用户名: 密码: 验证码:
粘弹性力学中的辛方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
哈密顿体系方法是一种直接的求解方法。由于基本控制方程得到了降阶,克服了传统方法如半逆法等求解高阶微分方程的困难,近年来这套方法受到越来越多的关注,并在弹性力学中得到了成功的应用。然而由于存在能量耗散,粘弹性力学问题属于非保守系统,哈密顿体系方法不能直接应用。本文的工作是在研究粘弹性力学问题特点的基础上,引入哈密顿体系方法,在辛体系下讨论和研究基本问题。
     根据辛体系的性质和积分变换,本文以平面粘弹性问题为突破口,将问题归结为零本征值本征解即圣维南问题的解和反映局部效应的非零本征值本征解问题,并将本征解之间的辛正交归一关系从相空间推广到时域,使得问题可以在时域中的辛本征值本征解空间直接讨论,克服了反复使用Laplace反变换带来的不必要的麻烦。同时,根据辛本征解展开方法给出了一套求解非齐次方程和边界条件问题的具体方法。利用这种技术,在零本征值本征解空间就圣维南问题讨论了粘弹性材料整体的蠕变和松弛特征,并在整个辛本征值本征解空间对边界的局部效应问题进行了深入分析,给出了几种典型问题的应力应变分布场,展示了由于边界的约束条件带来的应力集中现象。
     众所周知,温度对材料性能特别是对粘弹性材料性能的影响是非常重要的。在热粘弹性问题中,采用变量代换等技术可将温度效应与侧边条件都归结为非齐次的对偶方程问题。因此热粘弹性问题的关键是求解非齐次方程的特解。基于粘弹性问题的研究成果,论文将辛体系应用于热粘弹性问题。数值结果揭示了温度条件在拉伸、弯曲等问题中对粘弹性材料整体性质的影响,并讨论了由于温度的不均匀分布和边界约束条件共同作用下产生的局部效应问题。
     在平面问题的基础上,将哈密顿体系方法推广到空间柱体问题。通过研究问题的正则方程,根据辛本征解之间的辛正交归一关系和本征解展开等技术,给出了一种求解空间问题的具体方法。作为特殊情况,详细和深入地研究和讨论了轴对称问题,给出了问题的解析形式的解,并将辛体系下的侧边条件和端部条件亦转化为非齐次方程问题。算例给出了几种端部条件和侧边条件问题以及一些典型的温度条件带来的非齐次问题的数值结果。这些结果描述了粘弹性柱体问题的蠕变和应力松弛特征,以及温度对材料性能的影响。
     论文又将哈密顿体系进一步引进到粘弹性力学厚壁筒问题中。在辛体系下描述了该问题的对偶方程和相应的边界条件。为了求解该系统的对偶方程,提出构造下一层辛子体系的方法,把偏微分方程问题转化为常微分方程问题,从而得到了拉伸、扭转和弯曲等问题以及边界局部效应问题的解,揭示了粘弹性厚壁筒问题的蠕变和应力松弛的现象和特征。
The Hamiltonian system is a direct method by which the order of differential governing equations can be reduced. Since the difficulty of solving high-order differential equations in the traditional methods, such as the semi-inverse method, is overcome, the Hamiltonian system gained much attention in recent years and has been applied successfully into elasticity. However this method can not be applied directly into viscoelasticity for the energy non-conservation. Based on the investigation of the character of viscoelastic material, the Hamiltonian system is introduced into viscoelasticity in this dissertation and the fundamental problems are discussed in the symplectic space.
     With the aid of the symplectic character and the integral transformation, the plane problem is transformed into problem of solving zero-eigenvalue eigensolutions and non zero-eigenvalue eigensolutions, which are solutions of Saint-Venant problems and local effect problems respectively. Meanwhile, the adjoint relationships of the symplectic orthogonality in the Laplace domain are generalized to the time domain. Therefore the problem can be discussed directly in the eigensolution space of the time domain and the iterative application of Laplace transformation is not needed. In addition, an effective method of solving non-homogeneous equations and boundary conditions is given with the help of the expansion of the symplectic eigenvalue eigensolutions. Based on this method, the Saint-Venant problems are studied in the zero-eigenvalue solution space and the whole character of creep and relaxation for viscoelasticity is revealed. On the other hand, the local effect near the boundary is thoroughly discussed in the whole symplectic eigenvalue solution space and the stress and strain fields of some typical problems are obtained, in which the stress concentrations caused by the boundary condition restraints are well exhibited.
     As everyone knows, temperature has an important effect on materials, especially on viscoelastic material. The variable substitution method is applied in this dissertation to transform the non-homogeneous lateral boundary condition and temperature effect into homogeneous problem. Thus the key point of thermo-viscoelasticity problem is to find a special solution of the non-homogeneous equations. Based on the research of viscoelasticity, the symplectic system is applied into thermo-viscoelasticity. Numerical results show the thermal effect on the whole character of viscoelasticity in the simple tensional problems and bending problems, and exhibit the local effects caused by the boundary condition restraints and uneven distribution of thermal condition.
