 53-74
    [164] Koplic J, Lin C, VermetteM. Conductivity and permeability from microgeometry. Journal of Applied Physics 1984(56) 3127-3131
    [165] Bryant SL, King PR & Mellor DW. Network model evaluation of permeability and spatial correlation in a real random sphere packing. Transport in Porous Media. 1993 (11) 53-57
    [166] Monaghon JJ. Smoothed particle hydrodynamics. Annu. Rev. Astrophys. 1992 (30) 543-574
    [167] Monaghon JJ. Simulation free surface flows with SPH, J. Comput. Phys. 1994(110) 399-406
    [168] Morris JP, Fox PJ, Zhu Y, Modeling low Reynolds number incompressible flows using SPH. Journal of Computational Physicsl997 (136) 214-226
    [169] Zhu Y, Morris JP, Fox PJ. A pore-scale numerical model for flow through porous media. Int. J. Numer. Anal. Meth. Geomech. 1999 (23) 881-904
    [170] Potapov AV, Hunt ML and Campbell CS. Liquid-solid flows using smoothed particle hydrodynamics and the discrete element method. Powder Technology. 2001 (116) 204-213
    [171] Tsuji Y, Kawaguchi T, Tanaka T. Discrete particle simulation of two-dimensional fluidized bed. Powder Technology 1993(77) 79-87
    [172] Tsuji Y, Tanaka T, Yonemura S. Cluster patterns in fluidized beds predicted by numerical simulation (discrete particle model versus two-fluid model) Powder Technology 1998(95) 254-264
    [173] Gera D, Gautam M, Tsuji Y, Kawaguchi T and Tanaka T. Computer simulation of bubbles in large-particle fluidized beds. Powder Technology1998 (98) 38-47
    [174] Shamy UE. Discrete element simulations of water flow through granular soils. 15~(th) ASCE Engineering Mechanics conference
    [175] Shamy UE and Zeghal M. Coupled continuum-discrete model for saturated granular soils. ASCE Journal of Engineering Mechanics2005 (131) 413-426
    [176] Zeghal M and Shamy UE. A continuum-discrete hydromechanical analysis of granular deposit liquefaction. Int. J. Numer. Anal. Methods Geomech. 2004(28) 1361-1383
    [177] Indraratna B, Ranjith PG, Gale G. Single phase flow through rock fractures Geotechnical and Geological Engineering. 1999(17) 211-240
    [178] Zhang X, Sanderson DJ, Harkness RM and Last NC. Evaluation of the 2-D permeability tensor for fractured rock mass. Int. J Rock Mech. &Min. Sci. 1996(33) 17-37
    [179] Liao QH and Hencer SR. Numerical modeling of the hydro-mechanical behavior of fractured rock masses. Int. J Rock Mech. &Min. Sci. 1997(34) 428-428
    [180] Meguro K and Ravichandran N. 3-Dimensional distinct element simulation of liquefaction phenomena 生产研究 (日本期刊) Vol 2000(52) 28-31
    [181] Sakaguchi H, Muhlhaus HB. Hybrid modeling of coupled pore fluid-solid deformation problems. Pure and Applied Geophysics 2000 (157) 1889-1904
    [182] Laurent T, Pierre P and Aurele P. Generation of granular media. Transport in porous media. 1997 (26) 99-107
    [183] Wang CY and Vei Chung L. A packing generation scheme for the granular assemblies with planar elliptical particles. Int. J. Numer. Anal. Methods Geomech. 1997 (21)327-358
    [184] Cheng YF, Guo SJ and Lai HY. Dynamic simulation of random packing of spherical particles. Powder technology. 2000 (107) 123-130
    [185] Feng YT, Han K and Owen DRJ. Filling domains with disks: an advancing front approach. Int. J. Numer. Meth. Engng. 2003(56) 699-713
    [186] Jiang M J, Konrad J M and Lerouei S. An efficient technique for generating homogenous specimens for Dem studies. Computer and Geotechnics. 2003 (30) 579-597
    [187] Cui L and Sullivan O. Analysis of a triangulation based approach for specimen generation for discrete element simulations. Granular Matter, 2003 (5) 135-145
