用户名: 密码: 验证码:
能源利用问题的代数显式解析解
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
解析解有其不可代替的理论价值。流动与传热的各种基本方程的解析解,历史上对学科的发展曾起过非常关键的作用。由于它们严格表达了该方程在某一特定条件下的详尽准确情况,解析解还可以用来检查各种数值计算方法的准确度、收敛度与有效度,以及作为研究不同数值解法的基础,启发如何改进其差分格式、网格生成等。所以,即使对近年来迅速发展的计算流体力学与计算传热学,解析解也是非常有用的。而代数显式解析解尤其适合用于理论研究与作为数值计算的标准解。尽管如此,由于解析求解能源利用问题的偏微分方程在数学上较为困难,国际上的公开文献中仅有少量有关的代数显式解析解报道。本学位论文依托国家自然科学基金(No.50246003,No.50576097)和国家重大基础研究发展规划项目(No.G20000263)等科研任务,对能源利用的代数显式解析解问题进行了深入研究,涉及导热、对流换热、传质、非牛顿流体运动等领域。主要研究内容如下:
     双曲型(热波)方程作为一种典型的非Fourier热传导模型得到了学术界的普遍关注。本研究对二维和三维双曲型热传导方程给出了一些含有任意函数的解析解。对于二维的情况,解中含有8个任意函数。对于三维的情况,解中含有无穷多个任意函数。初步讨论了这些解的边界和初始条件。通过对这些解的分析指出,当内热源以特定方式衰减时,无论其几何分布如何,它对于温度分布都不会有影响。这是由双曲型热传导方程导出的一个特有现象。
     Chen-Holmes方程也许是现有最为完善的灌流组织传热模型。本研究导出了考虑非Fourier效应时Chen-Holmes生物传热模型特定热物性条件下的通解,以加深对该模型的了解,丰富生物传热学理论。由此通解可得到带有热波的解,热波解及其存在条件的生理学含义为,对于肿瘤、大脑等具有高血液灌注率的部位,由初始温度分布不均趋于温度均匀的过程中,考虑非Fourier效应时,组织内各点温度可能会在平衡温度附近上下振荡,而非直接过渡到平衡温度。
     Pennes方程是目前应用最广泛的生物传热模型。本研究由Chen-Holmes方程通解出发,得到了考虑非Fourier效应时特定热物性条件下Pennes生物传热模型的通解,该解反映了对于任意的边界条件与初始条件,由Pennes方程所揭示的生物组织内的温度分布。
     王补宣院士的多孔介质方程是一种富有代表性的生物传热模型。该方程的推导不涉及Darcy定律,也不限于牛顿流体,因而具有很好的通用性。本研究给出了非Fourier效应下该方程在一定内热源条件下的显式解析通解,以拓展对于生物传热这一高度复杂现象的认识。该解反映了对于任意的边界条件与初始条件,当总的内热产满足特定约束条件时,由王补宣方程所揭示的生物组织内的温度分布。当导热系数与体积比热为温度的函数时,非Fourier导热主控方程成为非线性偏微分方程,求得其解析解较为困难。根据作者的了解,国际上公开文献中极少有非线性非Fourier导热的显式解析解的报道。本研究对其导出了一些代数显式解析解,以发展相关理论并为数值计算提供标准解。
     Brinkman模型是Darcy模型的一种改进模型,它可以反映一些各向异性与非Darcy效应(例如非滑移界面效应)。为更严格、准确地探讨Brinkman模型所反映的规律性,本研究推导并得出了该模型基本方程组的一些代数显式解析解。第一解的物理图景为在两块与y轴平行且相距δ的无限长固壁之间的、温度均匀的Brinkman流动。第二解代表多孔介质中一种在两块与x轴平行的无限长的可渗透壁之间的Brinkman自然对流。第三解可代表多孔介质中在两块平行于y轴的无限长固壁之间的Brinkman自然对流,且温度分布是线性的。
     本研究给出了两套轴对称定常层流自然对流代数显式解析解以加强对这种流动的基础了解。第一解描述了一垂直无限长下移冷多孔介质圆管外半无限空间的有边界层假设的自然对流。第二解描述了两垂直同心圆管之间的自然对流。
     本研究对对流进行了热力学上的严格讨论,说明了对流不是一种真正的传“热”方式,而主要是一种通过粒子运动输运内能的方式。基于对对流换热的讨论,从物理意义上阐释了场协同概念——当速度矢量处处与等温线垂直时,可获得最好的对流换热效果。为了进一步发展场协同理论,研究实现场协同的方法,导出了各种场协同解,包括具有热源的解与具有质量源的解以及边界协同解。
     对流强化传热是当前学术界的研究热点之一。本研究对两平行可渗透壁之间的二维对流换热导出了一些解析解,并运用单相强化传热的统一理论——场协同原理进行了分析。这些结果有助于启发增强或削弱场协同程度的实用方法。本研究还讨论了一些因素对于换热强度、场协同度等的影响。分析表明对于这种流动场协同度可能会对不同壁面的换热条件具有不同的影响,此外局部场协同程度在一些情况下可能比整个流动区域的场协同程度更有意义。
     就主控方程而言,非稳态对流比稳态对流问题更为复杂。一般而言,稳态对流问题可认为是非稳态问题的特例。本研究给出了一些在两平行壁面之间的非稳态二维对流换热的解析解,同时由这些解得出了一些有意义的结论。例如第一解表明非稳态对流换热在一定条件下可能退化为非稳态导热问题,此时流体运动对换热没有贡献。第三解指出非稳态流体运动可用于弱化换热。
     本研究对考虑非Fourier效应和非Fick效应的热质耦合方程组导出了两组解析解。这些解有助于加深对多孔介质干燥中非Fourier非Fick超常传热传质过程的理解,同时可作为标准解校核数值计算结果,具有较好的参考价值。
     双扩散对流的主控方程组相当复杂,为数学上三维的非线性偏微分方程组。本论文推导了双扩散对流的两套代数显式解析解。第一套解为无限长的柱形管中的双扩散对流;另一套解为无限长的具有多孔介质壁面的环管中的双扩散对流。它们对于传热传质理论具有重要的意义。
     复杂流变液体种类繁多,一般以非牛顿本构方程加以描述。理解流变液体的各种流动现象有助于推动一些学科和产业的发展。本研究对环管中的Oldroyd-B型不可压非定常旋流推导出了两个代数显式解析解。尽管流变液体主控方程较为复杂,这些解析解却非常简单。此外,本文还导出了广义二阶流变流的一个定常解。
Analytical solutions have irreplaceable theoretical vaule. Many analytical solutions played key roles in the early development of fluid mechanics and heat conduction. Besides their theoretical meaning, analytical solutions can also be applied to check the accuracy, convergence and effectiveness of various numerical computation methods and to improve their differencing schemes, grid generation ways and so on. This is due to they can express the detailed analytical situation under certain initial and boundary conditions. The analytical solutions are therefore very useful even for the newly rapidly developing computational fluid dynamics and heat transfer. Especially, algebraically explicit analytical solutions are more suitable for theoretical research or to be used as benchmark solutions to check numerical calculations. Nevertheless, there have been few algebraically explicit analytical solutions reported in open literature up to now, due to mathematical difficulties. Supported by the National Natural Science Foundation of China (No.50246003, No.50576097) and the Major State Basic Research Development Program of China (No.G20000263), the dissertation researches algebraically explicit analytical solutions of energy utilization, concerning fields such as heat conduction, convection, mass transfer, non-Newtonian fluid flow and so on. The main contents are as follows:
     Hyperbolic (thermal wave) equation has been widely concerned in the research community as a typical non-Fourier heat conduction model. Some analytical solutions with arbitrary functions for 2-D and 3-D hyperbolic heat conduction equation are presented. Especially, for 2-D case, 8 arbitrary functions are included in the final solution. For 3-D case, infinite arbitrary functions are included in the final solution. Some special boundary and initial conditions are discussed. It is pointed out that when the internal heat source attenuates with special manner, it would have no effect on the temperature distribution. This is a special feature of the hyperbolic heat conduction equation.
     Chen-Holmes equation may be the optimum perfusion heat transfer model up to now. In order to further expand the understanding of this model and to enrich the theoretical research, an analytical general solution under certain kind of relationship between thermal parameters is presented for the non-Fourier Chen-Holmes model. It is possible to get special solutions with heat wave effect from it. The physiology meaning of the heat wave solutions is that for biotissue with high blood perfusion rate such as tumour and cerebrum, because of non-Fourier effect, the temperature may fluctuate around equilibrium point.
     Pennes equation is the most widely used bioheat transfer model nowadays. An analytical general solution under certain kind of relationship between thermal parameters is presented for the non-Fourier Pennes model based on the abovementioned general solution of Chen-Holmes equation. The solution depicts the temperature distribution in biotissue medium for any boundary conditions and initial conditions discovered by the non-Fourier Pennes equation.
     The porous medium Wang model is a representative bioheat transfer model. It is more general since its derivation has no relationship with Darcy Law and its application is not confined to Newtonian fluid. This dissertation presents an analytical general solution for the non-Fourier Wang equation with special internal heat production to further expand the understanding of the highly complex bioheat transfer phenomena. The solution depicts the temperature distribution in biotissue medium for any boundary conditions and initial conditions discovered by the non-Fourier Wang equation with special internal heat production.
     When the thermal conductivity and volumetric specific heat are functions of temperature, the governing equation of non-Fourier heat conduction is nonlinear. Therefore it is difficult to find its analytical solutions. Several algebraically explicit analytical solutions of nonlinear non-Fourier heat conduction are derived, both to develop theory and to serve as benchmark solutions for numerical calculations.
     Brinkman model is one of the improvements of Darcy model. It can reflect some anisotropic and non-Darcy effects (such as the no slip boundary effect). For the sake of more strictly and accurately studying the regularity reflected by Brinkman model, some algebraically explicit analytical solutions of the governing equation set are derived and presented. The physical feature of the first solution is a uniform temperature Brinkman flow in a channel between two infinite long solid walls parallel with y coordinate. The second solution represents a Brinkman natural convection flow in porous media between two infinite long permeable walls parallel to x coordinate. The third solution can represent a Brinkman natural convection in porous media between two infinite long solid walls parallel to y coordinate, and the temperature distribution is linear.
