用户名: 密码: 验证码:
波的相奇异性的拓扑性质和Friedmann-Robertson-Walker宇宙热力学的量子效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Topological Aspects of Phase Singularities in Wave Field and Quantum Effects in Thermodynamics of Friedmann-Robertson-Walker Universe
  • 作者:朱涛
  • 论文级别:博士
  • 学科专业名称:理论物理
  • 学位年度:2010
  • 导师:段一士 ; 任继荣
  • 学科代码:070201
  • 学位授予单位:兰州大学
  • 论文提交日期:2010-04-01
摘要
本论文在拓扑场论和广义相对论两个领域做了深入的研究。在拓扑场论方面,利用段氏拓扑流理论研究了三种波的相奇异性;在广义相对论方向,主要讨论了Friedmann-Robertson-Walker (FRW)宇宙表观视界处的热力学的量子效应。
     首先,我们利用段氏拓扑流理论研究了三种波的相奇异性,分别为电磁场中的Riemann-Silberstein (RS)涡旋、相干光学中的相干涡旋、和卷波的中心轴vortex filaments.对于RS涡旋,我们讨论了它的扭结结构并推导了描述其拓扑性质的Hopf不变量,发现其恰好可以表示成扭结RS涡旋的所有自连接数和连接数之和;对于相干涡旋,我们详细推导其拓扑相干流,并利用该拓扑相干流讨论了相干涡旋的拓扑结构、相干通量量子化、以及相干涡旋的扭结;在卷波系统中,我们同样研究了扭结状vortex filaments的Hopf不变量,并提出可以将Hopf不变量作为系统的拓扑约束。
     其次,本文研究了广义不确定关系和扩展不确定关系对FRW宇宙热力学的影响。在广义不确定关系和扩展不确定关系下,传统的熵与面积成正比的熵面积关系不再成立,而是增加了一些修正项。不仅如此,根据表观视界处的热力学第一定律,描述宇宙动力学的Friedmann方程也需要修正。这说明广义不确定关系和扩展不确定关系能够影响FRW宇宙的动力学演化.
     最后,我们分别讨论了FRW宇宙表观视界处类Hawking辐射的半经典和超半经典量子隧穿机制。在半经典情况下,通过讨论正则不变的隧穿振幅并考虑作用量的时间部分的贡献,得到了正确的类Hawking温度;通过考虑隧穿粒子的自引力效应,我们还得到了隧穿几率与表观视界熵的改变的关系。在超半经典量子隧穿机制中,我们考虑了表观视界处标量粒子和费米子的量子隧穿,并利用得到的类Hawking温度的量子修正式,我们推导了Einstein引力,Gauss-Bonnet引力、Lovelock引力、f(R)引力、和scalar-tensor引力中FRW宇宙表观视界处的熵的量子修正表达式,我们指出,这个表达式可能不依赖于具体的引力理论.
This thesis involves two main fields of research:topological field theory and General Relativity. On topological field theory, using Duan's topological current theory, we address some topological aspects of phase singularities of wave field; on general relativity, we mainly investigate the quantum effects in thermodynamics of FRW universe.
     Firstly, based on Duan's topological current theory, we discuss RS vortices in electro-magnetic field, coherence vortices in coherent optics, and vortex filaments in scroll wave. For RS vortices, we discuss their knot structure and derive the Hopf invariant for knotted RS vortices, we find that the Hopf invariant is just the total sum of all the self-linking numbers and linking numbers of knotted RS vortices. For coherence vortices, we obtain the exact expression of their topological coherence current, and based on this expression, we discuss the topological structures of coherence vortices, quantization of coherence flux, and knotted coherence vortices. In scroll wave system, we also investigate the Hopf in-variant of knotted vortex filaments, and point out that the Hopf invariant can be treated as the topological constraints of the scroll wave system.
     Secondly, this thesis investigates the impact of generalized uncertainty principle and extended uncertainty principle on thermodynamics of FRW universe. After consider the effects of generalized uncertainty principle and extended uncertainty principle, the con-ventional entropy area relation on apparent horizon does not hold anymore, but acquires corrections. Moreover, according to first law of thermodynamics on apparent horizon, the Friedmann equations of FRW universe also should corrected. This implies that the generalized uncertainty principle and extended uncertainty principle can influence the dynamics of FRW universe.
