用户名: 密码: 验证码:
地下矿巷道火灾风流紊乱现象仿真方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要
     近年来,地下矿井巷道火灾事故频发,给人类带来了巨大的灾难,因此对矿井火灾风流状态的研究具有重大意义。矿井火灾时期,火势发展迅猛并且变化复杂,正确的控风措施可以有效的救治火灾,减少人员伤亡和财产损失。
     格子Boltzmann方法是一种新兴的数值模拟方法。本文基于格子Boltzmann方法,结合流体力学以及热力学知识研究矿井火灾时期巷道高温风流的流动规律。首先,文章提出一个应用分块耦合算法的速度-温度双分布函数格子Boltzmann模型对风流进行仿真,形象客观地体现了火风压对通风系统的影响。其次,结合Boussinesq近似以及改进动力粘性系数对格子Boltzmann模型进行改进,增加了双分布函数的内在耦合性,并对矿井火灾风流紊乱主要形式之一的旁侧支路风流逆转现象进行仿真研究。最后,基于双扩散理论以及三维格子理论建立三维格子Boltzmann模型,模型中增加了浓度场,并建立了其与速度场、温度场之间的联系,随后对矿井火灾风流紊乱的另一种主要形式火烟滚退现象进行仿真研究。
     矿井火灾时期,火源巷道内高温流体运动为非定常流动以及传热传质过程。为了掌握矿井火灾时期巷道高温风流流动规律,本文提出多个格子Boltzmann模型分别对火风压影响、旁侧支路风流逆转以及火烟滚退现象进行仿真。仿真时,在巷道内设置火源,采用风流流动模型分析流体的传播规律。仿真结果表明,该仿真方法可以得到风流速度、温度、浓度和压力的详细数据,获得关于巷道风流流态的直观信息,从而科学指导矿井火灾早期的探测和防治工作。
In recent years, there are more and more underground mine tunnel fire accidents, which bring enormous disaster to people, thus it is a significant research in state of airflow on mine tunnel fire accidents. In mine fire period, the fire develops rapidly and changes complicatedly. Correct measure of charging wind can be effective to rescue fire disaster, and reduce personnel casualties and property loss.
     Lattice Boltzmann method is a new numerical simulation method. Based on lattice Boltzmann method, combined with knowledge of fluid mechanics and thermodynamics, the paper mainly researches on laws of flowing for high-temperature airflow during a fire disaster in underground tunnels. Firstly, an approach for simulating airflow flowing based on the double distributed velocity-temperature lattice Boltzmann model using by the method of block coupling is proposed. It objectively reflects the impact of depression of fire on the ventilating system. Secondly, combined with Boussinesq approximation and the improvement of dynamic viscosity, the paper proposes an improved model which increasing the internal coupling of the double distributed function to carry out simulated research on reversal development of lateral branch airflow which is one of main turbulence form in mine fire. Finally, based on the theory of double diffusive and three-dimensional lattice, a three-dimensional lattice Boltzmann model is proposed. The model increases the concentration field, and established the links with the velocity field and temperature field. Then it simulates research on rollback development of fire smoke which is another main turbulence form in mine fire.
     In mine fire period, the movement of high-temperature flow is a process of unsteady flowing, heat transferring and mass transferring in fire tunnel. In order to master laws of flowing for high-temperature airflow during a fire disaster in underground tunnels, the paper proposes more than one lattice Boltzmann models which simulate research on impact of depression, reversal development of lateral branch airflow and rollback development of fire smoke. During simulation, the fire is set up in a tunnel. A airflow flowing model is applied to study the laws of spreading. The simulating result shows that a great deal of information about velocity, temperature, concentration and pressure of airflow can be obtained and visual information about state of airflow along tunnels can also obtained, which provide a scientific basis to guide working of detection, prevention and cure in early fire period.
引文
[1]郭照立,郑楚光,李青,王能超.流体动力学的格子Boltzmann方法[M].湖北科学技术出版社,2002.
    [2]周光垌,严宗毅.流体力学(下册)[M].高等教育出版社.1993.