     Based on the research of the plain problem, the Hamiltonian system is generalized to three-dimensional cylinder problem. By studying the canonical equations of the original problem and employing the adjoint relationships of the symplectic orthogonality and the symplectic eigensolution expansion technology, an effective method of solving three-dimensional problems is given. As a particular case, the axisymmetric problem is thoroughly discussed. Since the lateral boundary condition and end condition can also be transformed into problem of non-homogenous equation, the analytical solution of the axisymmetric problem can be given. Moreover the non-homogeneous problems caused by the boundary conditions and typical temperature conditions are discussed in the numerical results, in which the creep and relaxation character and thermal effect of viscoelasticity are well described.
     The thick walled cylinder problem is also investigated in this dissertation under Hamiltonian system. The dual equations and corresponding boundary conditions are described in the symplectic space. Besides the sub-symplectic system is constructed so that the partial differential equations can be transformed into the ordinary differential equations. Based on this method, solutions of tension, torsion, bending and local effect problems are obtained. These solutions exhibit the characters of the creep and relaxation of viscoelasticity in the thick walled cylinder problems.
引文
[1] Bogdanova O S. Crack resistance of viscoelastic orthotropic body under plane strain. Prikladnaya Mecharika, 2000, 36(1): 110-114.
    [2] 冯元桢.生物力学.北京:科学出版社,1983.
    [3] 周光泉,刘孝敏.粘弹性理论.合肥:中国科学技术大学出版社,1996.
    [4] Christensen R M. Theory of Vscoelasticity, An Introduction (Second edition). New York: Academic Press, 1982.
    [5] Rabotnov J N. Element of Hereditary Solids. Mir Publishers, 1980.
    [6] 小野木重治(林福海译).高分子材料科学.北京:纺织工业出版社,1983.
    [7] Findley W N, Lai J S, Onaran K. Creep and Relaxation of Nonlinear viscoelasric Materials. North-Holland Pub. Co., 1976.
    [8] Rossikhin Y A, Shitikova M V. New method for solving dynamic problems of fractional derivative viscoelasticity. International Journal of Engineering Science, 2001, 39: 149-176.
    [9] Leaderman H. Large longitudinal retarded elastic deformation of rubberlibe network polymers. Trans. Soc. Rheol, 1962, 6: 361-382.
    [10] Findly W N, Lai J S. A modified superposition principle applied to creep of nonlinear viscoelastic material under abrupt changes in state of combined stress. Trans Soc. Rheol, 1967, 11: 361-380.
    [11] Pipkin A C, Rogerst G A. Nonlinear integral representation for viscoelastic theories. Journal of the Mechanics and Physics of Solids, 1968, 16: 59-72.
    [12] Bagley R L, Torvik P J. A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol, 1983, 27(3): 201-210.
    [13] Bagley R L, Torvik P J. On the fractional calculus model of viscoelasticity behavior. J. Rheol, 1986, 30(1): 133-155.
    [14] Drocdov A, Kalamkarov A L. Constitutive model for nonlinear viscoelastic of polymer. Polymer Engrg. Sci., 1996, 36(14): 1907-1919.
    [15] Argyris J H, Pister K S, Willaim K J. Unified concepts of constitutive modelling and numerical solution methods for concrete creep problems. Computer Methods in Applied Mechanics and Engineering, 1977, 10: 199-246.
    [16] Suarez L E, Shokooh A, Arroyo J. Finite element analysis of beams with constrained damping treatment modeled via fractional derivatives. Appl. Mech. Rev., 1997, 50(11): 416-454.
