用户名: 密码: 验证码:
土石混合体滑坡的流—固耦合特性及其预测预报研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文结合交通部科技项目:“西部地区公路地质灾害监测预报技术研究(2003-318-802-01)”,采用室内试验、现场试验、理论分析和数值模拟相结合的研究方法,对土石混合体滑坡的流-固耦合特性及其预测预报进行了系统深入的探讨。主要工作有:
     1.采用自制的大型常水头渗透仪,测定了不同含砾量时土石混合体渗透系数值,研究发现含砾量与土石混合体渗透系数之间存在指数关系;基于幂平均法,提出了土石混合体复合渗透系数的计算公式,并通过试验结果验证了该式的正确性,为土石混合体渗透系数的理论计算提供了一个简明实用的计算工具。
     2.土石混合体属于典型的多孔介质,其渗透特性与颗粒的大小、孔隙比及颗粒形状关系密切。利用自制的常水头渗透仪,采用正交实验方法,研究了砾石含量、孔隙比和颗粒形状三个因素在不同水平下对土石混合体渗透系数的影响。通过正交试验确定了三种因素对土石混合体渗透系数的影响顺序及各因素的显著性水平。
     3.土石混合体边坡人工降雨致滑的原位监测试验表明:在降雨入渗影响下滑动变形区为坡面以下0-4m之内,变形量以坡面最大,从坡面到坡体深部逐渐减小;在实施降雨的前2小时,平均入渗百分率为86%,之后,入渗率由于地表径流的增加而随时间逐渐减少,一段时间(6小时)之后,入渗率降到一个相对稳定值(50%);降雨入渗造成土体中孔隙水压力增加,致使边坡土体的抗剪强度由于有效应力的减少及土体吸水软化而降低,降雨入渗的这一双重效应是降雨诱发土石混合体边坡失稳的主要原因之一。
     4.土石混合体边坡开挖致滑的原位监测试验表明:土石混合体在切坡开挖影响下多发浅层牵引式破坏,滑动变形区为坡面以下0-4m之内,变形量以坡面最大,从坡面向下逐渐减小;此类边坡切坡开挖的警界临空高度为3m,临空高度超过3m的边坡应采取适当的防范措施;切坡开挖后裸露的土石混合体边坡,在强降雨的影响下易发生滑塌事故。
     5.考虑流体的可压缩性和土石混合体变形特性,建立了孔隙率n和渗透系数K的动态计算模型;针对应力场对土体孔隙率和渗透系数的影响、渗透体积力对应力场的影响进行了量化的分析,建立了土石混合体流-固耦合的数学模型,并根据有限元变分原理,对耦合微分方程组进行空间离散和时间离散,建立了两场的耦合有限元方程组。
     6.运用FLAC(Version 5.0)对土石混合体边坡在降雨入渗条件下不同水位时的渗流场与应力场进行分析,研究了流-固耦合作用下滑坡体的变形趋势与破坏特征,探讨了不同水位时滑坡的稳定性变化规律。
     7.在Verhulst反函数预报模型的基础上,与BP神经网络相结合,建立了Verhulst反函数残差修正模型。对该模型的建立及预报方法进行了系统的讨论,并通过国内外滑坡监测实例对比分析,预报结果接近实际观测数据,验证了模型的正确性,为滑坡的预测预报提供了一个新途径。
Associated with the scientific research projects of ministry ofcommunications "The study of monitoring-prediction technology in westhighway geology disaster (2003-318-802-01)", the fluid-solid couplingcharacteristic of soil and rock blending landslide and its prediction andforecast were studied comprehensively, with the combined researchmethod of laboratory tests, field tests, theory analysis, numericalsimulation. The main contents include followings:
     1. The permeability coefficient of soil and rock blending at differentgravel content were measured by artificial constant head permeameter,which show there exists index relationship between them. A empiricalformula for calculating the composite permeability coefficient of soil androck blending is put forward based on power averaging method and theformula is proved by the experimental results, have offered a concise anduseful computational tool for the theory calculation of coarse-grained soilpermeability coefficient.
     2. Soil and rock blending is a typical porous medium, and itsseepage is closely related to the particle-size, porosity ratio and particleshape. With self-made constant head permeameter, the influence of gravelcontent, porosity ratio and particle shape on the permeability coefficientof soil and rock blending was studied by lab orthogonal test. Orthogonaltest confirmed the influence orders of three factors to permeabilitycoefficient of soil and rock blending and the significance levels ofdifferent factors.
