用户名: 密码: 验证码:
周期性多相材料热动力时空多尺度分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在许多先进的工程应用领域中,如航空、航天、生物医疗和电子设备以及超导线圈等,具有周期性微结构的多相材料得到了广泛使用,而此时材料设计需要微观和宏观层次的相关信息,这对材料设计提出了一个很大的挑战。多尺度力学模拟技术提供了一个非常有效的方法,来理解不同的微结构材料性质对非均匀材料整体和局部响应的影响,这对材料设计具有重要的指导意义。
     另外,对具有周期性微结构的多相材料中波的传播,以及由材料分界面上存在的反射和折射作用引起的弥散、衰减现象的研究也是一个非常重要的问题,而此类问题具有明显的时间和空间多尺度特征,其主要包括微波和脉冲激光技术等应用领域。但对该问题的多尺度研究还不多见,因此对在具有周期性微结构的多相材料中的波传播进行多尺度分析是一个值得进一步研究的问题。
     本文的主要工作是采用时—空间多尺度高阶渐近均匀化分析方法,研究具有周期性微结构的多相材料在热冲击和极端动力载荷作用下的非Fourier热传导及结构热动力响应问题。为了更深入的说明问题,首先从解决一维问题入手,然后再向多维问题扩展,具体内容如下:
     通过建立一个广义的热动力波动函数场控制方程,描述一维具有周期性微结构的多相材料中波传播的问题。采用时—空间多尺度高阶渐近均匀化分析方法,通过引入多个空间和时间尺度,对波动函数场进行渐近展开,获得了不同阶次的时—空间多尺度波动函数场控制方程。由高阶均匀化理论在空间和时间尺度上进行均匀化求解,并通过近似合并整理,获得最高阶空间导数项为空间四阶导数的高阶非局部波动函数场控制方程。为了避免其有限元离散过程中C~1连续性和边界条件的要求,通过把空间四阶导数近似成为一个时间二阶和空间二阶混合的导数项,使其有限元离散过程中只需要C~0连续和较少的边界条件,最终得到了一个新的近似高阶非局部波动函数场控制方程。
     基于高阶非局部波动函数场模型,建立了一维非Fourier热传导高阶非局部模型。通过把精细的有限元解作为参考解,与本文提出的非Fourier热传导高阶非局部模型、经典均匀化模型的解进行比较,并讨论了不同的参数和工况条件下对数值结果的影响,指出了本文提出的非Fourier热传导高阶非局部模型能够很好地模拟在热冲击载荷作用下的具有周期性微结构的多相材料中热波动以及弥散现象,体现出内尺度参数的特征。而经典均匀化模型只能处理脉冲激励波长大于材料特征长度的情况,且不能解决脉冲激励波长接近或小于材料特征长度的问题,所以不能模拟该现象。
     根据高阶非局部波动函数场模型,建立了一维结构热动力高阶非局部模型。通过对在热冲击和极端动力载荷作用下的具有周期性微结构的一维多相细长杆进行研究,数值结果显示本文提出的结构热动力高阶非局部模型能够在花费较少的计算时间情况下模拟出高频动力响应及动力波的弥散现象,并与精细的有限元参考解取得了很好的一致。验证了本文所提出的结构热动力高阶非局部模型的正确性和有效性。
     通过采用时—空间多尺度高阶渐近均匀化分析方法,对多维非Fourier热传导问题进行研究。并以二维问题为例,对具有不同的单胞微结构形状的多相材料中非Fourier热传导问题进行数值模拟分析,结果进一步证明了由高阶多尺度均匀化理论获得的多维高阶非局部模型的正确性和有效性。但这里的多维问题并不是一维问题的简单推广,其主要区别在于,一维问题是通过解析方式获得等效均匀化系数,而二维问题需要采用数值方法求解。
Currently, multiphase materials with periodic microstructures have been widely used inmany advanced engineering applications such as aerospace, aircraft, biomedical, electronicequipment, superconducting coil and so forth. However, the design and use of materials withmicrostructures necessarily involve the related information including both microscopic andmacroscopic scales. This is a major challenge for the materials design. Multiscale modelingtechniques offer an efficient approach for understanding of how different microstructuralproperties affect the average and local response of multiphase materials. Therefore, it isbeneficial to the materials design.
     Moreover, it is very important subject to study dispersion and attenuation phenomena ofwave propagation in periodic multiphase materials due to successive reflection and refractionwaves from the material interfaces, which may obviously have multiscale characteristics inboth time and space. Possible applications of this research include many domains such asmicrowaves and laser with very high frequency and extremely short duration etc.. However,seldom multiscale methods can be found for studying this problem, so it is believed that wavepropagation in multiphase materials with periodic microstructures deserves furtherinvestigations.
     The primary research work in this thesis is to study non-Fourier heat conduction andthermal dynamic response in multiphase materials with periodic microstructures underextreme heat impulse and dynamic impact load, which use a spatial and temporal multiscalehigh-order asymptotic homogenization method. To further illustration, one-dimensional caseis studied in this thesis firstly, and the work is extended to multi-dimensional cases. Specificdetails are as follows:
     A general field equation of thermo-dynamic wave propagation is developed to describeboth the heat transfer and the mechanical behaviour in the periodic multiphase materials undervarious temperature shock and impact load. Amplified spatial and reduced temporal scales are,respectively, introduced by a spatial-temporal multiscale high-order asymptotichomogenization method, and a multiple scale asymptotic expansion is employed toapproximate the transient function field. Different orders of function field equation includingvarious spatial and temporal multiscales are derived. By combining different orders ofhomogenized equations, the high-order nonlocal function field equation with the fourth-orderspatial derivative term is obtained. To avoid the requirement of C~1-continuous finite element formulation and boundary conditions in numerical implementation, the fourth-order spatialderivative term can be approximated by a mixed second-order derivative in space and time.So the C~0-continuous and few boundary conditions are used only. Finally, an approximatedhigher-order nonlocal function field equation is formulated.
     Based on the higher-order nonlocal function field equation, one-dimensional higher-ordernonlocal equation of non-Fourier heat conduction is developed. The higher-order nonlocalmodel and the classical homogenization model are compared with the fine finite elementsolution. The effects of differenet parameters and conditions are discussed. The results showthat the higher-order nonlocal model of non-Fourier heat conduction can be used to simulatethe dispersion and attenuation phenomena of heat wave propagation in periodic multiphasematerials under extreme heat impulse, and which shows the influence of the internal lengthscale parameter. However, the classical homogenization model is valid only when theexciation wavelength is larger than the characteristic length, while it is invalid when theexciation wavelength is smaller than or near the characteristic length. So the classicalhomogenization model can not simulate these phenomena.
     According to the higher-order nonlocal function field equation, one-dimensionalhigher-order nonlocal thermo-dynamic equation is developed. A one-dimensional slender barwith a periodic microstructure under heat impulse and dynamic impact load is studied. Thenumerical results show the solutions obtained by the proposed higher-order nonlocal model ofthermo-dynamics are generally in reasonable agreement with the fine finite element solutionand can be available for little computational cost to simulate the high frequency dynamicresponse and dispersion phenomena of dynamic wave propagation. It is demonstrated that thethe nonlocal model proposed is effective and valid.
     Mutli-dimensional problem of non-Fourier heat conduction is studied by a spatial andtemporal mutiscale high-order asymptotic homogenization method. The two-dimensionalnumerical examples are computed to analyse non-Fourier heat conduction in the differentmicrostructure of multiphase materials. The results further demonstrate thatmutli-dimensional higher-order nonlocal model obtained higher-order mathematicalhomogenization theory is valid and effective. However, in this work the higher-order nonlocalmodel is not simply extended from one-dimensional case to mutli-dimensional case. The maindifference is that the homogenized coefficients are obtained by the analytical approach inone-dimensional problem, while as for two-dimensional problem these coefficients are solvedby the numerical method.
引文
[1] Glimm J, Sharp D H. Multiscale science: a challenge for the twenty-first century. SIAM News, 1997, 30(8): 1-7.
    [2] 李静海,郭慕孙.过程工程量化的科学途径—多尺度法.自然科学进展,1999,9(12):1073-1078.
    [3] Rubinsky B. Microscale heat transfer in biological systems at low temperatures. Experimental Heat Transfer, 1997, 10(1): 1-29.
    [4] 王崇愚.多尺度模型及相关分析方法.复杂系统与复杂性科学,2004,1(1):9-19.
    [5] 唐祯安,王立鼎.关于微尺度理论.光学精密工程,2000,9(6):493-498.
    [6] Wang H Y, He G W, Xia M F, Ke F J and Bai Y L. Multiscale coupling in complex mechanical system. Chemical Engineering Science, 2004, 59(8-9): 1677-1686.
    [7] 何国威,夏蒙棼,柯孚久,白以龙.多尺度耦合现象:挑战和机遇.自然科学进展,2004,14(2):121-124.