    [17] Sim W J, Lee S H. Finite element analysis of transient dynamic viscoelastic problems in time domain. J. Mech. Sci. Tech., 2005, 19: 61-71.
    [18] Schmidt A, Gaul L. Finite element formulation of viscoelastic constitutive equations using fractional time derivatives. Nonlinear Dynamics, 2002, 29:37-55.
    [19] Sogabe Y, Nakano M et al. Finite element analysis of dynamic behavior of viscoelastic materials using FFT. JSME Int. J. Series A-Mech. Mater. Eng., 1996, 39:71-77.
    [20] Leung A, Zhu B et al. Two-dimensional viscoelastic vibration by analytic Fourier p-elements. Thin-Walled Structures, 2003,41:1159-1170.
    [21] Barrett K E, Gotts A C. FEM for one- and two-dimensional viscoelastic materials with spherical and rotating domains using FFT. Computers & Structures, 2004, 82: 181-192.
    [22] Lee S S. Free-edge stress singularity in a two-dimensional unidirectional viscoelastic laminate model. J. Appl. Mech. ASME, 1997,64:408-414.
    [23] Tzeng J T. Viscoelastic analysis of composite cylinders subjected to rotation. J. Composite Mater.,2002, 36:229-239.
    [24] Brilla J. Laplace transform and new mathematical theory of viscoelasticity. Meccanica, 1997, 32:187-195.
    [25] Folch A, Fernandez J et al. Ground deformation in a viscoelastic medium composed of a layer overlying a half-space: a comparison between point and extended sources. Geophysical J. Int. ,2000, 140:37-50.
    [26] Wang J Z, Zhou Y H et al. Computation of the Laplace inverse transform by application of the wavelet theory. Comm. Numerical Methods in Eng., 2003, 19:959-975.
    [27] Ezzat M A, El-Karamany A S et al. The relaxation effects of the volume properties of viscoelastic material in generalized thermoelasticity with thermal relaxation. J. Thermal Stresses,2003, 26:671-690.
    [28] Papargyri-Beskou S, Beskos D E. Response of gradient-viscoclastic bar to static and dynamic axial load. ACTA Mech.,2004,170:199-212.
    [29] De Chant L J. Impulsive displacement of a quasi-linear viscoelastic material through accurate numerical inversion of the laplace transform. Computers & Mathematics with Applications, 2002,43:1161-1170.
    [30] Huang Y, Crouch S L et al. A time domain direct boundary integral method for a viscoelastic plane with circular holes and elastic inclusions. Engineering Analysis with Boundary Elements, 2005, 29:725-737.
    [31] Schanz M, Antes H et al. Convolution quadrature boundary element method for quasi-static visco- and poroelastic continua. Computers & Structures, 2005,83:673 - 684.
    [32] Syngellakis S. Boundary element methods for polymer analysis. Engineering Analysis with Boundary Elements, 2003, 27:125 - 135.
    [33] Schanz M. A boundary element formulation in time domain for viscoelastic solids. Commun. Numer. Methods Eng. , 1999, 15:799 - 809.
    [34] Ding R, Zhu Z Y, Cheng C J. Boundary element method for solving dynamical response of viscoelastic thin plate (I). Applied Mathematics and Mechanics, 1997, 18: 229-235.
    [35] Gaul L, Schanz M. Boundary element calculation of transient response of viscoelastic solids based on inverse transformation. Meccanic, 1997, 32: 171-178.
    [36] Chen Tzer-ming. The hybrid Laplace transform/finite element method applied to the quasi-static dynamic analysis of viscoelastic Timoshenko beams. Int. J. Numer. Mech. Eng, 1995, 38(3): 509-522.
    [37] Akoz Y, Kadioglu F. The mixed finite element method for the quasi-static and dynamic analysis of viscoelastic Timoshenko beams. Int. J. Numer. Meth. 1999, 44: 1909-1932.
    [38] Haneczok G. Weller M A. Fractional model of viscoelastic relaxation. Materials Science and Engineering A, 2004, 370(1-2): 209-212.
    [39] Adolfsson K, Enelund M. Fractional derivative viscoelasticity at large deformations. Nonlinear Dynamics, 2003, 33(3): 301-321.