     3. Through artificial rainfall simulation tests and field syntheticmonitored on a soil and rock blending slope, some results were obtained:the deformed zone of soil and rock blending landslides caused by rainfallinfiltration lies within the top 4m soil layer, where the deformation valueof slope surface is the biggest, which gradually reducing from dome to the deep part of slope. The average percentage of infiltration during thefirst 2 hours is 86%, it reduce gradually with time later because of theincrease of the surface runoff. The average percentage of infiltration dropto a relatively stable value (50%) 6 hours later. Rainfall infiltration leadspore-water pressure to increase, which may result in a reduction of shearstrength due to a decrease in effective stress and wetting-inducedsoftening, the double effects of rainfall infiltration are the main reason ofrainfall infiltration induced landslides in soil and rock blending slope.
     4. By the situ-monitoring of excavation tests on a well-instrumentedsoil and rock blending slope, these results show: Most of soil and rockblending landslides caused by excavation are shallow draught slopefailures, and deformed zone lies within the top 4m soil layer, anddeformation value of slope surface is the biggest, which reduce fromdome to the deep part of slope gradually; The alert height of the free faceis 3m in such soil and rock blending slope, when the free face exceed 3mheight proper defend measures are necessary; Under the influence ofstrong rainfall, the uncovered soil and rock blending slope afterexcavation easily lead to collapse accident.
     5. In consideration of the deformation of the soil and rock blendingand the compressibility of the fluid, the dynamic models of porosity andpermeability are acquired; Quantitative analysis the effect of stress fieldon the porosity and permeability and the effect of seepage force on thestress field, fluid-solid coupling mathematical model in soil and rockblending are acquired; By Galerkin theory, differential coefficientequations are dispersed on space and time domains, then the couplingfinite element equations of the seepage field and stress field areestablished.
     6. Under the fluctuation of different water levels caused by rainfallinfiltration, the seepage-stress fields, the deformation trends and thefailure process of soil and rock blending landslide are analyzed withFLAC(Version 5.0). In addition, the change of landslide stability is discussed after water levels fluctuation in this dissertation.