    [3]范隆声,鲍杰,娄海关.矿井火灾期间风流状态模拟方法分析[J].中国煤炭,2001,27(12):40-42.
    [4]戚宜欣.矿井火灾烟流温度场及浓度场的数值模拟[J].西安矿业学院学报,1994,(1):26-33.
    [5]周福宝,王德明.矿井火灾下行风流逆转的突变动力学分析[J].辽宁工程技术大学学报,2006,25(2):164-167.
    [6]朱红青,刘宪申,张万奎,张彷彦.矿井火灾初期自动风流控制系统的研究及应用[J].煤炭科学技术,2000,28(2):26-28.
    [7]周心权,吴兵,杜红兵.矿井通风基本概念的理论基础分析[J].中国矿业大学学报,2003,32(2):133-136.
    [8]高运增,周心权,王润华.煤矿井下爆炸烟气动态稀释规律研究[J].矿业安全与环保,2006,33(2):4-9.
    [9]耿继原.矿井火灾时期烟流态过程的数值模拟[硕士学位论文].辽宁工程技术大学安全技术及工程系,2004.
    [10]王德明,王省身,郭晋云.矿井火灾救灾决策支持系统研究[J].煤炭学报,1996,21(6):624-629.
    [11]薛二龙,宋选民.矿井火灾过程的虚拟现实决策系统研究[J].太原理工大学学报,2003,34(3):305-308.
    [12]刘剑,贾进章,郑丹.流体网络理论[M].北京:煤炭工业出版社,2002.39-45.
    [13]贾进章,马恒,刘剑.矿井火灾时期温度分布数值模拟[J].辽宁工程技术大学学报,2003,22(4):460-463.
    [14]李学诚.中国煤矿安全大全[M].北京:煤炭工业出版社,1997.
    [15]黄元平.煤矿安全手册(第一册):通风与空调[M].北京:煤炭工业出版社,1990.
    [16]黄元平.矿井通风[M].徐州:中国矿业大学出版社,1990.
    [17]吴中立.矿井通风与安全[M].徐州:中国矿业大学出版社,1989.
    [18]周心权,吴兵.矿井火灾救灾理论与实践[M].北京:煤炭工业出版社,1996.
    [19]李学诚,王省身.中国煤矿通风安全工程图集[M].徐州:中国矿业大学出版社,1995.
    [20]张兴凯.地下工程火灾原理及应用[M].北京:首都经济贸易大学出版社,1997.
    [21]黄光球,陆秋琴,郑彦全.存在固定风量分支的通风网络解算新方法[J].金属矿山,2004,(10):52-54.
    [22]宋远卓,代昌标,陆愈实.煤矿火灾仿真模拟系统的研究[J].武汉:中国安全生产科学技术,2006,2(5):55-58.
    [23]黄光球,汪晓明,陈慧明.基于元胞自动机的地下矿火灾蔓延仿真方法[J].系统仿真学报,2007,19(1):201-205.
    [24]Rothman DH, Cellular-automaton fluids:a model for flow I porous media. 53:509-518(1988).
    [25]Sucii S, Foti E, Higuera F. Threedimensional flows in complex geometries with the lattice Boltzamnn method. Europhys.Lett.10:433-438(1989).
    [26]段雅丽.格子Boltzmann方法及其在流体力学上的应用:[博士学位论文].合肥:中国科技大学数学系,2007.
    [27]Adrover A, Giona M.A predictive model for permeability of correlated porous media. Chemical Engineering Journal,64:7-19(1996).
    [28]Inamuro T, Ogata T, Ogino F. Numerical simulation of bubble flows by the lattice Boltzmann method. Future Generation Computer System,2004,20(6):959-964.
    [29]Guo Zhaoli, Zhao T S. Lattice Boltzmann model for incompressible flows through porous media. Physical Review E,2002,66(32B):036304/1-036304/9.
    [30]He X, Doolen G Lattice Boltzmann method on curvilinear coordinates system: flow around a circular cylinder. Journal of Computational Physics,1997,134(2):306-315.