    [40] Stephen N G, Wang M Z. Decay rates for the Hollow circular cylinder. J. Appl. Mech., 1992, 59: 747-753.
    [41] 陈前,朱德懋.复合结构振动分析的数值方法.计算结构力学及其应用,1990,7(3):27-35.
    [42] Duan Q, Hansen J S. Time domain substructure synthesis method for viscoelastic structures. J. Appl. Mech, 1995, 62(2): 407-413.
    [43] Bagley R L, rorvik P J. Fractional calculus in the transient analysis of viscoelastically damped structures. AIAA J, 1985, 23(6): 918-925.
    [44] 周哲.粘弹性边界元的一种新的增量叠加算法的研究.西安交通大学硕士论文,1987.
    [45] 杨挺青,杨正.粘弹性基支粘弹性板轴对称问题的动力响应.力学学报.1990,22(2):217-222.
    [46] 丁睿,朱正佑,程昌钧.粘弹性薄板动力响应的边界元方法理论分析.应用数学和力学,1998,19(2):95-103.
    [47] Gaul L, Schanz M. Viscoelastic BE Formulation in time domain. Arch. Mech. 1994, 46(4): 483-496.
    [48] Cederbaum G. Parametric excitation of viscoelastic plates. Mech. Struct. Math., 1992, 20(1): 37-51.
    [49] Cederbaum G, Aboudi J. Dynamic instability of shear-deformable viscoelastic laminated plates by Lyapunov exponents. International Journal of Solids and Structures, 1991, 28(3): 317-327.
    [50] Touati D, Cederbaum G. Influence of large deflection on the dynamic stability of nonlinear viscoelastic plates. Acta Mech., 1995, 113(2): 215-231.
    [51] Suite G, Cederbaum G. Periodic and chaotic behavior of viscoelastic nonlinear (elastic) bars under harmonic excitations. Int. J. Mech. Sci., 1995, 37(3): 753-772.
    [52] 程昌钧,张能辉.粘弹性矩形板的混沌与超混沌行为.力学学报,1998,30(6):690-699.
    [53] 张能辉.粘弹性板壳结构的静动力分析:(博士学位论文).兰州:兰州大学,1998.
    [54] Moon F C, Holmes P J. A magnetoelastic strange attractor. Journal of Sound and Vibration, 1979, 65: 285-296.
    [55] Abhyankar N S, Hall E K, Hanagud S V. Chaotic vibrations of beams: numerical solution of partial differential equation. J. Appl. Mech., 1993, 60: 167—174.
    [56] Chen L Q, Cheng C J. Dynamical behavior of nonlinear viscoelastic colmnns based on 2-order Galerkin turncation. Mech. Research Comm, 2000, 27(4): 413-419.
    [57] Bolotin V V. Dynamic instabilities in mechanics structures. Appl. Mech. Rev. 1999, 52(1): 1-9.
    [58] Drozdov A, Kolmanovskii V. Stability in viscoelasticity. Amsterdam: Elaevies Science B. V, 1994.
    [59] Szyszkowski W, Glockner P G. The stability of viscoelasticity column: a dynamic approach. International Journal of Solids and Structures, 1985, 21(6): 545-559.
    [60] Szyszkowski W, Glockner P G. The imperfect linearly viscoelastic columns. International Journal of Engineering Science, 1985, 23(10): 1113-1120.
    [61] Touati D, Cederbaum G. Influence of large deflection on the dynamic stability of nonlinear viscoelastic plates. Acta Mech., 1995, 113(2): 215-231.
    [62] Drozdov A. Lyapunov stability of a class of operator integro-differential equations with applications to viscoelasticity. Math. Methods Appl. Sci. 1996, 19(5): 341-361.
    [63] Drozdov A. Almost sure stability of viscoelasticity structural members driven by random loads. Journal of Sound and Vibration, 1996, 197(3): 293-307.
    [64] Plaut R, Lyapunov H. Stability of columns pipes and rotating shafts under time-dependent excitations. Dynamic Stability System, 1994, 9(1): 89-94.
    [65] Potapov V D. Stability of viscoelastic rod subjected to a random stationary longitudinal force. J. Appl. Math. Mech. 1992, 56(1): 90-95.
    [66] Shirahatti U S, Sinha S C. On the stability of perfect viscoelastic columns. Journal of Sound and Vibration, 1994, 174(1): 57-68.
    [67] Mignot F, Puer J P. Buckling of a viscoelastic rod. Arch. Rat. Mech. Ana., 1984, 85(3): 251-277.
    [68] Drawshi M, Cederbaum G. Stability of multiloaded viscoelastic nonlinear beams. Computers & Structures, 1993, 46(2): 215-218.