     Two algebraically explicit analytical solutions of axisymmetric steady laminar natural convection are derived to develop the theoretical understanding. The first analytical solution represents the natural convection in a semi-infinite space with boundary suction along an infinitely long vertical cold moving down porous tube. The second solution describes the natural convection between two infinite concentric vertical solid tubes.
     A thermodynamically strict discussion is given about the convection. It is pointed out that the convection is not a rigorous kind of "heat" transfer but mainly internal energy transfer by the movement of particles. Based on the discussion of convection, the concept of field synergy—the best convection "heat" transfer is the case where the velocity vectors are always perpendicular to the isothermal surfaces—is easy to understand. For further theoretically developing the field synergy principle and researching the artificial measures to accomplish field synergy, different kinds of algebraically explicit analytical solutions are derived and given, including solutions with heat source, with mass source, full field synergy solutions and boundary field synergy solutions.
     Convective heat transfer enhancement is one of the research hot spots nowadays in the research community. Some analytical solutions for 2-D convective heat transfer between two parallel penetrable walls are presented and analysed using field synergy principle in this study. These results are valuable to inspire the methods to improve or weaken field synergy in practice. The influences of some factors on heat transfer and field synergy number are also discussed. It is demonstrated that the field synergy degree might have different influences on the heat transfer conditions of different walls for this kind of flow. It is also pointed out that the local field synergy degree might be more meaningful than the field synergy degree in the whole domain in some cases.
     In regard to the governing equations, unsteady convection problems are more complex than steady ones. Generally speaking, steady convection problems can be regarded as simple special cases of unsteady ones. Some analytical solutions for unsteady 2-D convective heat transfer between two parallel walls are presented. And also some meaningful conclusions can be drawn form them. For example, the first solution demonstrates that the unsteady convective heat transfer could degenerate into an unsteady heat conduction problem under some conditions. Then the fluid flow would contribute nothing to the heat transfer. The third solution demonstrates that the unsteady fluid motion could be utilized to weaken the heat transfer.
     Two algebraically explicit analytical solutions of the equation set describing non-Fourier and non-Fick heat and mass transfer in capillary porous media are reported. These analytical solutions are useful to deepen the understanding of non-Fourier and non-Fick heat and mass transfer in the rapid drying process of porous media. They can also be applied as benchmark solutions to check the numerical computation results. Therefore, these analytical solutions are of high value.
     The governing equation set for the double diffusive convection is rather complicated. It is a nonlinear mathematical 3-D equation set. Two algebraically explicit analytical solutions for the double diffusive convection are derived. One is for the double diffusive convection in an infinite long cylindrical tube. Another one is for the double diffusive convection in an infinite long circular tube with porous wall. They are meaningful for the theory of heat and mass transfer.
     There are many different kinds of rheological complicated fluids with non-Newtonian constitutive equations. The understanding of the flow phenomena of these fluids is helpful for many disciplines. Two algebraically explicit analytical solutions are derived for the incompressible unsteady rotational flow of a rheologic flow of Oldroyd-B type in an annular pipe. Even for complicated rheologic governing equation, the solutions are very simple. In addition, a similar solution is also derived for the generalized second grade rheologic fluid flow.
引文
[1] McMasters R, Dowding K, Beck J, Yen D. Methodology to Generate Accurate Solutions for Verification in Transient Three-dimensional Heat Conduction. Numerical Heat Transfer, Part B, 2002, 41 (6): 521-541
    [2] 杨奇林.数学物理方程与特殊函数.北京:清华大学出版社.2004
    [3] Cai R, Jiang H, Sun C. Some Analytical Solutions Applicable to Verify Three-dimensional Numerical Methods in Turbomachines. ImechE Conf. Publ. C80/84 (1984) 255-263
    [4] Xu J, Shi J, Ni W. Three-dimensional Incompressible Flow Solution of an Axial Compressor Using Pseudostream-functions Formulation. ASME paper 89-GT-319, 1989
    [5] Gong Y, Cai R. 3D Mean-Stream-Line Method-A New Engineering Approach to the Inverse Problem of 3D Cascade. ASME paper 89-GT-48, 1989
    [6] Shen M, Liu Q, Zhang Z. Calculation of Three-dimensional Transonic Flows in Turbornachinery with Generalized Von Mises Coordinates System. Science in China (Series A), 1996, 39 (10): 1084-1095
    [7] Lamb H. Hydrodynamics, 6th ed.. Cambridge Univ. Press, London, 1932
    [8] Jacob M. Heat Transfer. John Wiley &Sons, Inc., New York, 1949
    [9] Shapiro A. The Dynamics and Thermodynamics of Compressible Fluid Flow. The Ronald Press Company, New York, 1954
    [10] Tang D, Araki N. Non-Fourier Heat Conduction in a Finite Medium Under Periodic Surface Thermal Disturbance. International Journal of Heat and Mass Transfer, 1996, 39 (8): 1585-1590
    [11] Lewandowska M, Malinowski L. An Analytical Solution of the Hyperbolic Heat Conduction Equation for the Case of a Finite Medium Symmetrically Heated on Both Sides. International Communications in Heat and Mass Transfer, 2006, 33:61-69
    [12] Barletta A, Pulvirenti B. Hyperbolic Thermal Waves in a Solid Cylinder with a Non-stationary Boundary Heat Flux. International Journal of Heat and Mass Transfer, 1998, 41 (1): 107-116
    [13] Barletta A, Zanchini E. Three-dimensional Propagation of Hyperbolic Thermal Waves in a Solid Bar with Rectangular Cross-section. International Journal of Heat and Mass Transfer, 1999, 42: 219-229
    [14] Wang L. Solution Structure of Hyperbolic Heat-conduction Equation. International Journal of Heat and Mass Transfer, 2000, 43:365-373
    [15] Chan S, Low M, Mueller W. Hyperbolic Heat Conduction in Catalytic Supported Crystallites. AIChE J. 1971, 17 (6): 1499-1501
    [16] Taitel Y. On the Parabolic, Hyperbolic and Discrete Formulation of the Heat Conduction Equation. International Journal of Heat and Mass Transfer, 1972,15:369-371
    [17] Ozisik M, Vick B. Propagation and Reflection of Thermal Waves in a Finite Medium. International Journal of Heat and Mass Transfer, 1984, 27 (10): 1845-1854
    [18] Gembarovic J, Majernik V. Non-Fourier Propagation of Heat Pulses in Finite Medium. International Journal of Heat and Mass Transfer, 1988, 31 (5): 1073-1080
    [19] Kar A, Chan C, Mazumder J. Comparative Studies on Nonlinear Hyperbolic and Parabolic Heat Conduction for Various Boundary Conditions: Analytic and Numerical Solutions. J. Heat Transfer, 1992,114:14-20