     7. On the basis of Verhulst inverse-function mechanism predictionand forecast model, and in combination with Back Propagation NeuralNetwork, a new error fitting of Verhulst inverse-function mechanismprediction and forecast model is built. The establishment of the predictionand forecast model and the process of application are discussed in detail.In engineering practice, the application research is compared with actuallandslides case nationally and internationally. The results are similar toactual data and proved the correction of model, which provides a newway for landslide prediction and forecast.
引文
[1] 油新华.土石混合体的随机结构模型及其应用研究:[博士学位论文].北京:北方交通大学,2001
    [2] 孙广忠.中国典型滑坡.科学出版社,1988.56~78
    [3] 吴景坤,方祁,蔡军刚等.堆积层滑坡稳定性评价专家系统方法.中国地质灾害与防治学报,1994,5(2):8~16
    [4] 贵州省交通规划勘察设计研究院.平溪特大桥滑坡工程地质勘察报告.2003.9,1~3
    [5] 蒋彭年.土的分类建议.岩土工程学报,1991,3:1~12
    [6] 韩世莲,周虎鑫,陈荣生.土和碎石混合料的蠕变试验研究.岩土工程学报,1999,21(2):196~199
    [7] 屈智炯,徐广峰.砾石土宽级配土料在高坝应力状态下工程性质的研究.水电站设计,12(2):47~55
    [8] 刘令瑶,崔亦昊,张广文.宽级配砾石土水力劈裂特性的研究.岩土工程学报,1998,20(3):10~13
    [9] 南京大学水文地质工程地质教研室.工程地质学.北京:地质出版社,1982.62~68
    [10] 罗国煌,李生林.工程地质学基础.南京:南京大学出版社,1990,11
    [11] 华东水利学院土力学教研室.土工原理与计算.北京:水利电力出版社,1982,11
    [12] 陈仲颐,周景星,王洪瑾.土力学.北京:清华大学出版社,1994,4
    [13] 刘杰.土的渗透稳定与渗流控制.北京:水力电力出版社,1992.1~20
    [14] Wen X H, Gomez-Hemandez J J. Upscaling hydraulic conductivities in heterogeneous media: An overview. Journal of Hydrology, 1996, 183: ⅸ-ⅹⅹⅹⅱ
    [15] Taylor D.W. Fundamentals of soil mechanics. John Wiley & SONS, Inc., 1948
    [16] Brown W F. Solid mixture permittivity. Journal of Chemical Physic, 1955, 23(8): 1514~1517
    [17] Dagan G. Analysis of flow through heterogeneous random aquifers by the method of embedding matrix-1: Steady flow. Water Resources Research, 1981, 17(1): 107~122
    [18] Noetinger B. The effective permeability of a heterogeneous porous medium. Transport in Porous Media, 1994, 15:99~127
    [19] 油新华,李晓,马风山等.白衣庵滑坡原状土的渗透性试验研究.岩土工程学报,2001,23(6):769~770
    [20] 邱贤德,阎宗岭,刘立等.堆石体粒径特征对其渗透性的影响.岩土力学,2004,25(6):950~954
    [21] 徐天有,张晓宏,孟向一.堆石体渗透规律的试验研究.水利学报,1998(增):80~83
    [22] 孙陶.无粘性粗粒土渗透系数的近似计算.四川水力发电,2003,22(2):29~31
    [23] 余斌,刘坚,杨和平.粗粒充填料渗透性能试验及其影响因素.冶金矿山设计与建设,2000,32(6):7~9
    [24] 饶锡保,何晓民.粗粒含量对砾质土工程性质影响的研究.长江科学院院报,1999,16(1):21~25
    [25] 朱建华,游凡,杨凯虹.宽级配砾石土坝料的防渗性及反渗.岩土工程学报,1993,15(6):18~27
    [26] Ohene Karikari-Yeboah. Stability of slopes characterized by colluvium: investigation, analysis and stabilization. Geotech2000, 2000, 10
    [27] Hencher. S. R. & Mcnicholl. D. P. Engineering in weathered rock. Quarterly Journal of Engnieering Geology, 1995, 28, 253~266
    [28] West. L. J. & Hencher. S. R. Assessing the stability of slopes in heterogeneous soils. Proceedings of the 6th International Symposium on Landslides. 1991, 591~595
    [29] 贺可强,阳吉宝,李显忠.堆积层滑坡预测预报及其防治.地震出版社,1996.102~122