    [69] Cederbaum G, Drawshi M. Multiple equilibrium states in the analysis of viscoelastic nonlinear circular plates. International Journal of Mechanical Sciences, 1994, 36(20): 149-155
    [70] Kurnik. Hopf bifurcation in vibrations of a rotating viscoelastic shaft. Arch. Budowy Maszyn, 1989, 36(4): 239-254.
    [71] Cheng Changjun, Zhang Nenghui. Buckling and multiple equilibrium states of viscoelastic rectangular plates. J. Shunglaai Univ. (English edition), 1999, 3(3): 192-198.
    [72] 陈立群,程昌钧.非线性粘弹性柱的稳定性和混沌运动.应用数学和力学,2000,21(9):890-896.
    [73] Fan Xiao-jun, Cheng Chan-jun. Suckled states of viscoelastic nonlinear circular plates. Proceedings of ICNM-Ⅲ, Shanghai: Shanghai Univ. Press, 1998, 196-200.
    [74] 杨挺青,张晓春,刚芹果.粘弹性薄板蠕变屈曲的载荷—时间特性研究.力学学报,2000,32(3):319-325.
    [75] 刘延柱,陈立群.非线性动力学.上海交通人学出版社,2000.
    [76] Suire G, Cederbaum G. Periodic and chaotic behavior of viscoelastic nonlinear (elastic) bars under harmonic excitations. International Journal of Mechanical Sciences, 1995, 37(3): 753-772.
    [77] Argyris J et al. Chaotic vibrations of a nonlinear viscoelastic beam. Chaos Solitons Fractals, 1996, 7: 151-163.
    [78] 程昌钧,张能辉.粘弹性矩形板的混沌与超混沌行为.力学学报,1998,30(6):690-699.
    [79] 丁睿,朱正佑,程昌钧.粘弹性柱壳的若干动力学性质.应用数学和力学,1999,20(3):221-228.
    [80] Chen Liqun, Cheng Chanjun. Controlling chaotic oscillations of viscoelastic plates by linearization via output feedback. Applied Mathematics and Mechanics, 1999, 20(12): 1324-1330.
    [81] Saint-Venant B. Memoire sur la torsion des prismes. Paris Memoir. Savants etrangers, 1856, 14: 233-560.
    [82] Saint-Venant B. Memoire sur la flexion des prismes. J. Math. Pures. Appl., 1856 1: 89-189.
    [83] Ladeveze P. Saint-Venant principle in elasticity. J. Mec. Theor. Appl., 1983, 2: 161-184.
    [84] Knowles J K, Horgan C O. On the exponential decay of stresses in circular elastic cylinders subject to axisymmetric self-equilibrated end loads. International Journal of Solids and Structures, 1969, 5: 33-50.
    [85] Horgan C O, Knowles J K. Recent developments concerning Saint-Venant's principle. Advances in Applied Mechanics, 1983, 23: 179-269.
    [86] Stephen N G, Wang M Z. Decay rates for the hollow circular cylinder. J. Appl. Mech., 1992, 59: 747-753.
    [87] Chirita S, Ciarletta M, Fabrizio M. Saint-Venant's principle in linear viscoelasticity. International Journal of Engineering Science, 1997, 35: 1221-1236.
    [88] Chirita S, Romania Iasi. Saint-Venant problem and semi-inverse solutions in linear viscoelasticity. Acta Mech.,1992,94:221-232.
    [89] 刘靖华,范益群,钟万勰.粘弹性固体的精细积分有限元算法.计算力学学报,2004,21(1):109-114.
    [90] Fujii, Yusaku, Yamaguchi et al. Method for evaluating material viscoelasticity.,Review of Scientific Instrucments, 2004,75(1):117-123.
    [91] Yang H T, Guo X L. Perturbation boundary-finite element combined method for solving the linear creep problem. International Journal of Solids and Structures, 2000,37(15):2167-2183
    [92] 钟万勰.分离变量法与哈密顿体系.计算结构力学及应用,1990,8:229-240.
    [93] 钟万勰,姚伟岸.辛弹性力学.高等教育出版社,2002.
    [94] 钟万勰,徐新生,张洪武.弹性曲梁问题的直接法.工程力学,1996,13(4):1-8.
    [95] Xu X S, Zhang H W, Zhong W X. A direct method for the problem of the solid cylinder in elasticity. Chinese Quarterly Journal of Mathematics, 1996,13(1).
    [96] 徐新生,张洪武,齐朝辉,钟万勰.关于弹性回转体问题的直接方法.大连理工大学学报,1997,37(5):516-519.
    [97] Steele C R, Kim Y Y. Modified mixed variational principle and the state vector equation for elastic bodies and shells of revolution. J. Appl. Mech, 1992,59:587-595
    [98] 钟万勰.互等定理与共轭辛正交关系.力学学报,1992,24(4):432-437.
    [99] 钟万勰.弹性平面扇形域问题及哈密顿体系.应用数学和力学,1994.
    [100] Roos, Alexandra, Creton. Linear viscoelasticity and non-linear elasticity of block copolymer blends used as soft adhesives. Macromolecular Symposia, 2004, 213:147-156.