    [20] Hector L, Kim W, Oezisik M. Propagation and Reflection of Thermal Waves in a Finite Medium due to Axisymmetric Surface Sources. International Journal of Heat and Mass Transfer, 1992, 35 (4): 897-912
    [21] Tang D, Araki N. Analytical Solution of Non-Fourier Temperature Response in a Finite Medium under Laser-pulse Heating. Heat and Mass Transfer, 1996, 31: 359-363
    [22] Ozisik M, Tzou D. On the Wave Theory in Heat Conduction. ASME Journal of Heat Transfer, 1994,116:526-535
    [23] Wilhelm H, Choi S. Nonlinear Hyperbolic Theory of Thermal Waves in Metals. Journal of Chemical Physics, 1975, 63: 2119-2123
    [24] Barletta A, Zanchini E. Hyperbolic Heat Conduction and Thermal Resonances in a Cylindrical Solid Carrying a Steady Periodic Electric Field. International Journal of Heat and Mass Transfer, 1996,39:1307-1315
    [25] Barletta A. Hyperbolic Propagation of an Axisymmetric Thermal Signal in an Infinite Solid Medium. International Journal of Heat and Mass Transfer, 1996,39: 3261-3271
    [26] Barletta A, Zanchini E. Thermal-wave Heat Conduction in a Solid Cylinder which Undergoes a Change of Boundary Temperature. Heat and Mass Transfer, 1997, 32: 285-291
    [27] Zanchini E, Pulvirenti B. Periodic Heat Conduction with Relaxation Time in Cylindrical Geometry. Heat and Mass Transfer, 1998, 33: 319-326
    [28] Barun V, Ivanov A. Thermal Action of a Short Light Pulse on Biological Tissues. International Journal of Heat and Mass Transfer, 2003,46: 3243-3254
    [29] Shrivastava D, Roemer R. An Analytical Study of Heat Transfer in a Finite Tissue Region with Two Blood Vessels and General Dirichlet Boundary Conditions. International Journal of Heat and Mass Transfer, 2005,48 : 4090-4102
    [30] Wissler E. An Analytical Solution Countercurrent Heat Transfer between Parallel Vessels with a Linear Axial Temperature Gradient. J. Biomech. Eng. 1988, 110: 254-256
    [31] Shrivastava D, McKay B, Roemer R. An Analytical Study of Heat Transfer in Finite Tissues with Two Blood Vessels and Uniform Dirichlet Boundary Conditions. J. Heat Transfer, 2005, 127: 179-188
    [32] Shrivastava D, Roemer R. An Analytical Derivation of Source Term Dependent, 2-D 'Generalized Poisson Conduction Shape Factors'. International Journal of Heat and Mass Transfer, 2004,47: 4293-4300
    [33] Myers G. Analytical Methods in Conduction Heat Transfer. AMCHT Publications, Madison, WI, 1998
    [34] Xia Y, Jacobi A. An Exact Solution to Steady Heat Conduction in a Two-dimensional Slab on a One-dimensional Fin: Application to Frosted Heat Exchangers. International Journal of Heat and Mass Transfer, 2004,47: 3317-3326
    [35] Milosevic N, Raynaud M. Analytical Solution of Transient Heat Conduction in a Two-layer Anisotropic Cylindrical Slab Excited Superficially by a Short Laser Pulse. International Journal of Heat and Mass Transfer, 2004, 47:1627-1641
    [36] Lu X, Tervola P, Viljanen M. Transient Analytical Solution to Heat Conduction in Multi-dimensional Composite Cylinder slab. International Journal of Heat and Mass Transfer, 2006,49: 1107-1114
    [37] Lu X, Tervola P, Viljanen M. Transient Analytical Solution to Heat Conduction in Composite Circular Cylinder. International Journal of Heat and Mass Transfer, 2006,49: 341-348
    [38] Lu X, Tervola P, Viljanen M. A New Analytical Method to Solve the Heat Equation for a Multi-dimensional Composite Slab. Journal of Physics A: Mathematical and General, 2005, 38: 2873-2890
    [39] Lu X, Tervola P. Transient Heat Conduction in the Composite Slab-Analytical Method. Journal of Physics A: Mathematical and General, 2005, 38 : 81-96
    [40] Tittle C. Boundary Value Problems in Composite Media: Quasi-orthogonal Functions. J. Appl. Phys. 1965, 36 (4): 1486-1488
    [41] Padovan J. Generalized Sturm-Liouville Procedure for Composite Domain Anisotropic Transient Heat Conduction Problems. AIAA J. 12 (8) (1974) 1158-1160
    [42] Huang S, Chang Y. Heat Conduction in Unsteady, Periodic, and Steady States in Laminated Composites. J. Heat Transfer, 1980, 102: 742-748
    [43] Feijoo L, Davis H, Ramkrishna D. Heat Transfer in Composite Solids with Heat Generation. J. Heat Transfer, 1979, 101: 137-143
    [44] Yan L, Haji-Sheikh A, Beck J. Thermal Characteristics of Two-layered Bodies with Embedded Thin-film Heat Source. J. Heat Transfer, 1993, 115: 276-283
    [45] Aviles-Ramos C, Haji-Sheikh A, Beck J. Exact Solution of Heat Conduction in Composite Materials and Application to Inverse Problems. J. Heat Transfer, 1998, 120: 592-599
    [46] Barker J. The Efficiency of Composite Fins. Nucl. Sci. Eng. 1958, 3: 300-312
    [47] Chu H, Weng C, Chen C. Transient Response of a Composite Straight Fin. J. Heat Transfer, 1983,105:307-311
    [48] Mokheimer E, Antar M, Farooqi J, Zubair S. Analytical and Numerical Solution along with PC Spreadsheets Modeling for a Composite Fin. Heat Mass Transfer, 1997, 32: 229-238
    [49] Aviles-Ramos C, Haji-Sheikh A, Beck J. Exact Solution of Heat Conduction in Composite Materials and Application to Inverse Problems. J. Heat Transfer, 1998,120: 592-599
    [50] Abdul A, Vakakis A. Axisymmetric Transient Solutions of the Heat Diffusion Problem in Layered Composite Media. International Journal of Heat and Mass Transfer, 2000, 43: 3883-3895
    [51] McGahan W, Cole K. Solutions of the Heat Conduction Equation in Multilayers for Photothermal Deflection Experiments. J. Appl. Phys. 1992, 72:1362-1373
    [52] Cole K, McGahan W. Theory of Multilayers Heated by Laser Absorption. J. Heat Transfer, 1993,115:767-771
    [53] Salt H. Transient Conduction in a Two-dimensional Composite Slab-I. Theoretical Development of Temperature Modes. International Journal of Heat and Mass Transfer, 1983,26: 1611-1616
    [54] Salt H. Transient Conduction in a Two-dimensional Composite slab-II. Physical Interpretation of Temperature Modes. International Journal of Heat and Mass Transfer, 1983,26: 1617-1623
    [55] Mikhailov M, Ozisik M. Transient Conduction in a Three-dimensional Composite Slab. International Journal of Heat and Mass Transfer, 1986, 29: 340-342
    [56] Haji-Sheikh A, Beck J. Temperature Solution in Multi-dimensional Multi-layer Bodies. International Journal of Heat and Mass Transfer, 2002,45: 1865-1877
    [57] Abdul A, Vakakis A. Axisymmetric Transient Solutions of the Heat Diffusion Problem in Layered Composite Media. International Journal of Heat and Mass Transfer, 2000, 43: 3883-3895
    [58] Milosevic N, Raynaud M. Analytical Solution of Transient Heat Conduction in a Two-layer Anisotropic Cylindrical Slab Excited Superficially by a Short Laser Pulse. International Journal of Heat and Mass Transfer, 2004,47: 1627-1641
    [59] Choudhury S, Jaluria Y. Analytical Solution for the Transient Temperature Distribution in a Moving Rod or Plate of Finite Length with Surface Heat Transfer. International Journal of Heat and Mass Transfer, 1994, 37: 1193-1205
    [60] Yilbas B, Kalyon M. Analytical Solution for Pulsed Laser Heating Process: Convective Boundary Condition Case. International Journal of Heat and Mass Transfer, 2002, 45: 1571-1582
    [61] Blackwell B. Temperature Profile in Semi-infinite Body with Exponential Source and Convective Boundary Conditions. J. Heat Transfer, 1990, 112: 567-571
    [62] Arpaci V. Conduction Heat Transfer. Addison-Wesley, Reading, Massachusetts (1966)
    [63] Karwe M, Jaluria Y. Thermal Transport from a Heated Moving Surface. J. Heat Transfer, 1986, 108: 728-733
    