    [8] 白以龙,汪海英,夏蒙棼,柯孚久.固体的统计细观力学—连接多个耦合的时空尺度.力学进展,2006,36(2):286-305.
    [9] Bai Y L, Wang H Y, Xia M F, Ke F J. Statistical mesomechanics of solid, linking coupled multiple space and time scales. Applied Mechanics Reviews, 2005, 58(6): 372-388.
    [10] 过增元.国际传热研究前沿—微细尺度传热.力学进展,2000,30(1):1-6.
    [11] 姜任秋.热传导、质扩散与动量传递中的瞬态冲击效应.北京:科学出版社,1997.
    [12] 刘静.微米/纳米尺度传热学.北京:科学出版社,2001.
    [13] Duncan B, Peterson G P. Review of microscale heat transfer. Applied Mechanics Review, 1994, 47(9): 397-427.
    [14] Bensoussan A, Lions J L, Papanicolaou G. Asymptotic Methods in Periodic Structures. North-Holland: Amsterdam, 1978.
    [15] Babuska I. Homogenization approach in engineering. In: Beckmann M, Kunzi H P, eds. Lecture Notes in Economics and Mathematical Systems. Berlin: Springer-Verlag, 1975: 137-153.
    [16] Mei C C, Auriault J L, Ng C O. Some application of the homogenization theory. In: Hutchinson J W, Wu T Y, eds. Advances in Applied Mechanics. Boston: Academic Press, 1996, 32: 277-348.
    [17] Cioranescu D, Donato P. An introduction to homogenization. Oxford: Oxford University, 1999.
    [18] Bakhvalov N S, Panasenko G P. Homogenization: Averaging Processes in periodic media. Dordrecht: Kluwe, 1989.
    [19] Sanchez-Palencia E. Non-homogeneous Media and Vibration Theory. Berlin: Springer-Verlag, 1980.
    [20] Lions J L. On some homogenization problems. Zeitschrift fur Angewandte Mathematik und Mechanik, 1980, 62: 251-262.
    [21] Pagano N J, Yuan F G. The significance of effective modulus theory in composite laminate mechanics. Composites Sicence and Technology, 2000, 60(12-13): 2471-2488.
    [22] Fish J, Shek K. Multiscaleanalysis of composite materials and structures. Composites Science and Technology, 2000, 60(12-13): 2547-2556.
    [23] 潘燕环,嵇醒,薛松涛.复合材料中的渐近均匀化方法.上海力学,1997,18(4):290-297.
    [24] 崔俊芝,曹礼群.一类具有小周期系数的椭圆型边值问题的双尺度渐近分析方法.1999,21(1):19-28.
    [25] 曹礼群,崔俊芝.复合材料拟周期结构的均匀化方法.计算数学,1999,21(3):331-344.
    [26] 曹礼群,崔俊芝.整周期复合材料弹性结构的双尺度渐近分析.应用数学学报,1999,22(1):38-46.
    [27] Andrianov I V, Awrejcewicz J, Barantsev R G. Asymptotic approaches in mechanics: New parameters and procedures. ASME Applied Mechanics Reviews, 2003, 56(1): 87-110.
    [28] Gambin B, Kroner E. High order terms in the homogenized stress-strain relation of periodic elastic media. Physica Status Solidi, 1989, 51: 513-519.
    [29] Schrefler B A, Lefik M, Galvanetto U. Correctors in a beam model for unidirectional composites. Mechanics of Composite Materials and Structures, 1997, 4(2): 159-190.
    [30] Boutin C. Microstructural effects in elastic composites. International Journal of Solids and Structures, 1996, 33(7): 1023-1051.
    [31] Boutin C, Auriault J L. Rayleigh scattering in elastic composite materials. International Journal of Engineering Science, 1993, 31(12): 1669-1689.
    [32] Galvanetto U, Ohmenhauser F, Schrefler B A. Homogenized constitutive law for periodic composite materials with elasto-plastic components. Composite Structures, 1997, 39(3-4): 263-271.
    [33] Kevorkian J, Bosley D L. Multiple-scale homogenization for weakly nonlinear conservation laws with rapid spatial fluctuations. Studies in applied mathematics, 1998, 101(2): 127-183.
    [34] Fish J, Chen W. Higher-order homogenization of initial/boundary-value problem. ASCE Journal of Engineering Mechanics, 2001, 127(12): 1223-1230.
    [35] Chen W, Fish J. A dispersive model for wave propagation in periodic heterogeneous media based on homogenization with multiple spatial and temporal scales. ASME Journal of Applied Mechanics, 2001, 68(2): 153-161.
    [36] Fish J, Chen W, Nagai G. Non-local dispersive model for wave propagation in heterogeneous media: one-dimensional case. International Journal for Numerical Methods in Engineering, 2002 54(3): 331-346.
    