     Finally, we discuss the semi-classical and beyond semi-classical aspect of Hawking-like radiation as tunneling on apparent horizon of FRW universe. For semi-classical case, using canonically invariant tunneling probability and considering the imaginary parts of both the spatial and temporal contributions of the tunneling amplitude we recover the correct temperature T=1/2πrA; when we consider the self-gravity effect of tunneling particle, we obtain the relationship between the tunneling probability and the change in entropy of apparent horizon. On the quantum tunneling beyond semi-classical approxi- mation, we consider the tunneling of both scalar particles and fermions and obtain the corrected Hawking-like temperature of apparent horizon, with this corrected Hawking-like temperature, the explicit expressions of the corrected entropy of apparent horizon for var-ious gravity theories including Einstein gravity, Gauss-Bonnet gravity, Lovelock gravity, f(R) gravity and scalar-tensor gravity, are computed, we point out that this expression might be independent of gravity theories.
引文
[1]M. R. Dennis, Topological Singularities in Wave Field, PhD Thesis, University of Bristol,2001.
    [2]A.S. Desyatnikov, Y.S. Kivshar, and L. Torner, Optical Vortices and Vortex Solitons, Progress in Optics Vol.47, North-Holland, Amsterdam (2005).
    [3]J.F. Nye, Natural Focusing and Fine Struture of Light, Institute of Physics Publishing (1999).
    [4]M.V. Berry and M. R. Dennis, Phase singularities in isotropic random waves, Proc. R. Soc. A 456 (2000) 2059.
    [5]M.V. Berry and J.F. Nye, Dislocations in Wave Trains, Proc. R. Soc. A 336 (1974) 165.
    [6]Chemical Waves and Patterns, edited by R. Kapral and K. Showalter (Kluwer, Doordrecht,1995).
    [7]S. Jakubith, H. H. Rotermund, W. Engel, A. von Oertzen, and G. Ertl, Spatiotemporal concentration patterns in a surface reaction:Propagating and standing waves, rotating spirals, and turbulence, Phys. Rev. Lett.65 (1990) 3013.
    [8]O. Tornkvist and E. Schroder, Vortex Dynamics in Dissipative Systems, Phys. Rev. Lett.78 (1997) 1908.
    [9]R. A. Gray, Int. J. Bifurcation Chaos Appl. Sci. Eng.6,415 (1996).
    [10]A. T. Winfree, Spiral Waves of Chemical Activity, Science.175 (1972) 634.
    [11]J. M. Davidenko, A. V. Pertsov, R. Salomonsz, W. Baxter, and J. Jalife, Stationary and drifting spiral waves of excitation in isolated cardiacmuscle, Nature.355 (1992) 349.
    [12]M. Vinson, S. Mironov, S. Mulvey, and A. Pertsov, Control of spatial orientation and lifetime of scroll rings in excitable media, Nature 386 (1997) 477.
    [13]S. Alonso, F. Sagu 6 s, and A. S. Mikhailov, Taming Winfree Turbulence of Scroll Waves in Excitable Media, Science.299 (2003) 1722.
    [14]R. J. Donnelly, Quantized Vortices in Helium II (Cambridge University Press, Cambridge, England, 1991).
    [15]Y.-S. Duan, X. Liu, and P.-M. Zhang, Decomposition theory of the U(1) gauge potential and the London assumption in topological quantum mechanics, J. Phys:Condens. Mather 14 (2002) 7941.
    [16]S. Inouye, S. Gupta, T. Rosenband, A.P. Chikkatur, A. Gorlitz, T.L. Gustavson, A.E. Leanhardt, D.E. Pritchard, and W. Ketterle, Observation of Vortex Phase Singularities in Bose-Einstein Con-densates, Phys. Rev. Lett.87 (2001) 080402. E. Babaev, L. Faddev, and A.J. Niemi, Hidden symmetry and knot solitons in a charged two-condensate Bose system, Phys. Rev. B 65 (2002) 100512. E. Babaev, Dual Neutral Variables and Knot Solitons in Triplet Superconductors, Phys. Rev. Lett. 88 (2002) 177002.
    [17]J.O. Hirschfelder, A.C. Christoph, and W.E. Palke, Quantized vortices around wavefunction nodes. Ⅱ, J. Chem. Phys.61 (1974) 5456.