    [64] Ready J. Effects due to Absorption of Laser Radiation. J. Appl. Phys. 1965, 36: 462-468
    [65] Al-Adawi M, Abel-Naby M, Shalaby S. Laser Heating of a Two-layer System with Constant Surface Absorption: an Exact Solution. International Journal of Heat and Mass Transfer, 1995, 38: 947-952
    
    [66] Yilbas B, Sami M. Heat Transfer Analysis of a Semi-infinite Solid Heated by a Laser Beam. Heat Mass Transfer, 1997, 32: 245-253
    [67] Yilbas B. Analytical Solution for Time Unsteady Laser Pulse Heating of Semi-infinite Solid. Int. J.Mech. Sci. 1997,39:671-682
    [68] Vasseur P, Robillard L. The Brinkman Model for Natural Convection in a Porous Layer: Effects of Nonuniform Thermal Gradient. International Journal of Heat and Mass Transfer, 1993, 36: 4199-4206
    [69] Vasseur P, Wang C, Sen M. The Brinkman Model for Natural Convection in a Shallow Porous Cavity with Uniform Heat Flux. Numerical Heat Transfer, 1989,15: 221-242
    [70] Cormack D, Leal L, Imberger J. Natural Convection in a Shallow Cavity with Differentially Heated End Walls. Part I. Asymptotic Theory. J. Fluid Mech. 1974, 65: 209-229
    [71 ] Walker K, Hornsy G. Convection in a Porous Cavity. J. Fluid Mech. 1978,87:449-474
    [72] Harris S, Ingham D, Pop I. Free Convection from a Vertical Plate in a Porous Media Subjected to a Sudden Change in Surface Temperature. International Communications in Heat and Mass Transfer, 1997,24 (4) : 543-552
    [73] Lewandowski W, Khubeiz J, Kubski P, Bieszk H, Wilczewski T, Szymanski S. Natural Convection Heat Transfer from Complex Surface. International Journal of Heat and Mass Transfer, 1998,41 (12): 1857-1868
    [74] Lewandowski W, Kubski P, Khubeiz J. Laminar Free Convection Heat Transfer from a Horizontal Ring. Warme und Stoffubertragung, 1993, 29: 9-16
    