    [30] 王思敬,马风山,杜永廉.水库地区的水岩作用及其地质环境影响.工程地质学报,1996,4(3):1~9
    [31] 周平根.滑坡中地下水与岩土体相互作用机理的研究.地学前缘,1996,3(1-2)
    [32] 钟式范,马水山,张保军.隔河岩水利枢纽水库蓄水对岸坡稳定性的影响.岩石力学与工程学报,1996,15(3):282~288
    [33] 张作辰.滑坡地下水作用研究与防治工程实践.工程地质学报,1996, 4:80~85
    [34] 吴旭君.水对岩质边坡稳定性的影响.水文地质工程地质,1991,3:32~36
    [35] 陈强,罗国煜.优势面的水力学效应.水文地质工程地质,1998,1:10~12
    [36] 王辉,罗国煜,李晓昭等.顺层岩坡优势面水力学作用研究.水文地质工程地质,1999,26(2):27~30
    [37] 廖红建,俞茂宏,赤石胜等.地下水位变化影响切坡稳定性的试验研究.工程勘察,1998,1:33~37
    [38] C.O.Okagbue.废料堆中废石破坏的临界分析及其分析模型.国外工程地质与岩土工程研究专集,1988
    [39] West. L. J. & Hencher. S. R. Assessing the stability of slopes in heterogeneous soils[C]. Proceedings of the 6th International Symposium on Landslides, 1991, 591~595
    [40] Md. Hamidur Rahman. Stability analysis of the heterogeneous slope by the finite element method. 7th international IAEG Congress, 1994, 4717~4723
    [41] Rahman, M.H. Analysis of slope stability problem of the non-homogeneous embankment slope by finite element method. Proc. Of International Conference on engineering Geology in Tropical Terrains, University of Kebangsaan, Malaysia, 1989, June 26~29, Bangi, Malaysia
    [42] Rahman, M.H. Analysis of slope stability problem of the heterogeneous soil slope by finite element method[C]. Proc. of 6th International, Congress of IAEG, Amsterdam, The Netherlands, August 6-10, 1990, 2279~2285
    [43] A.K.SARMA et al. Stability analysis of slope comprising soil and rock mass
    [44] 刘光华.河岸松散堆积层滑坡机制及防治对策研究—以重庆市为例.三峡地质环境论文集,1996
    [45] 王发读.浅层堆积物滑坡特征及其与降雨的关系初探.水文地质工程地质,1995,1:20~23
    [46] 谢守益、徐卫亚.降雨诱发滑坡机制研究.武汉水利电力大学学报,1999,32(1):21~23
    [47] C. E Lee et al. Literature Review on Engineering Properties of and Landslides in Granitic Saprolites in South China
    [48] 曾昭漩.我国南方红土区的水土流失问题.第四纪研究,1991,1
    [49] 谢浩球.广东地质灾害概述.广东地质,1991,6(3):1~8
    [50] 刘明俊.风化花岗岩边坡稳定性问题.第三届全国工程地质大会论文集,1988
    [51] 张文华.花岗岩残积土的抗剪强度及土质边坡稳定性分析.水文地质工程地质,1994,(3):41~43
    [52] 地质矿产部成都中心.长江三峡工程库岸稳定性.中国科学技术出版社,1992
    [53] 新杰罗·科玛达.大坝水库运行诱发的边坡不稳定性及其产生的机理(内参资料).1999
    [54] 付少兰,彭光忠.湖北巴东县老城金子山2号沟滑坡泥石流现场模拟试验研究.第五届全国工程地质大会文集,地震出版社,1996
    [55] 郭俊仃,夏季华.超压密土坡稳定分析的非线性有限元法计算机方法在岩石力学及工程中的应用.国际学术讨论会论文集,中国西安,1993.714~720
    [56] S. Yokota, T. Fukuda, A. Lwamatsu et al. The effect of rainwater infiltration within a slope of pyroclastic deposits, recorded using automated electric rospecting. Bull Eng Geol Env, 1998, 57: 51~58
    [57] Hirotaka Ochiai, Yasuhiko Okada, Gen Furuya et al. Afluidized landslide on a natural slope by artificial rainfall. Original Article, 2004, 1: 211~219
    [58] 李爱国,岳中琦,谭国焕等.土体含水率和吸力量测及其对边坡稳定性的影响.岩土工程学报,2003,25(3):278~282
    [59] 詹良通,吴宏伟,包承纲等.降雨入渗条件下饱和膨胀土边坡原位监测.岩土力学,2003,24(2):151~158
    [60] 胡明鉴,张平仓,汪稔.降雨对滑坡的激发作用试验研究.水土保持学报,2001,15(5):116~118