    [31]L-S Luo.Analytic solutions of linearized lattice Boltzmann equation for simple flows. Journal of Computational Physics,1996,88(3/4):913-926.
    [32]周西华,王继仁,王树刚,陈衍宽.风流紊流换热的场模型[J].矿业安全与环保,2001,28(5):17-19
    [33]戚宜欣,王省身.矿井火灾时期风流流动及通风系统变化的动态模拟[J].徐州:中国矿业大学学报,1995,24(3):19-23.
    [34]戚宜欣.矿井火灾时期风流紊乱规律的计算机模拟研究:[硕士学位论文].徐州:中国矿业大学采矿系,1989.
    [35]戚宜欣.矿井火灾救灾专家系统的研究:[博士学位论文].徐州:中国矿业大学采矿系,1992.
    [36]周西华,王继仁,梁栋.掘进巷道风流温度场分布规律的研究[J].辽宁工程技术大学学报,2003,22(1):1-3
    [37]郭照立,郑楚光.格子Boltzmann方法的原理及应用[M].科学出版社,2008.
    [38]Z.L.Guo,B.C.Shi and C.GZheng. A coupled lattice BGK model for the Boussinesq equations.[J].Numer.Meth.Fluids,2002,39(4):325-342
    [39]Baochang Shi,Nanzhong He,and Nengchao Wang. A unified thermal lattice BGK model for Boussinesq equations. [J].Progress in Computational Fluid Dynamics, 2005,5(1/2):50-64
    [40]Bouzidi M, Firdaouss M, Lallemand P J. Momentum Transfer of a Boltzmann-Lattice fluid with boundaries[J].Physics of Fluids,2001,13(11):3452-3459.
    [41]王海燕,赵洪泽.基于数值模拟的矿井火灾虚拟再现方法研究[J].中国煤炭,2007,33(7):74-76
    [42]王泽宇,冯炼,张发勇.竖井烟囱效应作用下的隧道火灾通风数值模拟[J].地下空间与工程学报,2006,2(3):485-487
    [43]梁强,魏东.双层岛式地铁车站火灾烟气蔓延数值模拟与分析[J].热科学与技术,2008,7(2):161-166
    [44]闫治国,朱合华,杨其新.火灾时隧道火风压及其对通风影响的试验研究[J].同济大学学报,2006,34(12):1592-1596
    [45]蔡永乐,周心权.从一起矿井外因火灾事故定性分析风流逆转原因及控风措施[J].山西煤炭,1999,19(4):40-42
    [46]康虎林,孟庆财.矿井火风压使风流逆转的条件及控制措施[J].煤炭技术,2003,22(7):
    [47]齐晖.火灾引发风流逆转成因及控制[J].矿业工程,2007,5(4):44-46
    [48]蒋军成,王省身.火灾巷道烟气流动的数值分析[J].煤炭学报,1997,22(2)165-169.
    [49]蒋军成,王省身.矿井火灾巷道烟气流动场模型[J].矿冶工程,1997,17(2):6-10
    [50]刘晓兵,周心权,张景飞.煤矿井下烟流区域温度、密度及浓度衰减规律[J].矿业安全与环保,2004,31(4).
    [51]周福宝,王德明,矿井火灾烟流滚退距离的数值模拟[J],中国矿业大学学报,2004,33(5):499-503
    [52]邱雁,周心权.水平巷道火灾浮羽流及顶板射流积分模型[J].辽宁工程技术大学学报,2003,22(5):585-588
    [53]胡煜,张兴凯.井巷火灾烟流逆转层形成条件的探讨[J].劳动保护科学技术,1998,18(6):36-38
    [54]王海燕,周心权.平巷烟流滚退火烟羽流模型及其特征参数研究[J].煤炭学报,2004,29(2):190-194
    [55]周延,孟倩.水平网络火灾旁侧支路风流逆转计算机模拟[J].中国矿业大学学报,2003,32(1):23-26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700