    [75] Lewandowski W, Kubski P, Khubeiz J, Bieszk H, Wilczewski T, Szymanski S. Theoretical and Experimental Study of Natural Convection Heat Transfer from Isothermal Hemisphere. International Journalof Heat and Mass Transfer, 1997,40 (1), 101-109
    [76] Yoo J. Thermal Convection in a Vertical Porous Slot with Spatially Periodic Boundary Temperatures: Low Ra Flow. International Journal of Heat and Mass Transfer, 2003, 46 : 381-384
    [77] Chikh S, Boumedien A, Bouhadef K, Lauriat G. Analytical Solution of Non-Darcian Forced Convection in an Annular Duct Partially Filled with a Porous Medium. International Journal of Heat and Mass Transfer, 1995, 38 (9): 1543-1551
    [78] Barletta A, Pulvirenti B. Forced Convection with Slug Flow and Viscous Dissipation in a Rectangular Duct. International Journal of Heat and Mass Transfer, 2000,43 : 725-740
    [79] Magyari E, Keller B, Pop I. Exact Analytical Solutions of Forced Convection Flow in a Porous Medium. International Communications in Heat and Mass Transfer, 2001,28 (2): 233-241
    [80] Nakayama A. A Unified Treatment of Darcy-Forchheimer Boundary-layer Flows. In: Transport Phenomena in Porous Media (DB. Ingham and I. Pop, eds.). Pergamon Press, Oxford, pp.179-204(1998)
    [81] Marafie A, Vafai K. Analysis of Non-Darcian Effects on Temperature Differentials in Porous Media. International Journal of Heat and Mass Transfer, 2001,44: 4401-4411
    [82] Vafai K, Thiyagaraja R. Analysis of Flow and Heat Transfer at the Interface of a Porous Medium. International Journal of Heat and Mass Transfer, 1987, 30 : 1391-1405
    [83] Weigand B, Lauffer D. The Extended Graetz Problem with Piecewise Constant Wall Temperature for Pipe and Channel Flows. International Journal of Heat and Mass Transfer, 2004,47:5303-5312
    [84] Shah R, London A. Laminar Flow Forced Convection in Ducts. Academic Press, New York, 1978 (Chap. V and VI)
    [85] Reed C. Convective Heat Transfer in Liquid Metals, in: Kakac S, Shah R, Aung W (Eds.), Handbook of Single-phase Convective Heat Transfer. Wiley, New York, 1987 (Chap. 8)
    [86] Papoutsakis E, Ramkrishna D, Lim H. The Extended Graetz Problem with Dirichlet Wall Boundary Conditions. Appl. Sci. Res. 1980, 36: 13-34
    [87] Weigand B. An Exact Analytical Solution for the Extended Turbulent Graetz Problem with Dirichlet Wall Boundary Conditions for Pipe and Channel Flows. International Journal of Heat and Mass Transfer, 1996, 39: 1625-1637
    [88] Lee D, Vafai K. Analytical Characterization and Conceptual Assessment of Solid and Fluid Temperature Differentials in Porous Media. International Journal of Heat and Mass Transfer, 1999,42:423-435
    [89] Kim S, Kim D, Lee D. On the Local Thermal Equilibrium in MicroChannel Heat Sinks. International Journal of Heat and Mass Transfer, 2000,43 : 1735-1748
    [90] Vafai K, Kim S. Forced Convection in a Channel Filled with a Porous Medium: an Exact Solution. J. Heat Transfer, 1989, 111 : 1103-1106
    [91] Kuznetsov A. Thermal Non-equilibrium, Non-Darcian Forced Convection in a Channel Filled with a Fluid Saturated Porous Medium-a Perturbation Solution. Appl. Scientific Res. 1997, 57 : 119-131
    [92] Aparecido J, Cotta R. Thermally Developing Laminar Flow Inside Rectangular Ducts. International Journal of Heat and Mass Transfer, 1990, 33 : 341-347
    [93] Gao S, Hartnett J. Analytical Nusselt Number Predictions for Slug Flow in Rectangular Duct. International Communications in Heat and Mass Transfer, 1993,20: 751-760
    [94] Hsu C. An Exact Analysis of Low Peclet Number Thermal Entry Region Heat Transfer in Transversally Nonuniform Velocity Fields. AICHE J. 17 (1971) 732-740
    [95] Deavours C. An Exact Solution for the Temperature Distribution in Parallel Plate Poiseuille Flow. J. Heat Transfer, 1974, 96,489-495
    [96] Lee S. Forced Convection Heat Transfer in Low Prandtl Number Turbulent Flows: Influence of Axial Conduction. Can. J. Chem. Eng. 1982, 60: 482-486
    [97] Magyari E, Pop I, Keller B. Exact Solutions for a Longitudinal Steady Mixed Convection Flow over a Permeable Vertical Thin Cylinder in a Porous Medium. International Journal of Heat and Mass Transfer, 2005,48 : 3435-3442
    [98] Merkin J, Pop I. Mixed Convection Boundary-layer on a Vertical Cylinder Embedded in a Saturated Porous Medium. Acta Mech. 1987, 66: 251-262
    [99] Hooper W, Chen T, Armaly B. Mixed Convection along an Isothermal Vertical Cylinder in Porous Media. AIAA J. Thermophys. Heat Transfer, 1994, 8: 92-99
    [100] Pop I, Na T. Darcian Mixed Convection along Slender Vertical Cylinders with Variable Surface Heat Flux Embedded in a Porous Medium. Int. Commun. Heat Mass Transfer, 1998, 25: 251-260
    [101] Marcoux M, Charrier-Mojtabi M, Azaiez M. Double-diffusive Convection in an Annular Vertical Porous Layer. International Journal of Heat and Mass Transfer, 1999,42 : 2313-2325
    [102] Chang W, Weng C. An Analytical Solution to Coupled Heat and Moisture Diffusion Transfer in Porous Materials. International Journal of Heat and Mass Transfer, 2000,43 : 3621-3632
    [103] Liu J, Cheng S. Solution of Luikov Equations of Heat and Mass Transfer Problems in Porous Bodies. International Journal of Heat and Mass Transfer, 1991, 34: 1747-1754
    [104] Kalla L, Mamou M, Vasseur P, Robillard L. Multiple Solutions for Double Diffusive Convection in a Shallow Porous Cavity with Vertical Fluxes of Heat and Mass. International Journal of Heat and Mass Transfer, 2001,44 : 4493-4504
    [105] Wang C, Liao S, Zhu J. An Explicit Solution for the Combined Heat and Mass Transfer by Natural Convection from a Vertical Wall in a non-Darcy Porous Medium. International Journal of Heat and Mass Transfer, 2003,46 :4813-4822
    [106] Mikhailov M, Ozisik M. Unified Analysis and Solutions of Heat and Mass Diffusion. Wiley, New York, 1984
    [107] Lobo P, Mikhailov M, Ozisik M. On the Complex Eigenvalues of Luikov System of Equations. Drying Technol, 1987, 5: 273-286
    [108] Pandey R, Srivastava S, Mikhailov M. Solutions of Luikov Equations of Heat and Mass Transfer in Capillary Porous Bodies through Matrix Calculus: a New Approach. I. J. Heat Mass Transfer, 1999,42: 2649-2660
    [109] Ribeiro J, Cotta R, Mikhailov M. Integral Transform Solution of Luikov's Equations for Heat and Mass Transfer in Capillary Porous Media. International Journal of Heat and Mass Transfer, 1993,36:4467-4475
    [110] Liao S. A Uniformly Valid Analytic Solution of Two Dimensional Viscous Flow over a Semi-infinite Flat Plate. J. Fluid Mech. 1999,385 :101-128
    [111] Liao S. An Explicit, Totally Analytic Approximate Solution for Blasius Viscous Flow Problems. Int. J. Nonlinear Mech. 1999, 34 : 759-778
    [112] Liao S, Campo A. Analytic Solutions of the Temperature Distribution in Blasius Viscous Flow Problems. J. Fluid Mech. 2002,453:411-425
    [113] Wafo Soh C, Mureithi E. Exact and Numerical Solutions of a Fully Developed Generalized Second-grade Incompressible Fluid with Power-law Temperature-dependent Viscosity. International Journal of Non-Linear Mechanics, 2006,41 :271-280
    [114] Pinho F, Oliveira P. Analysis of Forced Convection in Pipes and Channels with the Simplified Phan-Thien-Tanner Fluid. International Journal of Heat and Mass Transfer, 2000, 43 : 2273-2287
    [115] Oliveira P, Pinho F. Analytical Solution for Fully-developed Channel and Pipe Flow of Phan-Thien-Tanner Fluids. J. Fluid Mech. 1999, 387: 271-280
    [116] Hashemabadi S, Etemad S, Thibault J. Forced Convection Heat Transfer of Couette-Poiseuille Flow of Nonlinear Viscoelastic Fluids between Parallel Plates. International Journal of Heat and Mass Transfer, 2004,47 : 3985-3991
    