    [61] 黎志恒.兰州黄土滑坡与地表入渗变形关系分析.甘肃科学学报,2003,15:131~134
    [62] 邓建辉,李焯芬,葛修润.岩石边坡松动区与位移反分析.岩石力学与工程学报,2001,20(2):171~174
    [63] 盛谦.深挖岩质边坡开挖扰动区与工程岩体力学形状研究[博士学位论文].武汉:中科院武汉岩土力学研究所,2003
    [64] 芮勇勤,贺春宁,王惠勇等.开挖引起大规模倾倒滑移边坡变形破坏分析[J].长沙交通学院学报,2001,17(4):8~12
    [65] 罗华阳,王敬,谢新宇等.五强溪水电站左岸边坡位移监测与变形特征.大坝观测与土工测试,2000,24(3):22~24
    [66] 邓建辉,王浩,姜清辉等.利用滑动变形计监测岩石边坡松动区.岩石力学与工程学报,2002,21(2):180~184
    [67] Noorishad J. A finite element method for coupled stress and flow analysis In fractured rock mass. Int. J Rock Mech. Min. Set. Geomech. Abstr. 1982
    [68] Noorlshad J. Coupled thermal-hydraulic-mechancal phenomena In saturated fractured porous. Numberical approach. J. Geoph.. Res. 1989 (B 12)
    [69] 张伟.渗流场及其与应力场的耦合分析和工程应用研究[博士学位论文].武汉:武汉大学.2004
    [70] 仵彦卿.岩土体系统渗流场与应力场耦合的连续介质模型.西安公路交通大学学报(增刊),1996.123~125
    [71] Wu Yan-Qing, Zhang Zhuo-Yuan. Research on Lumped Parameter model of coupled seepage and stress field in fractured rock mass[C]. Proc. Seventh International Congress International Association of Engineering Geology. Sept, 1999, LISBOA. PORTUGAL
    [72] 柴军瑞.大坝及其周围地质体中渗流场与应力场耦合分析.岩石力学与工程学报,2000,19(6):811~811
    [73] Witherspoon. A. et al. New approaches to problems of fluid in fractured rock masses. Proc. U. S. Symp. Rock. Mech. 22nd, 1981
    [74] Maini. Approaches to problems of fluid in fractured rock masses. Int. Assoc. Hydrogeol. 17. 1985
    [75] Dershowitz W S. A new three dimensional model for flow In fracture rock. Int. Assoc. Hydrogeol. 1985, 17
    [76] Oda. M. Permeability tensor for discontinuous rock masses. Geotechnique. 1985(4)
    [77] Oda. M. C. Water Resources Research. 1986, 13
    [78] 张玉卓,张金才.裂隙岩体渗流与应力耦合的试验研究.岩土力学,1998,19(2):59~62
    [79] 傅鹤林.块裂介质边坡稳定性分析理论及工程应用研究[博士学位论文].长沙:中南大学,2000,8
    [80] 傅鹤林,刘宝琛,Christian Buhrow.饱和岩层中地下水渗流与岩体变形的耦合数学模型及数值解法.湘潭矿业学院学报,2002,17(2):74~78
    [81] 周创兵,叶自桐,熊文林.岩石节理非饱和渗流特性研究.水利学报,1998,(3):22~25
    [82] 赖远明,吴紫汪,朱元林等.寒区隧道温度场、渗流场和应力场耦合 问题的非线性分析.岩土工程学报,1999,21(5):529~533
    [83] 黄涛,杨立中.渗流应力温度耦合下裂隙围岩隧道涌水量的预测.西南交通大学学报(自然科学版),1999,34(5):554~559
    [84] 朱岳明,黄文雄.碾压混凝土坝渗流场与应力场的非线性耦合作用研究.红水河,1997,3
    [85] 陈平,张有天.裂隙岩体渗流与应力耦合分析.岩石力学与工程学报,1994,13(4):299~308
    [86] 杨延毅,周维垣.裂隙岩体非线性流变性态与裂隙损伤扩展过程关系研究.1994,2
    [87] 柴军瑞.龙滩碾压混凝土坝渗流场与应力场耦合分析.四川水力发电,2001,20(1):54~56
    [88] 耿克勤,吴水平.拱坝和坝肩岩体的力学和渗流的耦合分析实例.岩石力学与工程学报,1997,16(2):125~131
    [89] 高海鹰.裂隙岩体渗流场与应力场耦合分析方法.云南农业大学学报,1997,2
    [90] 盛金昌,速宝玉.裂隙岩体渗流应力耦合研究综述.岩土力学,1998,19(2):92~98
    [91] 罗晓辉.深基坑开挖渗流与应力耦合分析.工程勘察,1996.(6):37~41
    [92] 徐则民,黄润秋,许模等.基于水-力耦合理论的超深隧道围岩渗透性预测.成都理工学院学报,2001,28(2):
    [93] 杨志锡,叶为民,杨林德.各向异性饱和土体的渗流耦合分析和数值模拟.岩石力学与工程学报,2002,21(10):1447~1451
    [94] 平扬,徐燕平,白世伟.深基坑工程渗流渗流—应力耦合分析数值模拟研究.岩土力学,2001,22(1):37~41