    [18]J. Riess, Nodal Structure, Nodal Flux Fields, and Flux Quantization in Stationary Quantum States, Phys. Rev. D 2 (1970) 647.
    [19]Y.-S. Duan, Preprint SLAC-PUB-3301/84 (1984).
    [20]Y.-S. Duan and M.-L. Ge, Sinica Sci.11 (1979) 1072.
    [21]I. Bialynicki-Birula and Z. Bialynicka-Birula, Vortex lines of the electromagnetic field, Phys. Rev. A 67 (2003) 062114.
    [22]G. Kaiser, Helicity, polarization and Riemann-Silberstein vortices, J. Opt. A: Pure. Appl. Opt.6 (2004) S243. M. V. Berry, Riemann-Silberstein vortices for paraxial waves, J. Opt. A: Pure. Appl. Opt.6 (2004) S175. I.Bialynicki-Birula, Electromagnetic vortex lines riding atop null solutions of the Maxwell equations, J. Opt. A:Pure. Appl. Opt.6 (2004) S181.
    [23]T. Radozycki, Quantum effects in the evolution of vortices in the electromagnetic field, Phys. Rev. E 69 (2004) 066616.
    [24]E. Wolf, Proc. R. Soc. A 225 (1954) 96 (1954); Nuovo Cimento 12 (1954) 884.
    [25]H.F. Schouten, G. Gbur, T.D. Visser, and E. Wolf, Phase singularities of the coherence functions in Young's interference pattern, Opt. Lett.28 (2003) 968. G. Gbur and T.D. Visser, Coherence vortices in partially coherent beams, Opt. Commun.222 (2003) 117.
    [26]G.V. Bogatyryova, C.V. Fel'de, P.V. Polyanskii, S.A. Ponomarenko, M.S. Soskin, and E. Wolf, Partially coherent vortex beams with a separable phase, Opt. Lett.28 (2003) 878. D.M. Palacios, I.D. Maleev, A.S. Marathay, and Jr. G.A. Swartzlander, Spatial Correlation Singu-larity of a Vortex Field, Phys. Rev. Lett.92 (2004) 143905. D.G. Fischer and T.D. Visser, Spatial correlation properties of focused partially coherent light, J. Opt. Soc. Am. A 21 (2004) 2097.
    [27]W. Wang, Z. Duan, S.G. Hanson, Y. Miyamoto, and M. Takeda, Experimental Study of Coherence Vortices:Local Properties of Phase Singularities in a Spatial Coherence Function, Phys. Rev. Lett. 96 (2006) 073902.
    [28]W. Wang and M. Takeda, Coherence Current, Coherence Vortex, and the Conservation Law of Coherence, Phys. Rev. Lett.96 (2006) 223904.
    [29]J.-R. Ren, D.-H. Xu, X.-H. Zhang, and Y.-S. Duan, Topological aspects of superconductors at dual point, Commun. Theor. Phys 49 (2008) 1627.
    [30]Z.-B. Cao and Y.-S. Duan, EXTRA DIMENSIONS WITH NONTRIVIAL TORSION AND SPINS OF COSMIC STRINGS, Mod. Phys. Lett. A 24 (2009) 1147. Y.-S. Duan and X. Liu, Knotlike cosmic strings in the early universe, JHEP 02 (2004) 028. Y.-S. Duan, J.-R. Ren, and J. Yang, Cosmic strings and quintessence, Chin. Phys. Lett 20 (2003) 2133.
    [31]M. Tian, X.-H. Zhang, and Y.-S. Duan, Topological structure of Gauss-Bonnet-Chern theorem and (p)over-tilde-branes, Chin. Phys. B 18 (2009) 1301. Y.-S. Duan, S.-F. Wu, and P.-M. Zhang, Topological structure and topological tensor current of Gauss-Bonnet-Chern theorem, Commun. Theor. Phys 45 (2006) 793.
    [32]X. Wang, S.-F. Wu, S. Zhu, J.-H. Yue, and G.-H. Yang, Topological structure of entropy of 4-dimensional axisymmetric black holes, Int. J. Theor. Phys 47 (2008) 1230. J.-H. Yue, G.-H. Yang, L.-J. Tian, and S. Zhu, Euler characteristic and topological phase transition of NUT-Kerr-Newman black hole, Commun. Theor. Phys 49 (2008) 941. Y.-X. Liu, L. Zhao, Z.-B. Cao, and Y.-S. Duan, Fermion absorption cross section and topology of spherically symmetric black holes, Phys. Lett. B 650 (2007) 286.