    [188] Bagi K. An algorithm to generate random dense arrangements for discrete element simulations of granular assemblies. Granular Matter. 2005(7) 31-43
    [189] Scott GD. Packing of spheres. Nature 1960(188) 908-909
    
    [190] Goldberg M. On the densest packing of equal sphere in cube. Math. Mag. 1971(44) 199-208
    [191] Oweberg TG, McDonald R L and Trainor. The packing of spheres. Powder Technology, 1969(70) 183-188
    [192] Finney JL. Fine structure in randomly packed, dense clusters of hard spheres. Materials Science and Engineering 1976 (23) 199-205
    [193] Visscher WM, Bolsterli M. Random packing of equal and unequal spheres in two and three dimensions. Nature 1972 (239) 504-507
    [194] Gamba A. Random packing of equal spheres. Nature, 1975(256) 521-522
    [195] Conway J H, Sloane N J A. Sphere packings, Lattices and Groups. Springer: Berlin, Germany, 1988
    [196] Hales TC. The sphere packing problem. 7. Comput. Appl. Math. 1992(44) 41-76
    [197] Li XY, Teng SH, Morgan K, Ungor A. Biting: Advancing front meets sphere packing. Int. J. Numer. Meth. Engng. 2000(49) 61-81
    [198] Wang CY, Wang CF and Sheng J. A packing generation scheme for the granular assemblies with 3D ellipsoidal particles. Int. J. Numer. Anal. Methods Geomech. 1999(23) 815-828
    [199] Jia X, Williams R A. A packing algorithm for particle of arbitrary shapes. Powder Technology. 2001(120) 175-186
    [200] Tory E M and Jodrey W S. Comments on some types of random packing. Advances in the mechanical and the flow of granular materials -Vol. I, M. Shahinpor (ed.) Trans Tech Publications, D-3392 Clausthal, Germany, 1983
    [201] Solane N J A. The sphere packing problem. Shannon lecture, http://www.research.att.com/~njas/
    [202] Hales r C. An overview of the Kepler conjecture. http://www.math.pitt.edu/~thales/PUBLICATIONS//intro.pdf
    [203] Masson S and Martinez J. Micromechnical analysis of the shear behavior of granular materials. ASCE J. Engrg. Mech. 2001(127) 1007-1016
    [204] Sitharam T G and Dinesh S V. Numerical simulation of liquefaction behaviour of granular materials using discrete element method. Proc. Indian. Acad. Sci. (Earth Planet. Sci.) 2003(112) 479-484
    [205] Sitharam T G. Discrete element modeling of cyclic behaviour of granular materials. Geotechnical and Geological Engineering. 2003(21) 297-329
    [206] PFC2D, user's manual. Minneapolis: Itasca Consulting Group 2002
    [207] 周健,池毓蔚,池永,徐健平.沙土双轴试验的颗粒流模拟.岩土工程学报,2000(22)701-704
    [208] 程远方等,球形颗粒随机排列过程的计算机模拟,北京科技大学学报1999(21) 387-391
    [209] Stoyan D. Random systems of hard particles: models and statistics. Chinese journal of stereology and image analysis, 2002 (7) 1-13
    [210] Mase S, Moller J, Stoyan D, Waagepeterse R P, Doge G. Packing densities and simulated tempering for hard core Gibbs point processes, Ann. Inst. Statist. Math. 2001(53) 661-680
    [211] K. Sobolev and A. imirjanov, A simulation model of the dense packing of particulate materials, Advanced Powder Technol. 2004(15) 365-376
    [212] Yu BM. Some Fractal characters of porous media, Fractals. 2001(9) 365-372
    [213] Tagus F J, Matin MA and Perfect E. Simulation and testing of self-similar structures for soil particles-size distributions using iterated functions systems, Geoderma 1999(88) 191-203
    [214] PeTTier E, Bird N and Rieu M. Generalizing the fractal model of soil structure: the pore-solid fractal approach, Geoderma 1999(88) 137-164