    [95] 李培超,孔祥言,卢德唐.饱和多孔介质流固耦合的数学模型.水动力学研究与进展,2003,18(4):419~426
    [96] 陈波,李宁,糕瑞花.多孔介质的变形场—渗流场—温度场耦合有限元分析.岩石力学与工程学报,2001,20(4):467~472
    [97] 陈庆中,张弥,陈守义.应力场渗流场和流场耦合系统定边值定初值问题的变分原理.岩石力学与工程学报,1999,18(5):497~502
    [98] 柴军瑞,许彦卿.均质土坝渗流场与应力场耦合分析的数学模型.陕西水利发电,1997,13(3):4~7
    [99] 王媛.多孔介质渗流与应力的耦合计算方法.工程勘察,1995,(2): 33~37
    [100] 文宝萍,李媛等.黄土地区典型滑坡预测预报及减灾对策研究.北京:地质出版社,1997,61~63
    [101] 孙怀军,张永波.滑坡预测预报的现状和发展趋势.太原理工大学学报,2001,32(6):636~639
    [102] 李天斌,陈明东,王兰生.滑坡实时跟踪预报.成都:成都科技大学出版社,1999,31~34
    [103] 秦四清,张悼元,王士天.非线性工程地质学导引.成都:西南交大出版社,1993,38~42
    [104] 黄润秋,许强.斜坡失稳时间的协同预测模型.山地研究,1997,15(1):321~326
    [105] 吴承祯,洪伟.滑坡预报的BP-GA混合算法.山地学报,2000,18(4):212~216
    [106] 黄志全,张长存,姜彤等.滑坡预报的协同—分岔模型及其应用.岩石力学与工程学报,2002,21(4):621~625
    [107] 黄润秋,许强.工程地质广义科学分析原理及应用.北京:地质出版社,1997,68~73
    [108] 廖小平.滑坡破坏时间预报新理论探讨.地质灾害与护,1994,5(3):324~328
    [109] 王尚庆.长江三峡滑坡监测预报.北京:地质出版社,1998,89~93
    [110] 李玉生,种荫乾.长江三峡工程库区大型滑坡崩塌.广东:广东旅游出版社,1991
    [111] 湖南水利水电勘察设计院.边坡工程地质.北京:水力电力出版社,1983.4
    [112] 牟会宠.滑坡.北京:地震出版社,1987.9
    [113] 田陵君,王兰生,刘世凯.长江三峡工程地质稳定性.北京:中国科学技术出版社,1992.7
    [114] 张年学,盛祝平,孙广忠等.长江三峡工程库区顺层岸坡研究.北京:地震出版社,1993.4
    [115] 周平根.滑坡地下水作用研究[博士学位论文].北京:中科院地质所,1997.8
    [116] 孙玉科.岩质边坡稳定性的工程地质研究.孙玉科论文集,地震工业出版社,1999
    [117] 李思平.广东省崩岗形成的岩土本质剖析.第二界全国工程地质力 学学术研讨会论文集,地震工业出版社,1992
    [118] 张淑光、钟朝章.广东省崩岗形成的机理与类型.水土保持通报,1990(3)
    [119] 杨陪星.广东省花岗岩类岩石风化土的工程地质特征.人民珠江,1988(3)
    [120] 张年学.滑坡、崩塌和泥石流综述.工程地质学新进展,北京科学技术出版社,1991.12
    [121] 张晓刚.长江上游滑坡分布研究.滑坡研究与防治(Ⅰ),四川科学技术出版社,1996.10
    [122] 郭庆国.关于粗粒土工程性质及分类的探讨.水利水电技术,1979(6)
    [123] 郭庆国.粗粒土的工程特性及应用.郑州:黄河水利出版社,1999.2
    [124] 清华大学.水力学.北京:人民教育出版社,1961
    [125] 黄文熙.土的工程性质.北京:水利水电出版社,1983
    [126] A.E.薛定谔.多孔介质中的渗流物理.北京:石油工业出版社,1984,141~173
    [127] Leps, T.M., Flow through rockfill in embankment dam engineering, Inc., N. Y., 1973
    [128] Wilkens, J.K., Flow of water through rockfill and its application to the design of dams, Conference on SMFE, 1956
    [129] Wilkens, J.K., The stability of overtopped rockfill dams, Conference on SMFE, 1963
    [130] Parkin, A.K., Trollope, D.H. & Lawson, J.D. Rockfill structure subject to water flow, Journal of SMFD, ASCE, Vol.92, No. SM6, 1966
    [131] 中华人民共和国水利部.土工试验规程(SL237—1999).北京:中国水利水电出版社,1999,114~120
    [132] H E Schweyer, A M Bums. Low temperature rheology of asphalt cements Ⅲ, generalized stiffness-temperature relations of different asphalts. Proceedings of the Association of Asphalt Paving Technologist, 1978, 47: 1~18
    [133] Standerd test method for the apparent viscosity (flow) of roofing bitumens using the parallel plate plastometer. ASTM D4989
    [134] Tickell FG, Hiatt WN. Effect of angularity of grains on porosity and permeability of unconsolidated sands. AAPG Bulletin, 1938, 22(9): 1272~1274