    [33]J.-R. Ren and H. Guo, Topological aspects in a two-component Bose condensed system in a neutron star, Chin. Phys. B 18 (2009) 3379. J.-R. Ren, H. Guo, X.-H. Zhang, and R. Li, Topological Aspects in an Interacting Mixture of a Charged and a Neutral Superfluid in Neutron Stars, Chin. Phys. Lett 26 (2009) 079701. J.-R. Ren, H. Guo, X.-H. Zhang, and R. Li, Knotted Solitons in an Interacting Mixture of a Charged and a Neutral Superfluid for Neutron Stars, Commun. Theor. Phys 52 (2009) 555.
    [34]L.-B. Fu, Y.-S. Duan, and H. Zhang, Evolution of the Chern-Simons vortices, Phys. Rev. D 61 (2000) 045004.
    [35]Duan Y S, Li S and Yang G H 1998 Nucl. Phys. B514 705; Duan Y S, Zhang H and Li S 1998 Phys. Rev. B58 125; Duan Y S, Zhang H and Jia G 1999 Phys. Letts. A 253 57
    [36]E. Goursat, A Course in Mathematical Analysis, translated by E. R. Hedrick (Dover, New York, 1904), Vol.Ⅱ.
    [37]J. A. Schouten, Tensor Analysis for Physicists (Clarendon Press, Oxford,1951).
    [38]Berry M V and Dennis M R 2001 Proc. R. Soc. A 457 2251; Dennis M R 2004 J. Opt. A:Pure. Appl. Opt.6 S202; Holleran K O, Padgett M J and Dennis M R 2006 Opt. Exp 14 3039; Leach J, Dennis M R, Courtial J and Padgett M J 2004 Nature 432 165; 2005 New. J. Phys.755
    [39]A. M. Pertsov, R. R. Aliev, and V. I. Krinsky, Nature.345,419 (1990); W. Jahnke, C. Henze and. A. T. Winfree, Nature.336,662 (1988); J. J. Tyson, and S. H. Strogatz, Int. J. Bifurc. Chaos 1,723 (1991); C. Henze and A. T. Winfree, Int. J. Bifurc. Chaos 1,891 (1991); A. T. Winfree, Nature.371, 233 (1994).
    [40]J.-R. Ren, T. Zhu, and S.-F. Mo, Knotted Topological Phase Singularities of Electromagnetic Field, Commun. Theor. Phys.50 (2008) 1071 [arXiv:0712.4198]. J.-R. Ren, T. Zhu, and Y.-S. Duan, Topology of Knotted Optical Vortices, Commun. Theor. Phys. 50 (2008) 345 [arXiv:0712.4195].
    [41]M. S. Soskin and M. V. Vassnetsov, In Progress in Optics, edited by E. Wolf (Elsevier, Amsterdam, 2001), Vol. XLI.
    [42]T. Xu, H. G. Su, G. Zhou, and X. W. Hu, Mod. Phys. Lett. A.21 (2006) 1369.
    [43]Duan Y S, Liu X and Fu L B 2003 Phys. Rev. D 67 085022
    [44]J. R. Ren, R. Li, and Y. S. Duan, J. Math. Phys.48 (2007) 073502.
    [45]N. D. Mermin and T. L. Ho, Phys. Rev. Lett.36 (1976) 594.
    [46]E. Witten, Commun. Math. Phys.121 (1989) 351; A. M. Polyakov, Mod. Phys. Lett. A 3 (1988) 325.
    [47]D. Rolfsen, Knots and Links (Publish or Perish, Berkeley, CA,1976).
    [48]J.-R. Ren, T. Zhu, and Y.-S. Duan, Topological Properties of Spatial Coherence Function, Chin. Phys. lett.25 (2008) 367 [arXiv:0707.4529].
    [49]Moffatt H K 1969 J. Fluid. Mech.35 117
    [50]Ranada A F and Trueba J L 1995 Phys. Letts. A 202 337
    [51]H. Zhang, Z. Cao, N. J. Wu, H. P. Ying, and G. Hu, Phys. Rev. Lett.94,188301 (2005).