    [101] Nunamaker E A, Rathnasingham R, Kipke D R. Viscoelastic behavior of rat cortex in response to Micro-scale-volume fluid injections. Annual International Conference of the IEEE Engineering in Medicine and Biology Proceedings, 2003,2:1948-1951.
    [102] Green Wood J A. The theory of viscoelastic crack propagation and healing. Journal of Applied Physics, 2004,37(18):2557-2569.
    [103] Papoulia, Katernia D, Panoskalsis et al. Some equivalences in the theory of linear viscoelasticity and their implications in modeling and simulation. American Society of Mechanical Engieers, 2000,239:1-11.
    [104] Boner J. Large strain viscoelasticity constitutive models. International Journal of Solids and Structures, 2001,38(17):2953-2968.
    [105] Drozdov A, Aleksey D, Dorfmann A. Constitutive model in finite viscoelasticity of particle reinforced rubbers. Meccanica, 2004,39(3):245-270.
    [106] Harbola, Upendra, Das Shanker P. Model for viscoelasticity in a binary mixture. Journal of Chemical Physics, 2002,117(21):9844-9849.
    [107] Batra R C, Yu J H. Torsion of a viscoelastic cylinder. Journal of Applied Mechanics, 2000,67(2):424-426.
    [108] Tzeng, Jerome T. Viscoelastic analysis of composite cylinders Subjected to rotation. Journal of Composite Materials, 2002,36(2):229-239.
    [109] Schmidt A, Gaul L. Finite element formulation of viscoelastic constitutive equations using fractional time derivatives. Nonlinear Dynamics, 2002,29:37-55.
    [110] Haneczok G, Weller M A. Fractional model of viscoelastic relaxation. Materials Science and Engineering A, 2004,370(1-2):209-212.
    [111] Rossikhin A, Shitikova M. New method for solving dynamic problems of fractional derivative viscoelasticity. International Journal of Engineering Science, 2001, 39(2):149-176.
    [112] Shih Y S, Yeh Z F. Dynamic stability of a viscoelastic beam with frequency-dependent modulus. International Journal of Solids and Structures, 2005, 42(7):2145-2159.
    [113] Adolfsson K, Enelund M. Fractional derivative viscoelasticity at large deformations. Nonlinear Dynamics, 2003,33(3):301-321.
    [114] Huang Shu-Xin, Lu Chuaning, Jiang Tiqian. Numerical Investigation on extrudate swell for viscoelastic fluid:using Maxwell model. Journal of Hydrodynamics, 2004,16(4):393-402.
    [115] Janno, Jaon. Inverse problems for determining monotone weakly singular relaxation kernels in viscoelasticity. Nonlinear Analysis, 2000,41(7):943-962.
    [116] Guedes, Rui Miranda. An energy criterion to predict delayed failure of multidirectional polymer matrix composites bassed on a non-linear viscoelastic model. Applied Science and Manufacturing, 2004,35(5):559-571.
    [117] Steele C R, Kim Y Y. Modified mixed variational principle and the state vector equation for elastic bodies and shells of revolution. J. Appl. Mech, 1992,59:587-595.
    [118] 钟万勰.应用力学对偶体系.科学出版社,2002.
    [119] Shkaraev, Savruk M P. Singularity of stresses in the problems of linear viscoelasticity. Materials Science, 2002,38(3):325-337.
    [120] Del Piero, Gianpietro. The relaxed work functional in linear viscoelasticity. Mathematicas and Mechanics of Solids, 2004,9(2):175-208.
    [121] 汪德新.数学物理方法.华中科技大学出版社,2001.
    [122] Stolle D F, Smith W S. Objective stress rate considerations for viscoelasticity response of polymers. High Performance Structures and Materials, 2004,6:265-273.
    [123] Malezhyk M P. Modeling of the stress-strain state near cracks in anisotropic linear viscoelastic plate. Material. Science, 2003,39(2):262-266.
    [124] Mokeyev V V. A generalized complex eigenvector method for dynamic analysis of heterogeneous viscoelastic structures. Int. J. Numerical Methods in Eng. ,2001, 50:2271-2282.
    