    [37] Fish J, Chen W, Nagai G. Non-local dispersive model for wave propagation in heterogeneous media: multi-dimensional case. International Journal for Numerical Methods in Engineering, 2002, 54(3): 347-363.
    
    [38] Fish J, Schwob C. Constitutive modeling based on atomistics. International Journal for Multiscale Computational Engineering, 2003, 1(1): 43-56.
    
    [39] Chen J S, Mehraeen S. Variationally consistent multi-scale modeling and homogenization of stressed grain growth. Computer Methods in Applied Mechanics and Engineering, 2004, 193(17-20): 1825-1848.
    
    [40] Lene F. Damage constitutive relations for composite materials. Engineering Fracture Mechanics, 1986, 25(5-6): 713-728.
    
    [41] Chung P W, Tamma K K, Namburu R R. A computational approach for multi-scale analysis of heterogeneous elasto-plastic media subjected to short duration loads. International Journal for Numerical Methods in engineering, 2004, 59(6): 825-848.
    
    [42] Terada K, ItoT, Kikuchi N. Characterization of the mechanical behaviors of solid-fluid mixture by the homogenization method. Computer Methods in Applied Mechanics and Engineering, 1998, 153(3-4): 223-257.
    
    [43] Kyoya T, Terada K, Kawamoto T. Multi-scale limit load analysis of discontinuous rock mass based on the homogenization method. International Journal for Numerical and Analytical Methods in Geomechanics, 1999, 23(10): 995-1019.
    
    [44] Rohan E. Modeling large-deformation-induced microflow in soft biological tissues. Theoretical and Computational Fluid Dynamics, 2006, 20(4): 251-276.
    
    [45] Voigt W. Uber die Beziehung Zwischen den Beiden Elastizitatskonstanten Isotroper Korper. Annalen der Physik, 1889, 38: 573-587.
    
    [46] Reuss A. Berechnung der Fliessgrenze von Mischkristallen auf Grund der Plastizitatsbedingung fur Einkristalle. Zeitschrift fur Angewandte Mathematik und Mechanik, 1929, 9(1): 49-58.
    
    [47] Hashin Z, Rosen B W. The elastic moduli of heterogeneous materials. ASME Journal of Applied Mechanics, 1964, 31(2): 223-232.
    
    [48] Knott T W, Herakovich C T. Effect of fiber orthotropy on effective composite properties. Journal of Composite Materials, 1991, 25: 732-759.
    
    [49] Hill R. A self consistent mechanics of composite materials. Journal of the Mechanics and Physics of Solids, 1965, 13(2): 213-222.
    