    [215] Tyler SW, Wheatcraft SW. Fractal scaling of soil particle-size distributions: analysis and limitations. Soil Sci. Soc. Am. J. 1992(56) 62-369
    [216] 王泳嘉.离散单元法—一种适用于节理岩石力学分析的数值方法.第一届全国岩石力学数值计算及模型试验讨论会论文集.1986.32-37
    [217] 俞万禧.离散单元法的基本原理及其在岩体工程中的应用.第一届全国岩石力学数值计算及模型试验讨论会论文集.1986.43-46
    [218] 王泳嘉,邢纪波[著].离散单元法及其在岩土力学中的应用.东北工学院出版社.1991
    [219] 魏群.岩土工程中散体元的基本原理、数值方法及试验研究.博士论文,北京,清华大学.1991
    [220] 焦玉勇,葛修润.基于静态松弛法求解的三维离散单元法.岩石力学与工程学报2000(19)453-358
    [221] 王光伦,张楚汉,彭冈,陈昌伟.刚块动力试验与离散元法动力分析参数选择的研究.岩石力学与工程学报.1994(2)124-133
    [222] 李伟.冲击减振理论的离散单元法研究及应用.博士论文,西安,西安交通大学
    [223] 刘凯欣,高凌天,郑文刚.混凝土动态破坏过程的数值模拟.工程力学学报.2000 470-474
    [224] 刘凯欣,高凌天.离散元法研究的评述.力学进展.2003(33) 483-490
    [225] 雷晓燕[著].岩土工程数值计算,北京,中国铁道出版社,1999
    [226] 邢纪波,王泳嘉.离散元法的改进及其在颗粒介质研究中的应用.岩土工程学报.1990(12)51-57
    [227] 余良群,邢纪波.筒仓装卸料时力场及流场的离散单元法模拟.农业工程学报.2000(16) 15-19
    [228] 周健,池永,池毓蔚,徐建平,颗粒流方法及PFC2D程序,岩土力学,2000,21(3):271-274
    [229] 黄文彬,徐泳,练国平,李红艳.存在滑移时两圆球间的幂律流体的挤压流动.应用数学和力学.2002(23) 722-728
    [230] 徐泳,Kafui KD,Thornton C.用颗粒离散元模拟料仓卸料过程.农业工程学报.1996(12) 65-69
    [1] Oda M, Iwashita K. Mechanics of Granular Materials, A. A. Ballkema, Rotterdam, 1999
    [2] Bagi K. Stress and strain in granular assemblies. Mech. Mater. 1996(22) 165-177
    [3] Cundall PA, Strack ODL. A discrete numerical model for granular assemblies. Geotechnique 1979(29) 47-65
    [4] Alsaleh MI. Numerical modeling of strain localization in granular materials using Cosserat theory enhanced with microfabric properties. PHD thesis. Louisiana State University. 2004
    [5] Granular matter: a tentative view. Rev. Mod. Phys. 1999(71) S374-S382
    [6] 吴爱祥,孙业志,刘湘平.散体动力学理论及其应用.冶金工业出版社.2002
    [7] 吴清松,胡茂彬.颗粒流的动力学模型和实验研究进展.力学进展.2002(32)250-258
    [8] 鲍德松,张训生.颗粒物质与颗粒流.浙江大学学报.2003(30)514-517
    [9] Sitharam TG, Nimbkar MS. Micromechanical modeling of granular materials: effect of particle size and gradation. Geotechnical and Geological Engineering 2000(18) 91-117
    [10] 陆厚根编著粉体工程导论,同济大学出版社,1993年第一版
    [11]谢洪勇编著 粉体力学与工程,北京,化学工业出版社,2003年第一版
    [12] 陈万佳[译].散粒体结构力学,北京,中国铁道出版社,1983
    [13] Yu BM. Some Fractal characters of porous media, Fractals. 2001(9) 365-372
    [14] Tagus FJ, Matin MA and Perfect E. Simulation and testing of self-similar structures for soil particles-size distributions using iterated functions systems, Geoderma 1999(88) 191-203
    [15] Pettier E, Bird N and Rieu M. Generalizing the fractal model of soil structure: the pore-solid fractal approach, Geoderma 1999(88) 137-164
    [16] Tyler SW, Wheatcraft SW. Fractal scaling of soil particle-size distributions: analysis and limitations. Soil Sci. Soc. Am. J. 1992(56) 62-369
    [17] 黄定向,刘本培,陈源 http://unit.cug.edu.cn/jpkc/dqkxgl/web/index.htm
    [18] Jia X, Williams RA. A packing algorithm for particle of arbitrary shapes. Powder Technology. 2001 (120) 175-186
    [19] Thomas PA, Bray JD. Capturing nonsphererical shape of granular media with disk clusters. J. Geotech. Geoenvi. Engng. 1999(125) 169-178
    [20] Gotoh K. Particle shape characterization. In: Powder technology handbook. Iinoya K, Gotoh K, Higashitani K(Eds) 1997, p43-55
    [21] Berryman JG. Definition of dense random packing. Advances in the mechanical and the flow of granular materials - Vol. I, M. Shahinpor (ed.) Trans Tech Publications, D-3392 Clausthal, Germany, 1983, pp1-18
    [22]土力学网络教材,http://cce.niut.edu.cn/TuLiXue/
    [23] Herrrnann HJ. Granular matter. Physical A. 2002(313) 188-210
    [24] Rothenburg. L and Bathurst. RJ. Analytical study of induced anisotropy in idealized granular materials, Geotechnique 1989(39) 601-614