    [125] Lotf i A, Molnarka G. The method of asymptotic expansion for plate problem in the linear theory of viscoelasticity. Zeitschrift fur Angewandte Mathematik und Mechanik, 2000, 80:S391-S392.
    
    [126] Nayfeh S A. Damping of flexural vibration in the plane of lamination of elastic-viscoelastic sandwich beams. J. Sound Vibration, 276 (2004) 689-711.
    
    [127] Hryniewicz Z. Dynamic analysis of system with deterministic and stochastic viscoelastic dampers. Journal of Sound and Vibration, 2004,278:1013-1023.
    
    [128] Haneczok G, WellerM. A fractional model of viscoelastic relaxation. Materials Science and Engineering, 2004, 370:209-212.
    
    [129] Batra R C, Yu J H. Torsion of a viscoelastic cylinder. J. Appl. Mech. ASME, 2000,67:424-426.
    
    [130] Bonet J. Large strain viscoelastic constitutive models. International Journal of Solids and Structures,2001,38:2953-2968.
    
    [131] Mesquita A D, Coda H B. New methodology for the treatment of two dimensional viscoelastic coupling problems. Computer Methods in Applied Mechanics and Engineering, 2003, 192:1911-1927.
    
    [132] Mesquita A D, Coda H B. A two-dimensional BEM/FEM coupling applied to viscoelastic analysis of composite domains. Int. J. Numerical Methods in Eng., 2003, 57:251-270.
    
    [133] Temel B, Calim F et al. Quasi-static and dynamic response of viscoelastic helical rods. Journal of Sound and Vibration, 2004, 271:921-935.
    
    [134] Zhang W F. A numerical method for wave propagation in viscoelastic stratified porous media. Transport in Porous Media, 2005, 61:15-24.
    
    [135] Christensen R M. Theory of viscoelasticity. New York, Academic Press,1982.
    
    [136] Lakes R S. Mechanics of viscoelastic solids. CRC Press,1999.
    
    [137] Drozdov A D. Mechanics of viscoelastic solids. John Wiley & Sons, 1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700