    [50] Budiansky B. On the elastic moduli of some heterogeneous materials. Journal of the Mechanics and Physics of Solids, 1965, 13(4): 223-227.
    [51] Christensen R M, Lo K H. Solutions for effective shear properties in three phase sphere and cylinder models. Journal of the Mechanics and Physics of Solids, 1975, 27(4): 315-330.
    [52] Horii M, Nemat-Nasser S. Overall moduli of solids with microcracks: load induced anisotropic. Journal of the Mechanics and Physics of Solids, 1983, 31(2): 155-171.
    [53] Mori T, Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica, 1973, 21(5): 571-575.
    [54] Benveniste Y. On the Mori-Tanaka's method in cracked bodies. Mechanics Research Communications, 1983, 13(4): 193-201.
    [55] Tandon G P, Weng G J. A theory of particle reinforced plasticity. ASME Journal of Applied Mechanics, 1988, 55(3): 126-135.
    [56] Paley M, Aboudi J. Micromechanical analysis of composites by generalized cells method. Mechanics of Materials, 1992, 14(2): 127-139.
    [57] 张洪武.弹性接触颗粒状周期性结构材料力学分析的均匀化方法(一)局部RVE分析.复合材料学报,2001,18(4):93-97.
    [58] 张洪武.弹性接触颗粒状周期性结构材料力学分析的均匀化方法(二)宏观均匀化分析.复合材料学报,2001,18(4):98-102.
    [59] 张洪武,王鲲鹏.弹塑性多尺度计算的模型与算法研究.复合材料学报,2003,20(1):60-66.
    [60] 张洪武,王鲲鹏.材料非线性微—宏观分析的多尺度方法研究.力学学报,2004,36(3):359-363.
    [61] Zhang H W, Galvanetto U, Schrefler B A. Local analysis and global nonlinear behaviour of periodic assemblies of bodies in elastic contact. Computational Mechanics, 1999, 24(4): 217-229.
    [62] Zhang H W, Schrefler B A. Global constitutive behaviour of periodic assemblies of inelastic bodies in contact. Mechanics of Composite Materials and Structures, 2000, 7(4): 355-382.
    [63] Ghosh S, Lee K, Moorthy S. Multiple scale analysis of heterogeneous elastic structures using homogenization theory and Voronoi cell finite element method. International Journal of Solids and Structures, 1995, 32(1): 27-62.
    [64] Ghosh S, Lee K, Raghavan P. A multi-level computational model for multi-scale damage analysis in composite and porous materials. International Journal of Solids and Structures, 2001, 38(14): 2335-2385.
    [65] Raghavan P, Ghosh S. Concurrent multi-scale analysis of elastic composites by a multi-level computational model. Computer Methods in Applied Mechanics and Engineering, 2004, 193(6-8): 497-538.
    [66] Oden J T, Vemaganti K. Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials. Part Ⅰ: Error estimates and adaptive algorithms. Journal of Computational Physics, 2000, 164(1): 22-47.
    [67] Vemaganti K, Oden J T. Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials. Part Ⅱ: A computational environment for adaptive modeling of heterogeneous elastic solids. Computer Methods in Applied Mechanics and Engineering, 2001, 190(46-47): 6089-6124.
    [68] Romkes A, Oden J T, Vemaganti K. Multi-scale goal-oriented adaptive modeling of random heterogeneous materials. Mechanics of Materials, 2006, 38(8-10): 859-872.
    [69] Dorobantu M, Engquist B. Wavelet-based numerical homogenization. SIAM Journal on Numerical Analysis, 1998, 35(2): 540-559.
    [70] Mehraeen S, Juin-shyan C. Wavelet-based multiscale projection method in homogenization of heterogeneous media. Finite Elements in Analysis and Design, 2004, 40(12): 1665-1679.
    [71] Hou T Y, Wu X H. A multiscale finite element method for elliptic problems in composite materials and porous media. Journal of Computational Physics, 1997, 134(1): 169-189.
    [72] Hou T Y, Wu X H, Cai Z. Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. Mathematics of Computation, 1999, 68(227): 913-943.
    [73] 崔俊之,曹礼群.基于双尺度渐近分析的有限元算法.计算数学,1998,20(1):89-102.
    [74] Chen J R, Cui J Z. A multiscale finite element method for elliptic problems with highly oscillatory coefficients. Applied Numerical Mathematics, 2004, 50(1): 1-13.
    [75] 薛禹群,叶淑君,谢春红,张云.多尺度有限元法在地下水模拟中的应用.水利学报,2004,7:7-13.
    [76] 叶淑君,吴吉春,薛禹群.多尺度有限单元法求解非均质多孔介质中的三维地下水流问题.地球科学进展,2004,19(3):437-442.
    [77] He X G, Ren L. A modified multiscale finite element method for well-driven flow problems in heterogeneous porous media. Journal of Hydrology, 2006, 329(3-4): 674-684.
    [78] Hughes T J R. Multiscale phenomena: Green's functions, the Dirichletto-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Computer Methods in Applied Mechanics and Engineering, 1995, 127(1-4): 387-401.