    [25] Oda. M. Nemat-Nasser, S., Mehrabadi, M. M. A statistical study of fabric in a random assembly of spherical granules, Int. J. Anal. Methods in Geomech. 1982(6) 77-94
    [26] Christoffersen J, Mehrabadi MM and Nemat-Nasser S. A Micromechanical description of granular material behavior
    [27] Kanatani K. A theory of contact force distribution in granular materials. Powder Technology 1981(28) 167-172
    [28] Kruyt NP, Rothenburg L. Micromechanical definition of the strain tensor for granular materials. ASME. J. Appl. Mech. 1996 (118)706-711
    [29] Bagi. K. Microstructural stress tensor of granular assemblies with volume forces. J. Appl. Mech. 66 (1999). 934-936.
    [30] Bardet JP, Vardoulakis I. The asymmetry of stress in granular media. Int. J. Solids and Structures. 2001 (38) 353-367
    [31] Kruyt NP. Statics and Kinematics of discrete Cosserat-type granular materials. Int. J. Solids and Structures.2003 (40) 511-534
    [32] Kuhn MR. Discussion of "The asymmetry of stress in granular media"[J.P. Bardet and I. Vardoulakis, Int. J. Solids Struct. 2001, Vol. 38,No.2, pp.353-367]. Int. J. Solids and Structures. 2003(40) 1805-1807
    
    [33] Bardet JP, Vardoulakis I. Reply to Dr. Kuhn's discussion. Int. J. Solids and Structures. 2003(40) 1809
    [34] Chang CS, Kuhn MR. On virtual work and stress in granular media. Int. J. Solids and Structures 2005(42) 2373-3779
    [35] Satake M. Tensorial form definitions of discrete-mechanical quantities for granular assemblies. Int. J. Solids and Structures 2004 41) 5775-5791
    [36] Fortin J, Millet O, Saxce G. de. Construction of an averaged stress tensor for a granular medium. Eur. J. Mech. A/Solids. 2003(22) 567-582
    [37] Bagi K. Analysis of microstructural strain tensor for granular assemblies. Int. J. Solids and Structures 2006(43)3166-3184
    
    [38] Kuhn M Structural deformation in granular materials. Mech. Mater. 1999 (31) 407-429
    [39] Cambou B, Chaze M, Dedecker F. Change of scale in granular materials. Eur. J. Mech. A/Solids. 2000(19)999-1014
    [40] Satake M. Mirco-Mechanical definition of strain tensor for granular assembles: 15~(th) ASCE Engineering Mechanics conference. June 2-5.2002. Columbia University. New York
    [41] Sullivan CO, Bray JD, Li SH. A new approach for calculating strain for particulate media. Int. J. Numer. Anal. Meth. Geomech. 2003 (27) 859-877
    [42] Stroeven M, Askes H, Sluys LJ. Numerical determination of representative volumes for granular materials. Comput. Methods Appl. Mech. Engrg. 2004(193) 3221-3238
    [43] Cambou B, Dubujet P, Emeriault F, Sidoroff F. Homogenization for granular materials. Eur. J. Mech. A/Solids. 1995(14)255-276
    [44] Emeriaut F, Cambou B. Micromechanical modelling of anisotropic non-linear elasticity of granular medium. Int. J. Solids and Structures 1996 (33) 2591-2607
    [45] Liao CL, Chang TP, Young DH and Chang CS. Stress-strain relationship for granular materials based on the hypothesis of best fit. Int. J. Solids Struct. 1997(34) 4087-4100
    [46] Chang CS, Liao CL. Constitutive relation for a particulate medium with the effect of particle rotation. Int. J. Solids Struct. 1990 (26) 437-453
    [47] Chang CS, Gao J. Second-gradient constitutive theory for granular material with random packing structure. Int. J. Solids Struct. 1995 (32) 2279-2293
    [48] Chang CS, Gao J. Kinematic and static hypotheses for constitutive modelling of granulates considering particle rotation. Acta Mechanica 1996(115) 213-229
    [1] Campbell CS. Computer simulation of powder flows. In: Powder technology handbook. Iinoya K, Gotoh K, Higashitani K (Eds) 1997, p777-794