    [52]A. T. Winfree and S. H. Strogatz, Physica D 8 (1983) 35; Physica D 9 (1983) 65; Physica D 9 (1983) 333; Physica D 13 (1984) 221; Physica D 17 (1985) 109; A. T. Winfree, Physica D 84 (1995) 126; A. T. Winfree, Nature 371 (1994) 233; Science 266 (1994) 1003.
    [53]H. Zhang, B. Hu, B. W. Wei, and Y. S. Duan, Chin. Phys. Lett.24,1618 (2007).
    [54]A. M. Pertsov, M. Wellner, M. Vinson, and J. Jalife, Phys. Rev. Lett.84,2738 (2000).
    [55]P. M. Sutcliffe and A. T. Winfree, Phys. Rev. E.68,016218 (2003).
    [56]A. T. Winfree and S. H. Strogatz, Nature.311,611 (1984).
    [57]A. Malevanets and R. Kapral, Phys. Rev. Lett.77,767 (1996).
    [58]A. T. Winfree, Physica D.84,126 (1995).
    [59]A. T. Winfree and S. H. Strogatz, Physica D.8,35 (1983).
    [60]T. Zhu, J.-R. Ren, and S.-F. Mo, The branch processes of vortex filaments and Hopf Invariant Constraint on Scroll Wave, Commun. Theor. Phys 52 (2009) 1149 [arXiv:0712.4198]. J.-R. Ren, T. Zhu, and S.-F. Mo, Evolution of the Spiral Waves in Excitable System, Commun. Theor. Phys.51 (2009) 621 [arXiv:0811.0217]. J.-R. Ren, T. Zhu, and Y.-S. Duan, Topological Aspect of Knotted Vortex Filaments in Excitable Media, Chin. Phys. Lett.25 (2008) 353 [arXiv:0712.4196].
    [61]S.W. Hawking, Particle creation by black holes, Commun. Math. Phys.43 (1975) 199.
    [62]J.D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333.
    [63]J.M. Bardeen, B. Carter and S.W. Hawking, The four laws of black hole mechanics, Commun. Math. Phys.31 (1973) 161.
    [64]T. Jacobson, Thermodynamics of space-time:the Einstein equation of state,Phys. Rev. Lett.75 (1995) 1260 [gr-qc/9504004].
    [65]R. G. Cai and S. P. Kim, First Law of Thermodynamics and Friedmann Equations of Friedmann-Robertson-Walker Universe, JHEP 02 (2005) 050 [hep-th/0501055].
    [66]R.G. Cai, L.M. Cao, and Y.P. Hu, Hawking Radiation of Apparent Horizon in a FRW Universe, arXiv:0809.1554.
    [67]C. Eling, R. Guedens and T. Jacobson, Non-equilibrium thermodynamics of spacetime, Phys. Rev. Lett.96 (2006) 121301 [gr-qc/0602001].
    [68]R.G. Cai and L.M. Cao, Unified First Law and Thermodynamics of Apparent Horizon in FRW Universe, Phys. Rev. D 75 (2007) 064008.
    [69]G. Chirco and S. Liberati, Non-equilibrium Thermodynamics of Spacetime:the Role of Gravitational Dissipation, Phys. Rev. D 81 (2010) 024016 [arXiv:0909.4194[gr-qc]].
    [70]E. Elizalde and P.J. Silva, f(R) gravity equation of state, Phys. Rev. D 78 (2008) 061501 [arXiv:0804.3721].
    [71]S.F. Wu, G.H. Yang, and P.M. Zhang, The equation of state for scalar-tensor gravity, Prog. Theor. Phys.120 (2008) 615 [arXiv:0805.4044].
    [72]R. Brustein and M. Hadad, Einstein Equations for Generalized Theories of Gravity and the Thermodynamic Relation δQ= TδS are Equivalent, Phys. Rev. Lett 103 (2009) 101301 [arXiv:0903.0823[hep-th]].
    [73]K. Bamba, C.-Q. Geng, S. Nojiri, and S.D. Odintsov, Equivalence of modified gravity equation to the Clausius relation, arXiv:0909.4397[hep-th]; M.K. Parikh and S. Sarkar, Beyond the Einstein Equation of State: Wald Entropy and Thermody-namical Gravity, arXiv:0903.1176[hep-th].