    [117] Bejan A. Convection Heat Transfer. John Wiley and Sons, Inc., New York, 1995
    [118] Shah R, London A. Laminar Flow Forced Convection in Ducts. Academic Press, Inc., New York, 1978
    [119] Rajagopal K, Gupta A. An Exact Solution for the Flow of a Non-Newtonian Fluid past an Infinite Porous Plate. Meccanica, 1984,19 : 158-160
    [120] Patel N, Ingham D. Analytic Solutions for the Mixed Convection Flow of Non-Newtonian Fluids in Parallel Plate Ducts. Int. Commun. Heat Mass Transfer, 1994, 21 : 75-84
    [121] Olek S. Heat Transfer in Duct Flow of Non-Newtonian Fluids with Axial Conduction. Int. Commun. Heat Mass Transfer, 1998, 25: 929-938
    [122] Lawal A, Dilhan M. Analysis of Nonisothermal Screw Extrusion Processing of Viscoplastic Fluids with Significant Back Flow. Chem. Eng. J. 1999, 72 : 999-1013
    [123] Hashemabadi S, Etemad S, Thibault J, Golkar M. Analytical Solution for Dynamics Pressurization of Viscoelastic Fluids. Int. J. Heat Fluid Flow, 2003,24:137-144
    [124] Cai R. Analytical Solution of Unsteady One-dimensional Bioheat Transfer Equation. Chinese Science Bulletin, 1995, 40 (19) : 1663
    [125] Cai R. Some Explicit Analytical Solutions of Unsteady Compressible Flow. TRANS. ASME, J Fluids Engineering, 1998,120 (4): 760-764
    [126] Cai R, Zhang N. Explicit Analytical Solutions of Non-Fourier Heat Conduction Equations for IC Chip. Chinese Science Bulletin, 1998, 43 (13) : 1080-1084
    [127] Cai R, Zhang N. Unsteady 1-D Analytical Solutions for Bio-heat Transfer Equations. Progress in Natural Sciences. 1998, 8:733-739
    [128] 张娜,蔡睿贤.两相混合材料瞬态导热系统模型偏微分方程组的一个显式解析解.工程热物理学报,1998,19(3):350-353
    [129] 蔡睿贤,朱永波.关于完全气体无粘可压流动的解析解.工程热物理学报,1998,19(4):439-443
    [130] Cai R, Zhang N, HE Y. 1-D Algebraic Analytical Solutions of Unsteady Non-Fourier Heat Conduction in a Sphere. Progress in Natural Science, 1999, 9 (1) : 34-38
    [131] 张娜,蔡睿贤.超临界压力锅炉蒸发受热面动态数学模型的一个解析特解.电机工程学报,1999,19(1):24-25
    [132] 张娜,蔡睿贤.考虑中心孔影响的汽轮机转子不定常温度场显式解析解.电机工程学报,1999,19(7):38-40
    [133] Cai R, Zhang N. Explicit Analytical Solutions of the Coupled Differential Equations for Porous Material Drying. Progress in Natural Science, 2000, 10(2): 152-157
    [134] 蔡睿贤,张娜.锅炉受热面动态过程的一套显式解析特解.机械工程学报,2000,36(7):11-13
    [135] Cai R, Zhang N. Some Algebraically Explicit Analytical Solution of Unsteady Nonlinear Heat Conduction. TRANS. AMSE, J. Heat Tran., 2001, 123 (6): 1189-1191
    [136] Zhang N, Cai R, Wang W. Explicit Analytical Solutions of Natural Convective Heat Transfer in Humid Porous Media. Proceedings of 2001 AMSE ICEME, 2001
    [137] Cai R, Zhang N. Explicit Analytical Wave Solutions of Unsteady 1-D Ideal Gas Flow with Friction and Heat Transfer. Science in China (Series E) 2001, 44 (4) : 414-420
    [138] 蔡睿贤,张冬阳.两相非定常流的一些显式解析解.机械工程学报,2001,37(9):1-3
    [139] 蔡睿贤.非定常可压等熵流非线性方程显式解析解的推导.工程热物理学报,2001,22(2):159-162
    [140] Cai R, Zhang N. Explicit Analytical Solutions of Incompressible Unsteady 2-D Laminar Flow with Heat Transfer. International Journal of Heat and Mass Transfer, 2002, 45:2623-2627
    [141] Cai R, Zhang N. Explicit Analytical Solutions of the Anisotropic Brinkman Model for the Natural Convection in Porous Media. Science in China (Series A), 2002, 45:808-816
    [142] Zhang N, Cai R. Explicit Analytical Solutions of the Coupled Fluid Flow Transfer Equation in Heterogeneous Porous Media. Tsinghua Science and Technology, 2002, 7 (2) : 187-189
    [143] 蔡睿贤,张娜.变热物性非定常导热方程的一些显式解析解.工程热物理学报,2002,23(3):327-329
    [144] Cai R, Zhang N, Liu W. Algebraically Explicit Analytical Solutions of Two-Buoyancy Natural Convection in Porous Media. Progress in Natural Sciences, 2003, 13(11): 848-851
    [145] Cai R, Zhang N. Explicit Analytical Solutions of Linear and Nonlinear Interior Heat and Mass Transfer Equation Sets for Drying Process. TRANS. AMSE, J. Heat Transfer, 2003, 125: 175-178
    [146] Cai R, Zhang N. Explicit Analytical Solutions of 2-D Laminar Natural Convection. International Journal of Heat and Mass Transfer, 2003, 46:931-934
    [147] 蔡睿贤,张娜.多孔介质快速干燥过程热质耦合方程的代数显式解析解.工程热物理学报,2003,24(2):271-273
    [148] 蔡睿贤,张娜.含湿毛细多孔介质传热与传质基本方程的一组代数显式解析解.机械工程学报,2003,39(6):1-3
    [149] Cai R, Zhang N. Algebraically Explicit Analytical Solutions of Unsteady Conduction with Variable Thermal Properties in Cylindrical Coordinates. Progress in Natural Sciences, 2004, 14: 314-321
    [150] Cai R, Zhang N. Algebraically Explicit Analytical Solutions of Unsteady Conduction with Variable Thermal Properties in Spheroidal Coordinates. ASME paper IMECE 2004-60691
    [151] 蔡睿贤.考虑旋流的非定常几何一维流动解析解.工程热物理学报,2004,25(4):571-574
    [152] 邓康耀,顾宏中,陈吉荃.旋流排气管的一维非定常流动计算.工程热物理学报,2002,23(1):39-42
    [153] 张浙,刘登瀛.超急速传热时球体内非稳态热传导的非博里叶效应.工程热物理学报,1998,19(5):601-605
    [154] 王补宣,王艳民.生物传热基本方程的研究.工程热物理学报,1993,14(2):166-170
    [155] 王补宣,王艳民,蔡伟明.直角坐标系中第二类边界条件下一维生物组织温度场的稳态分析解及实验研究.工程热物理学报,1995,16(1):65-69
    [156] 杨冬,陈听宽等.锅炉受热面热力参数的解析——数值混合计算方法.机械工程学报,1999,35(2):73-76
    [157] Liu J, Ren Z, Wang C. Dynamic Analysis on Temperature Oscillation Behavior in Living Tissue. Chinese Science Bulletin, 1996, 41:64-67
    [158] Qiu T, Juhasz T, Suarez C, Bron W, Tien C. Femtosecond Laser Heating of Multi-layer Metals-Ⅱ Experiments. International Journal of Heat and Mass Transfer, 1994, 37(17): 2799-2808
    [159] Guillemet P, Bardon J, Rauch C. Experimental Route to Heat Conduction Beyond the Fourier Equation. International Journal of Heat and Mass Transfer, 1997, 40 (17): 4043-4053
    [160] Liao S. A Kind of Direct, Implicit Numerical Scheme for Unsteady Nonlinear Problems. Communications in Nonlinear Science and Numerical Simulation, 1997, 2 (3): 180-185
    [161] Lu W, Liu J, Zeng Y. Simulation of the Thermal Wave Propagation in Biological Tissues by the Dual Reciprocity Boundary Element Method. Engineering Analysis with Boundary Elements, 1998, 22: 167-174
    [162] Saidane A, Pulko S. High-power Short-pulse Laser Heating of Low Dimensional Structures: a Hyperbolic Heat Conduction Study Using TLM. Microelectronic Engineering, 2000, 51-52: 469-478
    [163] Liu L, Tan H, Tong T. Non-Fourier Effects on Transient Temperature Response in Semitransparent Medium Caused by Laser Pulse. International Journal of Heat and Mass Transfer, 2001, 44:3335-3344
    [164] Yen C, Wu C. Modeling Hyperbolic Heat Conduction in a Finite Medium with Periodic Thermal Disturbance and Surface Radiation. Applied Mathematical Modeling, 2003, 27: 397-408
    [165] Liu K, Chert H. Numerical Analysis for the Hyperbolic Heat Conduction Problem under a Pulsed Surface Disturbance. Applied Mathematics and Computation, 2004, 159:887-901
    [166] Saidane A, Aliouat S, Benzohra M, Ketata M. A Transmission Line Matrix (TLM) Study of Hyperbolic Heat Conduction in Biological Materials. Journal of Food Engineering, 2005, 68: 491-496
    [167] Liu K, Lin C, Wang J. Numerical Solutions for the Hyperbolic Heat Conduction Problems in a Layered Solid Cylinder with Radiation Surface. Applied Mathematics and Computation, 2005, 164:805-820
    [168] Liu K. Numerical Simulation for Non-linear Thermal Wave. Applied Mathematics and Computation, 2006, 175:1385-1399
    [169] Chester M. Second Sound Some in Solid. Physical Review, 1963, 131:2013
    [170] Maurer M. Relaxation Model for Heat Conduction in Metals. J. Applied Physics, 1969, 40: 5123-5130
    [171] Cheng P. Heat Transfer in Geothermal System. Advance in Heat transfer, 1978,14:1-105
    [172] Wang B. Heat and Mass Transfer in Porous Media. J. Tsinghua Univ., 1992, 32 (supplement No.1): 5-12
    [173] 张靖周,李立国,孙仁洽.水平空腔多孔介质自然对流各向异性和非达西效应研究.工程热物理学报,1996,17(1):86-90
    [174] Schlichting H. Boundary-Layer Theory. New York: McGraw-Hill, 1979
    [175] Keenan J. Thermodynamics. John Wiley & Sons Inc., New York, 1941, Chapter 1 and 2
    [176] Eckert E. Introduction to Heat and Mass Transfer. McGraw-Hill Book Co., Inc., New York, 1963, Chapter 1
    [177] Guo Z, Li D, Wang B. A Novel Concept for Convective Heat Transfer Enhancement. International Journal of Heat and Mass Transfer, 1998, 41:2221-2225
    [178] Wang S, Li Z, Guo Z. Novel Concept and Device of Heat Transfer Augmentation, in: Proceeding of 11th IHTC, vol. 5, 1998, pp. 405-408
    [179] Guo Z, Wang S. Novel Concept and Approaches of Heat Transfer Enhancement, in: P. Cheng (Ed.), Proceedings of Symposium on Energy and Engineering, vol. 1, Begell House, New York, 2000, pp. 118-126
    [180] Tao W, Guo Z, Wang B. Field Syncrgy Principle for Enhancing Convective Heat Function-its Extension and Numerical Verification. International Journal of Heat and Mass Transfer, 2002, 45:3849-3856
    [181] Tao W, He Y, Wang Q, Qu z, Song F. A Unified Analysis on Enhancing Single Phase Convective Heat Transfer with Field Synergy Principle. International Journal of Heat and Mass Transfer, 2002, 45:4871-4879
    [182] 孟继安.基于场协同理论的纵向涡强化换热技术及其应用[博士学位论文].清华大学,2003
    [183] Shen S, Liu W, Tao W. Analysis of Field Synergy on Natural Convective Heat Transfer in Porous Media. Int. Comm. Heat Mass Transfer, 2003, 30 (8): 1081-1090
    [184] Zeng M, Tao W. Numerical Verification of the Field Synergy Principle for Turbulent Flow. Journal of Enhanced heat transfer, 2004, 11 (4): 451-457
    [185] Yu B, Tao W. Pressure Drop and Heat Transfer Characteristics of Turbulent Flow in Annular Tubes with Internal Wave-like Longitudinal Fins. Heat Mass Transfer, 2004, 40:643-651
    [186] Cheng Y, Qu Z, Tao W, He Y. Numerical Design of Efticient Slotted Fin Surface Based on the Filed Synergy Principle. Numer. Heat Transfer A, 2004, 45:517-538
    [187] He Y, Tao W, Song F, Zhang W. Three-dimensional Numerical Study of Heat Transfer Characteristics of Plain Plate Fin-and-tube Heat Exchangers from View Point of Field Synergy Principle. International Journal of Heat and Fluid Flow, 2005, 26:459-473
    [188] Guo Z, Tao W, Shah R. The Field Synergy (Coordination) Principle and its Applications in Enhancing Single Phase Convective Heat Transfer. International Journal of Heat and Mass Transfer, 2005, 48:1797-1807
    [189] Meng J, Liang X, Li Z. Field Synergy Optimization and Enhanced Heat Transfer by Multi-longitudinal Vortexes Flow in Tube. International Journal of Heat and Mass Transfer, 2005, 48:3331-3337
    [190] Chen C, Yen T, Yang Y. Lattice Boltzmann Method Simulation of a Cylinder in the Backward-facing Step Flow with the Field Synergy Principle. International Journal of Thermal Sciences, 2006, 45:982-989
    [191] Cai R. Summary of Developments of the Mean-streamline Method in China. AMSE Trans. J. Engg. For Gas Turbines and Power, 1984, 106:300-305
    [192] 王馨,施明恒,虞维平.对流边界条件高强度快速传热传质研究.工程热物理学报,2002,23(2):212-214
    [193] Shi K, Lu W. The Evolution of Double Diffusive Convection in a Vertical Cylinder with Radial Temperature and Axial Solutal Gradients. International Journal of Heat and Mass Transfer, 2006, 49:995-1003
    [194] Tong D, Liu Y. Exact Solutions for the Unsteady Rotational Flow of Non-Newtonian Fluid in an Annular Pipe. Int J Engg Science, 2005, 43 (3-4): 281-289
    1 Kvamsdal, H., Maurstad, O., Jordal, K. and Bolland, O. Benchmarking of gas-turbine cycles with CO_2 capture. Presented as a peer-reviewed paper at the 7th International Conference on Greenhouse Gas Control Technologies. Vancouver, Canada, September, 2004.
    