    [2] Cundall PA, Strack ODL. A discrete numerical model for granular assemblies. Geotechnique 1979(29) 47-65
    [3] Xu BH, Yu AB. Numerical simulation of the gas-solid flow in a fluidized bed by combining discrete particle method with computational fluid dynamics. Chem. Engng. Sci. 1997(52) 2785-2809
    [4] 文玉华,朱如曾,周富信,王崇愚 分子动力学模拟的主要技术.力学进展2003(33)65-73
    [5] Oda M, Iwashita K. Mechanics of Granular Materials, A. A. Ballkema, Rotterdam, 1999
    [6] Elperin T, Golshtein E. Comparison of different models for tangential forces using the particle dynamics method. Physica A, 1997(242) 332-340
    [7] Iwashita K, Oda M. Rolling resistance at contacts in simulation of shear and development by DEM. Journal of engineering mechanics, 1998(124) 285-292
    [8] Zhou YC, Wright BD, Yang RY, Xu BH, YU AB. Rolling friction in the dynamic simulation of sandpile formation. Physica A, 1999(269) 536-553
    [9] Zhang D, Whiten WJ. A new calculation method for particle motion in tangential direction in discrete simulations. Powder Technology, 1999(102) 235-243
    [10] Feng YT, Han K and Owen DRJ. Some computational issues numerical simulation of particulate systems. Fifth world congress on computational mechanics, Vienna, Austira, 2002
    [11] Jiang MJ, Yu HS, Harris D. A novel discrete model for granular material incorporating rolling resistance. Computers and Geotechnics. 2005(32) 340-357
    
    [12] Thornton.C. Interparticle sliding in the presence of adhesion. Phys. D, 1991(24) 1942-1946
    [13] Vu-Quoc L, Zhang X. An elastoplastic contact force - displacement model in the normal direction: displacement - driven version. Proceedings of the Royal Society of London, Series A, 1999(455) 4013-4044
    [14] Vu-Quoc L, Zhang X, Lesburg L. Normal and tangential force - displacement relations for frictional elasto-plastic contact of spheres. Int. J. Solids and Structures, 2001(38) 6455-6489
    [15] Oda M, Konishi J, Nemat-Nasser S. Experimental micromechanical evaluation of strength of granular materials: effects of particular rolling. Mech. Mater. 1982(1) 269-283
    [16] Bardet JP. Observations on the effects of particle rotations on the failure of idealized granular materials. Mechanics of Materials, 1994(18) 159-182
    [17] Tanaka H, Momozu M, Oida A, Yamazaki M. Simulation of soil deformation and resistance at bar penetration by the distinct element method. Journal of Terramechanics, 2000(37) 41-56
    [18] Takafumi M, Hidehiro K and Masayuki H. Numerical simulation of cohesive powder behavior in a fluidized bed. Chem. Engng. Sci, 1998 (53) 1927-1940
    [19] Zhang D, Whiten WJ. An efficient calculation method for particle motion in discrete element simulations, Powder Technology, 1998(98), 223-230
    [20] Han K, Peric D, Crook AJL and Owen DRJ. A combined finite element/discrete element simulation of shot peening processes, Part I: studies on 2D interaction laws. Engineering Computations, 2000(17) 593-619
    [21] Li Xikui, Liu Zejia, Lewis RW, Suzuki Kiichi. Mixed finite element method for saturated poro-elasto-plastic media at large strains. I. J. Numer. Methods Eng. 2003(57) 875-898
    [1] Campbell CS. Computer simulation of powder flows. In: Powder technology handbook. Iinoya K, Gotoh K, Higashitani K(Eds) 1997, p777-794
    [2] Luding S. Collisions & contacts between two particles. In: Physics of dry granular media. Herrmann HJ, Hovi JP and Luding S. Eds. NATO Advanced Study Institute, Kluwer, 1998. 285-304
    [3] McNamara S. Introduction to the Even-driven simulation method.