    [135] 陈文亮,唐克丽.SR型野外人工模拟降雨装置.水土保持研究,2000, 7(4):106~110
    [136] 陈晓平,茜平一,梁指松等.非均质土坝稳定性的渗流场和应力场耦合分析.岩土力学,2004,25(6):860~864
    [137] Biot M A. General solution of the equation of elasticity and consolidation for a porous material. J. Appl. Phys. 1956, 27 (3): 91~96
    [138] Detournay E, Cheg A H D. Poroelastic response of a borehole in a non-hydrostatic stress field. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 1988, 25 (3): 171~182
    [139] Biot M A. Mechanics of deformation and acoustic propagation in porous media. J. Appl. Phys. 1962, 33:1482
    [140] Kojic M, Cheatham J B. Theory of plastic of porous media with fluid flow. SPEJ. 1974, June: 263
    [141] Risnes R, et al. Sand stresses around a wellbore. SPEJ. 1982,22:883~898
    [142] Wang Y, Dusseault M B. Borehole yield and hydraulic fracture initiation in poorly consolidated rock strata. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 1991, 28:247~260
    [143] 徐曾和,徐小荷.广义平面应力条件下径向渗流的液固耦合.地质力学学报。1999,5(3):12~16
    [144] 董平川.油气储层流固耦合理论、数值模拟及应用[博士学位论文].沈阳:东北大学,1998
    [145] Settari A, et al. Advances in coupled geomechanical and reservoir modeling with applications to reservoir compaction. SPEJ. 1927
    [146] Tran D, Settari A, Nghiem L. New iterative coupling between a reservoir simulator and a geomechanics module[A]. In: SPE78192, SPE/ISRM Rock Mechanics Conference. Irving, Texas: [s. n.], 2002, 362~369
    [147] Thomas L K, Chin LY, Pierson R G, et al. Coupled geomechanics and reservoir simulation[A]. In: SPE77723, SPE Annual Technical Conference and exhibition. San Antonio, Texas, USA: [s.n.], 2002
    [148] Terry W, Xian C G, Fang Z, et al. Coupled geomechanical simulation for stress dependent reservoirs[A]. In: SPE79697, SPE Reservoir Simulation Symposium. Houston, Texas, USA: [s. n.], 2003.1~6
    [149] ZIEN KIEWICZ O C and SHIOMI T. Dynamic behavior of saturated porous media: the generalized Biot formulation and its numerical solution. Int. J. Num. and Analy. Meth. in Geomech, 1984, 8:71~96
    [150] CHEN H Y. Coupled fluid flow and geomechanics in reservoir study-1. Theory and governing equations. SPE 30752, 1995
    [151] 董平川,徐小荷.储层流固耦合的数学模型及其有限元方程.石油学报,1998,19(1):64~70
    [152] 冉启全,李士伦.流固耦合油藏数值模拟中物性参数动态模型研究.石油勘探与开发,1997,24(3):61~65
    [153] Hoek,E.,Bray,J.W岩石边坡工程.北京:冶金工业出版社,1983.5
    [154] 丁秀丽,付敬,张奇华.三峡水库水位涨落条件下奉节南桥头滑坡稳定性分析.岩石力学与工程学报,2004,23(17):2913~2919
    [155] 周汝弟.非线性条件下高陡岩石边坡失稳机理研究及应用[博士学位论文].北京:北京科技大学,2004,4
    [156] 龙治国.赵树岭滑坡稳定性研究[硕士学位论文].北京:中国地质大学,2003
    [157] 刘波,韩彦辉.FLAC原理、实例与应用指南.北京:人民交通出版社,2005,46~57
    [158] 王鹏.复杂岩质边坡工程系统变形破坏机理及稳定性评价研究[博士学位论文].北京:北京科技大学,2004,2
    [159] 黄润秋,许强.显式拉格朗日差分分析在岩石边坡工程中的应用.岩石力学与工程学报,1995,14(4):346~353