    2 Bolland, O., Kvamsdal, H. and Boden, J. A thermodynamic comparison of the oxy-fuel power cycles Water-cycle, Graz-cycle and MATIANT-cycle. Proceedings of the International Conference on Power Generation and Sustainable Development, Liege, Belgium, October, 2001.
    3 Anderson, R., Brandt, H., Mueggenburg, H., Taylor, J. and Viteri, F. A power plant concept which minimizes the cost of carbon dioxide sequestration and eliminates the emission of atmospheric pollutants. Proceedings of the 4th International Conference on Greenhouse Gas Control Technologies, Interlaken, Switzerland, Pergamon, 1998, pp. 59-62.
    
    4 Anderson, R., Brandt, H., Doyle, S., Mueggenburg, H., Taylor, J. and Viteri, F. A unique process for production of environmentally clean electric power using fossil fuels. Proceedings of the 8th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, Hawaii, March 2000.
    
    5 Marin, O., Bourhis, Y., Perrin, N., Zanno, P., Viteri, F. and Anderson R. High efficiency, zero emission power generation based on a high-temperature steam cycle. Proceedings of the 28th International Technical Conference on Coal Utilization & Fuel Systems, Clearwater, Florida, US, March 2003.
    
    6 Smith, JR., Surles, T., Marais, B., Brandt, H. and Viteri, F. Power production with zero atmospheric emissions for the 21st century. Proceedings of the 5th International Conference on Greenhouse Gas Control Technologies, Cairns, Australia, August 2000.
    
    7 Iantovski, E. and Mathieu, Ph. Highly efficient zero emission CO_2-based power plant. Energy Conversion and Management, v38, n9999,1997, s141-s146.
    
    8 Mathieu, Ph. and Nihart, R. Zero-emission MATIANT cycle. TRANS. ASME, Journal of Engineering for gas turbines and power, v121, n1, 1999,116-120.
    
    9 Mathieu, Ph. and Nihart, R. Sensitivity analysis of the MATIANT cycle. Energy Conversion and Management, v40, n15,1999,1687-1700.
    
    10 Mathieu, Ph., Dubuisson, R., Houyou, S. and Nihart, R. New concept of CO_2 removal technologies in power generation, combined with fossil fuel recovery and long term CO_2 sequestration. ASME Turbo Expo Conference, 2000-GT-0161, 2000.
    
    11 Houyou, S., Mathieu, Ph. and Nihart, R. Techno-economic comparison of different options of very low CO_2 emission technologies. Proceedings of the Fifth International Conference on Greenhouse Gas Control Technologies, Cairns, Australia, August 2000.
    
    12 Jericha, H. and Fesharaki, M. The Graz cycle-1500℃ max temperature potential H_2-O_2 fired CO_2 capture with CH_4-O_2 firing. ASME paper 95-CTP-79. In ASME Cogen-Turbo Power Conference, Vienna, 1995.
    
    13 Jericha, H., Gottlich, E., Sanz, W. and Heitmeir, F. Design optimization of the Graz prototype plant. TRANS. ASME, Journal of Engineering for gas turbines and power, vl26, n4,2004, 733-740.
    
    14 Sanz, W., Jericha, H., Moser, M. and Heitmeir, F. Thermodynamic and economic investigation of an improved Graz cycle power plant for CO_2 capture. Proceedings of the ASME Turbo Expo Conference, 2004, v7, Paper No. GT-2004-53722.
    
    15 Cai, R. and Jiang, L. Analysis of the recuperative gas turbine cycle with a recuperator located between turbines. Applied Thermal Engineering, 2006,26: 89-96.
    
    16 Anderson, R. Development of a unique gas generator for a non-polluting power plant. EISG Report on Project EISG 99-20, California Energy Commission Grant # 99-20, May 2001.
    
    17 Anderson, R., Baxter, E. and Doyle, S. Fabricate and test an advanced non-polluting turbine drive gas generator. Final Report, under DE Cooperative Agreement No. DE-FC26-00NT 40804,1 September 2000 to 1 June 2003.
    
    18 Simmonds, M., Miracca, I. and Gerdes, K. Oxyfuel technologies for CO_2 capture: a techno-economic overview. Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies, Vancouver, Canada, September 2004.
    
    19 Velautham, S., Ito, T. and Takata, Y. Zero-emission combined power cycle using LNG cold. JSME International Journal, Series B, Fluids and Thermal Engineering, 2001, 44(4): 668-674.
    
    20 Zhang, N., Cai, R. and Wang, W. Study on near-zero CO_2 emission thermal cycles with LNG cryogenic exergy utilization. ASME Int Gas Turbine Inst Publ IGTI, 2003, v 3, p329-337.
    
    21 Zhang, N. and Lior, N. Configuration analysis of a novel zero CO_2 emission cycle with LNG cryogenic exergy utilization. ASME Adv Energy Syst Div Publ AES, 2003, v 43, p333-343.
    1 H. Kvamsdal, O. Maurstad, K. Jordal, O. Bolland, Benchmarking of gas-turbine cycles with CO_2 capture, presented as a peer-reviewed paper at the 7th International Conference on Greenhouse Gas Control Technologies. Vancouver, Canada, September 2004.
    