    [4] Cundall PA, Strack ODL. A discrete numerical model for granular assemblies. GeotechniqUe 1979(29) 47-65
    [5] Iwashita K, Oda M. Rolling resistance at contacts in simulation of shear and development by DEM. Journal of engineering mechanics, 1998(124) 285-292
    [6] 邢纪波,余良群,张瑞丰,王泳嘉 离散单元法的计算参数和求解方法选择,计算力学学报1999 (16)47-51
    [7] 王泳嘉,邢纪波 离散单元法及其在岩土力学中的应用.沈阳,东北工学院出版社,1991
    [8] Tanaka H, Momozu M, Oida A, Yamazaki M. Simulation of soil deformation and resistance at bar penetration by the distinct element method. Journal of Terramechanics, 2000(37) 41-56
    [9] Bardet JP, Proubet. A numerical investigation of the structure of persistent shear bands in granular media. Geotechnique 1991(41) 599-613
    [10] Vu-Quoc L, Zhang X, Walton OR. A 3-D discrete-element method for dry granular flows of ellipsoidal particles. Comput. Methods Appl. Mech. Engrg. 2000(187) 483-528
    [11] Vu-Quoc L, Zhang X. An elastoplastic contact force-displacement model in the normal direction: displacement-driven version. Proc. R. Soc. Lond A 1999(455) 4013-4044
    [12] Thornton C. Coefficient of restitution for collinear collisions of elastic-perfectly plastic spheres. J. Appl. Mech. 1997(64) 383-386
    [13] Vu-Quoc L, Zhang X, Lesburg L. A normal force-displacement model for contacting spheres accounting for plastic deformation: force-driven formulation. J. Appl. Mech. 2000(67) 363-371
    [14] Han K, Peric D, Crook AJL, Owen DRJ. A combined finite/discrete element simulation of peening processes, Part I: Studies on 2D interaction laws. Engineering Computation 2000(17) 593-619
    [15]Elperin T, Golshtein E. Comparison of different models for tangential forces using the particle dynamics method. Physica A, 1997 (242) 332-340
    [16] Zhang D, Whiten WJ. A new calculation method for particle motion in tangential direction in discrete simulations. Powder Technology, 1999 (102) 235-243
    [17] Zhang D, Whiten WJ. The calculation of contact forces between particles using spring and damping models. Powder Technology. 1996 (88) 59-64
    [18]Mindlin RD, Deresiewicz H. Elastic Spheres in contact under varying oblique forces. J. Appl. Mech. 1953(20)327-344
    [19]Vu-Quoc L, Zhang X. An accurate and efficient tangential force-displacement model for elastic frictional contact in particle-flow simulations. Mechanics of materials 1999 (31) 235-269
    [20] Vu-Quoc L, Zhang X, Lesburg L. Normal and tangential force - displacement relations for frictional elasto-plastic contact of spheres. Int. J. Solids and Structures, 2001(38) 6455-6489
    [21]Feng YT, Han K and Owen DRJ. Some computational issues numerical simulation of particulate systems. Fifth world congress on computational mechanics, Vienna, Austira, 2002
    [22]Oda M, Konishi J, Nemat-Nasser S. Experimental micromechanical evaluation of strength of granular materials: effects of particular rolling. Mech. Mater. 1982(1) 269-283
    [23]Bardet JP. Observations on the effects of particle rotations on the failure of idealized granular materials. Mechanics of Materials, 1994(18) 159-182
    [24]Zhu HP, Yu AB. A theoretical analysis of the force models in discrete element method. Powder Technology 2006(161) 122-129
    [25] Jiang MJ, Yu HS, Harris D. A novel discrete model for granular material incorporating rolling resistance. Computers and Geotechnics. 2005(32) 340-357
    [26] Johnson KL. Contact Mechanics. Cambridge University Press London New York New Rochelle Melbourne Sydney, 1985
    [27] Kuhn MR, Bagi K. Alternative definition of particle rolling in a granular assembly. ASCE J. Eng. Mech. 2004(130)826-835