    [79] Hughes T J R, Feijoo G R, Luca M, Jean-Baptiste Q. The variational multiscale method: a paradigm for computational mechanics. Computer Methods in Applied Mechanics and Engineering, 1998, 166(1-2): 3-24.
    [80] Masud A, Hughes T J R. A stabilized mixed finite element method for Darcy flow. Computer Methods in Applied Mechanics and Engineering, 2002, 191(39-40): 4341-4370.
    [81] Masud A, Khurram R A. A multiscale/stabilized finite element method for the advection-diffusion equation. Computer Methods in Applied Mechanics and Engineering, 2004, 193(21-22): 1997-2018.
    [82] Li S F, Gupta A, Liu X H, Mahvari M. Variational eigenstrain multiscale finite element method. Computer Methods in Applied Mechanics and Engineering, 2004, 193(17-20): 1803-1824.
    [83] Liu X H, Li S F. A variational multiscale stabilized finite element method for the Stokes flow problem. Finite Elements in Analysis and Design, 2006, 42(7): 580-591.
    [84] Onate E. Multiscale computational analysis in mechanics using finite calculus: an introduction. Computer Methods in Applied Mechanics and Engineering, 2003, 192(28-30): 3043-3059.
    [85] Gravemeier V, Wall W A, Ramm E. A three-level finite element method for the instationary incompressible Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering, 2004, 193(15-16): 1323-1366.
    [86] Jenny P, Lee S H, Tchelepi B A. Multi-scale finite-volume method for elliptic problems in subsurface flow simulation, Journal of Computational Physics, 2003, 187(1): 47-67.
    [87] Jenny P, Lee S H, Tchelepi H A. Adaptive multiscale finite-volume method for multi-phase flow and transport in porous media, SIAM Journal on Multiscale Model and Simulation, 2004, 3(1): 50-64.
    [88] Lunati I, Jenny P. Multiscale finite-volume method for compressible multiphase flow in porous media. Journal of Computational Physics, 2006, 216(2): 616-636.
    [89] Jenny P, Lee S H, Tchelepi H A. Adaptive fully implicit multi-scale finite-volume method for multi-phase flow and transport in heterogeneous porous media, Journal of Computational Physics, 2006, 217(2): 627-641.
    [90] E W N, Engquist B. The heterogeneous multi-scale methods. Communications in Mathematical Sciences, 2003, 1(1): 87-132.
    [91] E W N. Analysis of the heterogeneous multi-scale methods for ordinary differential equations. Communications in Mathematical Sciences, 2004, 1(3): 423-436.
    [92] E W N Yue X Y. Heterogeneous methods for locally self-similar problems. Communications in Mathematical Sciences, 2004, 2(1): 137-144.
    [93] Ren W Q, E W N. Heterogeneous multiscale method for the modeling of complex fluids and micro-fluidics. Journal of Computational Physics, 2005, 204(1): 1-26.
    [94] 陈培敏,严宁宁.小周期结构Helmholtz方程的多尺度计算.工程数学学报,2004,21(8):145-149.
    [95] Abdulle A, E W N. Finite difference heterogeneous multi-scale method for homogenization problems. Journal of Computational Physics, 2003, 191(1): 18-39.
    [96] 高红星,愈树文.求解多尺度双曲型问题的一种新方法.科学技术与工程,2006,6(12):1596-1598.
    [97] Liu W K, Chen Y, Uras R A, Chang C T. Generalized multiple scale reproducing kernel particle methods. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1): 91-158.
    [98] Liu W K, Jun S. Multiple scale reproducing kernel particle methods for large deformation problems. International Journal for Numerical Methods in Engineering, 1998, 41(7): 1339-1362.
    [99] Liu W K, Hao S, Belytschko T, Li S F, Chang C T. Multi-scale methods. International Journal for Numerical Methods in Engineering, 2000, 47(7): 1343-1361.
    [100] 张艳芬,周进雄,张智谦,张陵.二维应力集中问题的多尺度RKPM自适应分析.强度与环境,2005,32(1):16-20.
    [101] 张智谦,周进雄,王学明,张艳芬,张陵.基于多尺度再生核质点法的h型自适应分析.应用数学和力学,2005,26(8):972-978.
    [102] Sfantos G K, Aliabadi M H. Multi-scale boundary element modeling of material degradation and fracture. Computer Methods in Applied Mechanics and Engineering, 2007, 196(7): 1310-1329.
    [103] 胥建龙,唐志平.离散元与有限元结合的多尺度方法及其应用.计算物理,2003,20(6):477-482.
    [104] 梁军,杜善义.弹塑性复合材料力学性能的细观研究.固体力学学报,2000,21(4):361-365.
    [105] 梁军,杜善义.粘弹性复合材料力学性能的细观研究.复合材料学报,2001,18(1):97-100.
    [106] Masson S, Martinez J. Multiscale simulations of the mechanical behaviour of an ensiled granular material. Mechanics of Cohesive-Frictional Materials, 2000, 5(3): 425-442.