    2 O. Bolland, H. Kvamsdal, J. Boden, A thermodynamic comparison of the oxy-fuel power cycles Water-cycle, Graz-cycle and MATIANT-cycle, Proceedings of the International Conference on Power Generation and Sustainable Development, Liege, Belgium, October, 2001.
    
    3 R. Anderson, H. Brandt, H. Mueggenburg, J. Taylor, F. Viteri, A power plant concept which minimizes the cost of carbon dioxide sequestration and eliminates the emission of atmospheric pollutants, Proceedings of the 4th International Conference on Greenhouse Gas Control Technologies, Interlaken, Switzerland, 1998.
    
    4 R. Anderson, H. Brandt, S. Doyle, H. Mueggenburg, J. Taylor, F. Viteri, A unique process for production of environmentally clean electric power using fossil fuels, Proceedings of the 8th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, Hawaii, March 2000.
    5 O. Marin, Y. Bourhis, N. Perrin, P. Zanno, F. Viteri, R. Anderson, High efficiency, zero emission power generation based on a high-temperature steam cycle, Proceedings of the 28th International Technical Conference on Coal Utilization & Fuel Systems, Clearwater, Florida, US, March 2003.
    
    6 JR. Smith, T. Surles, B. Marais, H. Brandt, F. Viteri, Power production with zero atmospheric emissions for the 21st century, Proceedings of the 5th International Conference on Greenhouse Gas Control Technologies, Cairns, Australia, August 2000.
    
    7 PS. Pak, T. Hatikawa, Y. Suzuki, A hybrid power generation system utilizing solar thermal energy with CO_2 recovery based on oxygen combustion method, Energy Conversion Management, 1995; 36(6/9): 823-826.
    
    8 PS. Pak, Y. Suzuki, T. Kosugi, A CO_2-capturing hybrid power-generation system with highly efficient use of solar thermal energy, Int. J. Energy, 1997; 22(2/3): 295-299.
    
    9 T. Kosugi, PS. Pak, Economic evaluation of solar thermal hybrid H_2O turbine power generation systems, Int. J. Energy, 2003,28: 185-198.
    
    10 E. Kakaras, A. Doukelis, R. Leithner, N. Aronis, Combined cycle power plant with integrated low temperature heat (LOTHECO), Applied Thermal Engineering, 2004, 24: 1677-1686.
    
    11 N. Aronis, R. Leithner, Combined cycle with low-quality heat integration and water injection into the compressed air, Int. J. Energy, 2004,29: 1929-1943.
    
    12 H. Haselbacher, A. Fischer, Turbomachines for application in LOTHECO powerplants, Applied Thermal Engineering, 2004,24: 1687-1695.
    
    13 A. Poullikkas, An overview of current and future sustainable gas turbine technologies, Renewable and Sustainable Energy Reviews, 2005, 9: 409-443.
    1 Buck R, Brauning T, Denk T, Pfander M, Schwarzbozl F, Tellez F. Solar-Hybrid Gas Turbine- based Power Tower Systems (REFOS). ASME J. Sol. Energy Eng. 2002; 124: 2-9.
    
    2 Price H, Lupfer E. Advances in Parabolic Trough Solar Power Technology. ASME J. Sol. Energy Eng. 2002; 124: pp.109-125.
    3 Hong H, Jin H, Ji J, Wang Z, Cai R. Solar thermal power cycle with integration of methanol decomposition and middle-temperature solar thermal energy. J. Solar Energy 2005; 78: 49-58.
    
    4 Pak PS, Hatikawa T, Suzuki Y. A hybrid power generation system utilizing solar thermal energy with CO_2 recovery based on oxygen combustion method. Energy Conversion Management 1995; 36(6/9): 823-826.
    
    5 Pak PS, Suzuki Y, Kosugi T. A CO_2-capturing hybrid power-generation system with highly efficient use of solar thermal energy. Int. J. Energy 1997; 22(2/3): 295-299.
    
    6 Kosugi T, Pak PS. Economic evaluation of solar thermal hybrid H_2O turbine power generation systems. Int. J. Energy 2003; 28: 185-198.
    
    7 Dallenback P. Improved gas turbine efficiency through alternative regenerator configuration. TRANS. ASME, Journal of Gas Turbine and Power 2002; 124: 441-446.
    
    8 Cai R, Jiang L. Analysis of the recuperative gas turbine cycle with a recuperator located between turbines. Applied Thermal Engineering 2006; 26: 89-96.
    
    9 Jericha H, Fesharaki M. The Graz cycle-1500℃ max temperature potential H_2-O_2 fired CO_2 capture with CH_4-O_2 firing. ASME paper 95-CTP-79. In ASME Cogen-Turbo Power Conference, Vienna, 1995.
    
    10 Jericha H, Gottlich E, Sanz W, Heitmeir F. Design optimization of the Graz prototype plant. TRANS. ASME, Journal of Engineering for gas turbines and power 2004; 126(4): 733-740.
    
    11 Jericha H, Gottlich E. Conceptual design for an industrial prototype Graz cycle power plant. Proceedings of ASME Turbo Expo Conference, 2002, Paper No. GT-2002-30118.
    [1] D. Smith, H system steams on, Modern Power System 24(2)(2004) 17-20.
    
    [2] J. Osgerby, V. Kallianpur, V. Fnhuizumi, Upgraded G machines aim for near-H performance, Modern Power System 24(5)(2004) 13-15.
    [3] H. Jaeger, Will IGCC win out over pulverized coal and nuclear system plants? Gas Turbine World 35(1)(2004) 10-14.
    [4] J. Anderson, S. Jansson, Commission of the PFBC plant in Vartan, Stockholm, in: Proc. 11th on FBC, 1991: 795-800.
    [5] V. Biasi, Hokkaido Electric is running 85-MW PFBC in continuous duty on coal gas, Gas Turbine World 28(5)(1998) 12-15.
    [6] A. Berman, C. Dille, High efficiency pressurized bed systems, ASME paper 83-GT-166,1983.
    [7] I. Stambler, Second generation PFBC coal plants target 50% HHV efficiency, Gas Turbine World 23(6)(1993) 22-27.
    [8] J. Mogul, S. Moskowitz, S. Wolosin, Materials for pressurized bed air heater system, in: Proc. 6th IC on FBC, 1980 : 482-493.
    [9] R. Farmer, 165-MW coal-fired PFB for operation by 1985, Gas Turbine World 10(1)(1980) 22-26.
    [10]F. Cziesla, G. Tsatsaronis, Avoidable thermodynamic inefficiencies and costs in energy conversion systems, part 2: application to an externally-fired combined cycle, in: Proceedings of ECOS 2003, Copenhagen, Denmark, June 30-July 2, 2003: 815-825.
    
    [1 l]Gas turbine world 2005 performance specs, Pequot Publishing Inc., Southport, 2005.
    
    [12]R. Cai, Comparison method for complex cycle analysis, AMSE paper 86-JPGC-GT-6, 1986.
    [13]R. Cai, The basic performance of combined cycles and their optimum gas turbine pressure ratios, ASME paper 95-GT-416,1995.
    [14]Y. Xu, R. Lin, R. Cai, A simple way for calculating the performance of combined cycle with non-additionally fired waste heat boilers, Chinese Journal of Power Engineering 25(3)(2005) 435-442. (In Chinese with English abstract)
    [15]L. Duan, Study on characteristics in all operating states, design optimization and new thermodynamic cycle of IGCC system, Ph. D. Dissertation of the Graduate School, Chinese Academy of Sciences, June 2002. (In Chinese with English abstract)
    [16]J. Wang, M. Fang, Y. Liu, J. Huang, Z. Luo, K. Cen, Research about partial air gasification combined cycle system performance of coal, Energy Engineering 3(2004) 1-4. (In Chinese with English abstract)
    [17]H. Jaeger, Is the widely accepted cost gap for IGCC and PC plants myth or reality? Gas Turbine World 35(3)(2005) 15-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700