    [28] Bagi K, Kuhn MR. A definition of particle rolling in a granular assembly in terms of particle translations and rotations. J. Appl. Mech. 2004 (71) 493-501
    [29]Iwashita K, Oda M. Micro-deformation mechanism of shear banding process based on modified distinct element method. Powder Technology 2000(19) 192-205
    [1] Plesha ME, Edil TB and Bosscher PJ. Modeling particle damage in discrete element simulations. Computer Methods and Advances in Geomechanics, p581-585, Desai et al. (eds), 2001 Balkema, Rotterdam, ISBN 90 5809 183X
    [2] Mcdowell GR, Bolton MD and Robertson D. The fractal crushing of granular materials. J. Mech. Phys. Solids. 1996(44) 2079-2102
    [3] 姚玉鹏,蒋复初,王光才,刘羽,张志诚,谢宏远.关于地质学科“十五”优先资助领域的思考.地球科学进展,2000(15)747-750
    [4] Nakata Y, Hyde AFL Hyodo M and Murata H. A probabilistic approach to sand particle crushing in the triaxial test. Geotechnique, 1999(49) 567-583
    [5] Mcdowell GR, Bolton MD. On the Micromechanics of crushable aggregates. Geotechnique, 1998(48), 667-679
    [6] Cheng. YP, Bolton MD and Nakata Y. Crushing and plastic deformation of soils simulated using DEM. Geotechnique, 2004(54) 131-141
    [7] Robertson D, Mcdowell GR and Bolton MD A numerical representation of fracturing granular materials. Int. J. Numer. Anal. Meth. Geo. 1997(21) 825-843
    [8] Bolton MD. The role of micro-mechanics in soil mechanics. Presented at the international workshop on soil crushability Yamaguchi University, Japan, July 1999
    [9] Cheng YP, Nakata Y and Bolton MD. Discrete element simulation of crushable soil. Geotechnique, 2003(53) 633-641
    [10] 陆厚根编著,粉体工程导论同济大学出版社,1993年第一版
    [11] Xikui Li, Xihua Chu, Y. T. Feng. A discrete particle model and numerical modeling of the failure modes of granular materials, Engineering Computations. 2005(22) 894-920
    [12] Campbell CS, Potapov AV. Computer simulation of particle breakage. In: Powder technology handbook. Iinoya K, Gotoh K, Higashitani K(Eds) 1997, p795-809
    [13] Thomas PA, Bray. JD. Capturing nonspherical shape of granular media with disk clusters. J. Geotech. Geoenvi. Engng. 1999(125) 169-178
    [14] Size reduction of solids: crushing and grinding equipment. In 《Handbook of powder science and technology》 Edited by Foyed ME and Otten L. Van nostrand reinhold company. 1984
    [1] Zienkiewicz OC, Shiotni T. Dynamic behavior of saturated porous media; the generalized Boit formulation and its numerical solution. Int. J. Numer. Anal. Meth. Geomech. 1984 (8) 71-96
    
    [2] Li XK, Thomas HR, Fan YQ. Finite element method and constitutive modelling and computation for unsaturated soils Comput. Methods Appl. Mech. Engrg. 1999(169) 135-159
    
    [3] Chateau X Mouchron P and Pitois O. Micromechanics of unsaturated granular media. Journal of engineering mechanics, 2002(128) 856-863
    
    [4] Zienkiewicz OC, Chan AHC, Pastor M, Paul DK, Shiomi T. Static and dynamic behaviour of soils: a rational approach to quantitative solutions. I- fully saturated problems. Proc Roy Soc Lond A. 1990(429) 285-309
    [5] Zienkiewicz 0C, Xie YM, Schrefler BA, Ledesma A, Bicanic N. Static and dynamic behaviour of soils: a rational approach to quantitative solutions. II- Semi-saturated problems Proc Roy Soc Lond, A, 1990 (429) 311-321
    [6] Fredlund DG, Rahardjo H. Soil mechanics for unsaturated soils. John Wiley Sons, Inc. New York, 1993.
    [7] Newitt DM, Conway-Jones JM. A contribution to the theory and practice of granulation, Trans. Inst. Chem. Engrs, London 1958(36), 422-441
    [8] Mikami T, Kamiya H and Horio M. Numerical simulation of cohesive powder behavior in a fluidized bed. Chemical Engineering Science 1998(53) 1927-1940.