    [107] 宁建国,朱志武.含损伤的冻土本构模型及耦合问题数值分析.力学学报,2007,39(1):70-76.
    [108] Fourier J B J. Theorie Analytique de la Chaleur. Paris: Firmin Didot, 1822.
    [109] Landau L. The theory of superfluidity of helium Ⅱ. Journal of Physics, 1941, 5(1): 71-90.
    [110] Peshkov V. Second sound in helium Ⅱ. Journal of Physics, 1944, 8(4): 381-386.
    [111] Brorson S D, Fujimoto J G, Ippen E P. Femtosecond electronic heat-transport dynamics in thin gold film. Physical Review Letters, 1987, 59(17): 1962-1965.
    [112] Elsayed-Ali H E, Norris T B, Pessot M A, Mourou G A. Time-resolved observation of electron-phonon relaxation in copper. Physical Review Letters, 1987, 58(12): 1212-1215.
    [113] Luikov A V. Heat and mass transfer in capillary-porous media. Oxford: Pergamon Press, 1966.
    [114] Kaminski W. Hyperbolic heat conduction equation for materials with a non-homogeneous inner structure. ASME Journal of Heat Transfer, 1990, 112(8): 555-560.
    [115] Tamman K K, Zhou X M. Macroscale and microscale thermal transport and thermo-mechanical interactions: some noteworthy perspectives. Journal of Thermal Stresses, 1988, 21(3-4): 405-449.
    [116] Tzou D Y. Macro-to microscale heat transfer the lagging behavior. New York: Taylor&Francis, 1997.
    [117] Chandrasekharaiah D S. Hyperbolic thermo-elasticity: a review of recent literature. ASME Journal of Applied Mechanics Review, 1998, 51(12): 705-729.
    [118] 张浙,刘登瀛.非傅立叶热传导的研究进展.力学进展,2000,30(3):446-455.
    [119] Wick B, Ozisik M N. Growth and decay of a thermal pulse predicted by the hyperbolic heat conduction equation. ASME Journal of Heat Transfer, 1983, 105(44): 902-907.
    [120] Hector L C, Kim W S, Ozisik M N. Propagation and reflection of thermal waves in a finite medium due to axisymmetric surface sources. International Journal of Heat and Mass Transfer, 1992, 35(44): 897-912.
    [121] Tzou D Y. Shock wave formation around a moving heat source in a solid with finite speed of heat propagation. International Journal of Heat and Mass Transfer, 1989, 32(10): 1979-1987.
    [122] Tzou D Y. Thermal resonance under frequency excitations. ASME Journal of Heat Transfer, 1992, 114(22): 310-316.
    [123] Ozisik M N, Tzou D Y. On wave in heat conduction. ASME Journal of Heat Transfer, 1994, 116(33): 526-535.
    [124] Al-Nimr M A, Masoud S A. Nonequilibrium laser heating of metal films. ASME Journal of Heat Transfer, 1997, 119(11): 188-190.
    [125] 徐云生,过增元.半导体击穿过程中的热分析.工程热物理学报.1993,14(3):298-302.
    [126] 张浙,刘登瀛.超急速传热时球体内非稳态热传导的非傅立叶效应.工程热物理学报.1998,19(5):601-605.
    [127] 蒋方明,刘登瀛.多孔材料内非傅立叶导热现象的实验研究结果及理论分析.工程热物理学报,2001,22:77-80.
    [128] 王秋军,徐红玉,宋亚勤,张元冲.微尺度热传导理论及金属薄膜的短脉冲激光加热.微纳电子技术,2003,11:18-23.
    [129] 徐红玉,张元冲,宋亚勤,卢秉恒,陈殿云.脉冲激光加热薄膜微尺度热传递研究进展.物理学进展,2004,24(2):152-162.
    [130] 张鹏,王如竹.超流氮中的热波实验研究.工程热物理学报.1999,20(3):347-351.
    [131] Cattaneo C. A form of heat conduction equation which eliminates the paradox of instantaneous propagation. Compte Rendus, 1958 247(4): 431-433.
    [132] Vernotte P. Some possible complication in the phenomena of thermal conduction. Compte Rendus, 1961, 252: 2190-2191.
    [133] Joseph D D, Preziosi L. Heat wave. Review of Modern Physics, 1989, 61(1): 41-73.
    [134] Joseph D D, Preziosi L. Addendum to the paper "Heat wave". Review of Modern Physics, 1990, 62(2): 375-391.
    [135] Tzou D Y. The generalized lagging response in small-scale and high-rate heating. International Journal of Heat and Mass Transfer, 1995, 38(17): 3231-3240.
    [136] Anisimov S L, Kapeliovich B L, Perelman T L. Electron emission from metal surfaces exposed to ultra-short laser pulse. Soviet Physics JEPT, 1974, 39: 375-377.
    [137] Fujimoto J G, Liu J M, Ippen E P. Femtosecond laser interaction with metallic tungsten and non-equilibrium electron and lattice temperature. Physical Review Letters, 1984, 53: 1837-1840.
    [138] Qiu T Q, Tien C L. Heat transfer mechanisms during short-pulse laser heating of metals. ASME Journal of Heat Transfer, 1993, 115(11): 835-841.
    [139] Tien C L, Chert G. Challenges in microscale conductive and radiative heat transfer. ASME Journal of Heat Transfer, 1994, 116(11): 799-806.