    [160] Griffiths, D.V., Lane, P.A. Slope stability analysis by finite elements. Geotechnique, 1999, 49(3): 387~403
    [161] Dawson, E.M., Roth, W.H., Drescher, A. Slope stability analysis by strength reduction. Geotechnique, 1999, 49(6): 835~840
    [162] 丁秀丽,盛谦.三峡左厂房3#坝段坝基渗流场与应力场耦合分析.岩石力学与工程学报,2000,19(增):1001~1005
    [163] 刘志军.澜沧江小湾水电站左岸砂石系统边坡稳定性分析与评价[硕士学位论文].成都:成都科技大学,2004.6
    [164] Itasca consulting group, inc. FLAC(Version 5.0) User's Manual. 2005.4
    [165] Hock, E., and Bray, J.W. Rock Slope Engineering, 3rd Ed. London: The Institute of Mining and Metallurgy, 1981
    [166] 李秀珍,许强.滑坡预报模型和预报判据.灾害学,2003,18(4):71~78
    [167] 郑孝玉.滑坡预报研究方法综述.世界地质,2000,19(4):370~374
    [168] 孙怀军.基于GIS的滑坡预测预报模型库的开发及应用研究[硕士学 位论文].太原:太原理工大学,2002.4
    [169] 杨顺安,晏同珍.预测滑坡学概要.中国地质灾害与防治学报,1998,9(增):1~6
    [170] 于济民.滑坡预报参数的选择和预报标准化的确定方法.中国地质灾害与防治学报,1992,3(2)
    [171] 钟荫乾.滑坡与降雨关系及其预报.中国地质灾害与防治学报,1998,9(4):81~86
    [172] 邓聚龙.灰色预测与决策.武汉:华中理工大学出版社,1987
    [173] 王在泉.边坡动态稳定预测预报及工程应用研究.岩石力学与工程报,1998,17(2):117~122
    [174] 张倬元,王兰生.工程地质分析原理.北京:地质出版社,1981
    [175] 于济民.滑坡动态监测预报技术.中国铁道科学,1992,13(2):81~91
    [176] 苏爱军.滑坡预报方法探讨.水文地质工程地质,1990,(5):50~51
    [177] 周创兵,张辉,彭玉环.蠕变-样条联合模型及其在滑坡时间预报中的应用.自然灾害学报,1996,5(4)
    [178] 廖野澜,谢馍文.监测位移的灰色预报.岩石力学与工程学报,1996,15(3):269~274
    [179] 李天斌,陈明东,王兰生等.滑坡实时跟踪预报.成都:成都科技大学出版社,1999
    [180] 门玉明,胡高社,刘玉海.指数平滑法及其在滑坡预报中的应用.水文地质工程地质,1997,24(1):16~18
    [181] 阳吉宝,钟正雄.位移矢量角在堆积层滑坡时间预报中的应用.山地研究,1995,13(1):49~54
    [182] 张白一,门玉明.基于神经网络的滑坡预测预报研究.西安工程学院院报,1998,20(3):67~69
    [183] 伍法权,王年生.一种滑坡位移动力学预报方法探讨.中国地质灾害与防治学报,1996,7(增刊):38~41
    [184] 凌荣华,陈月娥.塑性应变与塑性应变率意义下的滑坡判据研究.工程地质学报,1997,5(4):346~350
    [185] 胡高社,门玉明,刘玉海等.新滩滑坡预报判据研究.中国地质灾害与防治学报,1996,7(增刊):69~72
    [186] 许东俊,陈从新,刘晓巍.岩质边坡滑坡预报研究.岩石力学与工程 报,1999,18(4):369~372
    [187] 伍法权,王年生.一种滑坡位移动力学预报方法探讨.中国地质灾害与防治学报,1996,7(增刊):38~41
    [188] 阳吉宝.堆积层滑坡临滑预报的新判据.工程地质学报,1995,3(2):70~73
    [189] 文宝萍.滑坡预测预报研究现状及发展趋势.地学前缘,1996,3(1-2):86~91
    [190] 李天斌.岩质工程高边坡稳定性及其控制的系统研究[博士学位论文].成都:成都理工大学,2002.6
    [191] 晏同珍.滑坡时间的预测预报.滑坡论文选集,成都:四川科学技术出版社,1989
    [192] 晏同珍.滑坡动态规律及预测应用.全国第三次工程地质大会论文选集,成都:成都科技大学出版社,1988
    [193] 周宁.堆积层滑坡稳定性分析方法和监测预报技术及工程应用研究[硕士学位论文].长沙:中南大学,2005.10
    [194] 丛爽,向微.BP网络结构参数及训练方法的设计与选择.计算机工程,2001,27(10):36~38
    [195] 李天斌,陈明东.滑坡时间预报的费尔哈斯反函数模型法.地质灾害与环境保护,1996,7(3):192~197
    [196] Li T.B.J. Xu, L.S.Wang. Ways and methods for physical simulation of landslides[C]. Proceedings of 6th ISL, A.A.Balkema Publisher, 1992: 487~491
    [197] Browner C O, Stacey P F. Hogarth pit slope failure, Ontario, Canada, In: Rockslides and Avalanches, 2 Engineering Sites, Developments in Geotechnical Engineering, 1979, 14B

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700