    
    [9] Lian G, Thornton C and Adams MJ. A theoretical study of the liquid bridge forces between two rigid spherical bodies. Journal of Colloid and Interface Science 1993(161) 138-147
    [10]Liu SH, Sun DA. Simulating the collapse of unsaturated soil by DEM. International Journal for Numerical and Analytical Methods in Geomechanics 2002(26) 633-646
    [11]Liu SH, Sun DA and Wang Y. Numerical study of soil collapse behavior by discrete element modeling. Computers and Geotechnics 2003(30) 399-408
    [12]Anderson T and Jackson R. A fluid mechanical description of fluidized beds: Equation of Motion. Industrial Engineering Chemical Fundamentals. 1967 (6) 527-539
    [13]Tsuji Y, Kawaguchi T and Tanaka T. Discrete particle simulation of two-dimensional fluidized bed. Powder Technology 1993 (77) 79-87
    [14]Gera D, Gautam M, Tsuji Y, Kawaguchi T and Tanaka T. Computer simulation of bubbles in large-particle fluidized beds. Powder Technologyl998 (98) 38-47
    [15]Zhu Y, Morris JP, Fox PJ. A pore-scale numerical model for flow through porous media. International Journal for Numerical and Analytical Methods in Geomechanics 1999 (23) 881-904
    [16]Shamy UE and Zeghal M. Coupled continuum-discrete model for saturated granular soils. ASCE Journal of Engineering Mechanics2005(131) 413-426
    [17] Zeghal M and Shamy UE. A continuum-discrete hydromechanical analysis of granular deposit liquefaction. International Journal for Numerical and Analytical Methods in Geomechanics 2004(28) 1361-1383
    [18] Soulie F, Cherblanc F, Youssoufi MSE, Saix C. Influence of liquid bridges on the mechanical behaviour of polydisperse granular materials. International Journal for Numerical and Analytical Methods in Geomechanics. 2006(30) 213-228
    [19] 陆厚根编著,粉体工程导论.同济大学出版社,1993年第一版
    [20] Dai ZF, Lu SC. Liquid bridge rupture distance criterion between spheres. Int. J. Min. Process. 1998(53) 171-181
    [21] Indraratna B, Ranjith PG and Gale W. Single phase water flow through rock fractures. Geotechnical and Geological Engineering 1999(17) 211-240
    [22] Jensen RP, Preece DS. Modeling sand production with Darcy-Flow coupled with discrete elements. Computer Methods and Advances in Geomechanics, Desai CS (ed) Balkema, Rotterdam 2001; 819-822
    [23] Potapov AV, Hunt ML and Campbell CS. Liquid-solid flows using smoothed particle hydrodynamics and the discrete element method. Powder Technology 2001(116) 204-213
    [24] 帕坦卡[著],郭宽良[译].传热和流体流动的数值方法,合肥,安徽科学技术出版社,1984
    [25] 陶文铨[著].计算传热学的近代进展.北京,科学出版社,2001
    [26] Morris JP, Fox PJ, Zhu Y, Modeling low Reynolds number incompressible flows using SPH. Journal of Computational Physics 1997(136) 214-226
    [27] Monaghon JJ. Smoothed particle hydrodynamics. Annu. Rev. Astrophys. 1992 (30) 543-574
    [28] Zienkiewicz OC, Taylor RL. The Finite Element Method (5th edn), Butterworth Heinemann, Stoneham, MA, 2000.
    [29] Peyret R, Taylor TD. Computational Methods for Fluid Flow. Springer Series in Computational Physics. Springer, New York, Berlin, Heidelberg, 1983
    [30] Zhu Y, Fox PJ, Morris JP. Smoothed particle hydrodynamics model for flow through porous media. Computer Methods and Advances in Geomechanics, Yuan(ed) Balkema, Rotterdam1997: 1041-1046
    [31] Shao SD, Lo EYM. Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface, Advances in water resources 2003(26) 787-800
    [32] Monaghon JJ Simulation free surface flows with SPH. J. Comput. Phys. 1994(110) 399-406
    [33] Charlier R, Radu JP. gydromchanical coupling and strain localization. NAFEMS World Congress'97, April 9-11, 1997, Stuttgart, Germany
    [34] 雷志栋,杨诗秀,谢森传 土壤水动力学北京:清华大学出版社,1988
    [1] 陈国良[编著]并行计算-结构算法.编程,高等教育出版社,2004
    [2] 都志辉[编著]高性能计算之并行编程技术一MPI并行程序设计,清华大学出版社,2001
    [3] Gennes PGD. Reflections on the mechanics of granular matter. Physica A 1998(261) 267-293
    [4] Gennes PGD. Granular matter: a tentative view. Rev. Mod. Phys. 1999(71) S374-S382

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700