    [140] Al-Nimr M A. Heat transfer mechanisms during laser heating of thin metal films. International Journal of Thermophysics, 1997, 18(5): 1257-1268.
    [141] Al-Nimr M A, Arpaci V S. Picosecond thermal pulses in thin metal films. Journal of Applied Physics, 1999, 85(5): 2517-2521.
    [142] Al-Nimr M A, Haddad O M, Arpaci V S. Thermal behavior of metal films—a hyperbolic two-step model. Heat and Mass Transfer, 1999, 35(6): 459-464.
    [143] Qiu T Q, Tien C L. Femtosecond laser heating of multi-layer metals—Ⅰ, analysis. International Journal of Heat and Mass Transfer, 1994, 37(17): 2789-2798.
    [144] Qiu T Q, Tien C L. Femtosecond laser heating of multi-layer metals—Ⅱ, experiments. International Journal of Heat and Mass Transfer, 1994, 37(17): 2799-2808.
    [145] 蔡睿贤,张娜.集成电路芯片非傅立叶导热方程的显示解析解.科学通报,1998,43(8):824-827.
    [146] 蔡睿贤,张娜,何咏梅.球体内不定常非傅立叶导热的一维代数显示解析解.自然科学进展,1999,9(1):71-76.
    [147] 许光映,吴详福.脉冲热流冲击有限厚度材料双曲型热传导方程数值计算.应用基础与工程科学学报,2003,11(1):65-70
    [148] El-Adawi M K, Abdel-Naby M A, Shalaby S A. Laser heating of a two-layer system with constant surface absorption: an exact solution. International Journal of Heat and Mass Transfer, 1995, 38(5): 947-952.
    [149] El-Adawi M K, Shalaby S A, Abdel-Naby M A. Laser heating of a two-layer system with temperature dependent front surface absorptance. Vacuum, 1995, 46(1): 37-42.
    [150] Yibas B S. A closed form solution for temperature rise inside solid substrate due to time exponentially varying pulse. International Journal of Heat and Mass Transfer, 2002, 45(9): 1993-2000.
    [151] Xu B Q, Shen Z H, Ni X W, Zhang S Y. Numerical simulation of laser-induced transient temperature field in film-substrate system by finite element method. International Journal of Heat and Mass Transfer, 2003, 46(25): 4963-4968.
    [152] Lor W B, Chu H S. Effect of interface thermal resistance on heat transfer in composite medium using the thermal wave model. International Journal of Heat and Mass Transfer, 2000, 43(5): 653-663.
    [153] 曹礼群,罗剑兰.多孔复合介质周期结构热传导和质扩散问题的多尺度数值方法.工程热物理学报,2000,21(5):610-614.
    [154] 罗剑兰,曹礼群.随机多孔复相介质稳态温度场的多尺度数值模拟.工程热物理学报,2001,22(5):593-596.
    [155] 罗剑兰,曹礼群.复杂系统对流—扩散问题的多尺度关联模式与数值模拟.工程热物理学报,2002,23(5):617-619.
    [156] 罗剑兰,曹礼群.多孔介质分形结构热方程多重双尺度概率模型与数值模拟.工程热物理学报,2003,24(5):858-860.
    [157] 曹礼群,罗剑兰.复相介质及界面结构温度场跨尺度计算.工程热物理学报,2004,25(6):1040-1042.
    [158] 罗剑兰,曹礼群.复相介质平稳随机场热传导方程的多尺度模型与计算.工程热物理学报,2005,26(6):983-985.
    [159] 吴世平,唐绍峰,梁军,杜善义.周期性复合材料热力耦合性能的多尺度方法.哈尔滨工业大学学报,2006,38(12):2049-2053.
    [160] 宋士仓,崔俊芝,刘红生.复合材料稳态热传导问题对尺度计算的一个数学模型.应用数学,2005,18(4):560-566.
    [161] 吕永钢,刘静.生物体多尺度热学响应问题的研究与应用.应用基础与工程科学学报,2005,13(2):162-179.
    [162] 曹磊,徐广为,沈连娼.用多尺度方法分析热喷涂层应力.材料科学与工艺,2006,14(1):22-24.
    [163] 刘书田,马宁.复合材料粘弹性本购关系与热应力松弛规律研Ⅰ:理论分析.复合材料学报,2005,22(1):152-157.
    [164] 马宁,刘书田.复合材料粘弹性本购关系与热应力松弛规律研Ⅱ:数值分析.复合材料学报,2005,22(1):158-163.
    [165] Boutin C. Microstructural influence on heat conduction. International Journal of Heat and Mass Transfer, 1995, 38(17): 3181-3195.
    [166] Lefik M, Schrefler B A. Modelling of nonstationary heat conduction problems in micro-periodic composites using homogenization theory with corrective terms. Archives of Mechanics, 2000, 52(2): 203-223.
    [167] Makhecha D P, Ganapathi M, Patel B P. Dynamic analysis of laminated composite plates subjected to thermal/mechanical loads using an accurate theory. Composite Structures, 2001, 51(3): 221-236.
    
    [168] Yu Q, Fish J. Multiscale asymptotic homogenization for multiphysics problems with multiple spatial and temporal scales: a coupled thermo-viscoelastic example problem. International Journal of Solids and Structures, 2002, 39(26), 6429-6452.
    
    [169] Hassani B, Hinton E. A review of homogenization and topology optimization I-homogenization theory for media with periodic structure. Computers and Structures, 1998, 69(6): 707-717.
    
    [170] Hassani B, Hinton E. A review of homogenization and topology opimization II-analytical and numerical solution of homogenization equations. Computers and Structures, 1998, 69(6): 719-738.
    
    [171] Hassani B, Hinton E. A review of homogenization and topology optimization III-topology optimization using optimality criteria. Computers and Structures, 1998, 69(6): 707-717.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700