    [74]T. Padmanabhan, Entropy density of spacetime and thermodynamic interpretation of field equations of gravity in any diffeomorphism invariant theory, arXiv:0903.1254[hep-th]; T. Padmanabhan, A Physical Interpretation of Gravitational Field Equations, arXiv:0911.1403[gr-qc]; T.Padmanabhan, Thermodynamical Aspects of Gravity: New insights, Rep. Prog. Phys.73 (2010) 046901 [arXiv:0911.1403[gr-qc]]; S.-F. Wu, B. Wang, X.-H Ge, and G.-H. Yang, Deriving the gravitational field equation and horizon entropy for arbitrary diffeomorphism-invariant gravity from spacetime solid, Phys. Rev. D 81 (2010) 044010 [arXiv:0909.1367[gr-qc]].
    [75]M. Akbar and R.G. Cai, Friedmann equations of FRW universe in scalar-tensor gravity, f(R) gravity and first law of thermodynamics, Phys. Lett. B 635 (2006) 7 [hep-th/0602156].
    [76]M. Akbar and R.G. Cai, Thermodynamic behavior of field equations for f(R) gravity, Phys. Lett. B 648 (2007) 243 [gr-qc/0612089].
    [77]Y. Gong and A. Wang, Friedmann Equations and Thermodynamics of Apparent Horizons, Phys. Rev. Lett.99 (2007) 211301 [arXiv:0704.0793]. S.F. Wu, B. Wang, and G.H. Yang, Thermodynamics on the apparent horizon in generalized gravity theories,Nucl. Phys. B 799 (2008) 330 [arXiv:0711.1209].
    [78]T. Zhu, J.R. Ren, and S.F. Mo, Thermodynamics of Friedmann Equation and Masslike Function in General Braneworld, Int. J. Mod. Phys. A 24 (2009) 5877 [arXiv:0805.1162[gr-qc]].
    [79]A. Sheykhi, B. Wang, and R.G. Cai, Thermodynamical Properties of Apparent Horizon in Warped DGP Braneworld, Nucl. Phys. B 779 (2007) 1 [hep-th/0701198]. X.H. Ge, First law of thermodynamics and Friedmann-like equations in braneworld cosmology, Phys. Lett. B 651 (2007) 49 [hep-th/0703253].
    A. Sheykhi, B. Wang, and R.G. Cai, Deep connection between thermodynamics and gravity in Gauss-Bonnet braneworlds, Phys. Rev. D 76 (2007) 023515 [hep-th/0701261].
    [80]R.G. Cai and L.M. Cao, Thermodynamics of Apparent Horizon in Brane World Scenario, Nucl. Phys. B 785 (2007) 135 [hep-th/0612144].
    [81]M. Akbar and R.G. Cai, Thermodynamic behavior of the Friedmann equation at the apparent horizon of the FRW universe, Phys. Rev. D 75 (2007) 084003 [gr-qc/0611071].
    [82]S.-F. Wu, X.-H. Ge, P.-M. Zhang, and G.-H. Yang, Dynamical horizon entropy and equilibrium thermodynamics of generalized gravity theories, Phys. Rev. D 81 (2010) 044034.
    [83]T. Zhu, J.R. Ren and M.F. Li, Influence of Generalized and Extended Uncertainty Principle on Thermodynamics of FRW universe, Phys. Lett. B 674 (2009) 204 [arXiv:0811.0212].
    [84]R.G. Cai, L.M. Cao, Y.P. Hu, and S.P. Kim, Generalized Vaidya Spacetime in Lovelock Gravity and Thermodynamics on Apparent Horizon, Phys. Rev. D 78 (2008) 124012 [arXiv:0810.2610].
    [85]M.K. Parikh and F. Wilczek, Hawking Radiation as Tunneling, Phys. Rev. Lett.85 (2000) 5042 [hep-th/9907001].
    [86]K. Srinivasan and T. Padmanabhan, Particle production and complex path analysis, Phys. Rev. D 60 (1999) 024007. S. Shankaranarayanan, T. Padmanabhan and K. Srinivasan, Hawking radiation in different coordi-nate settings:Complex paths approach, Class. Quant. Grav.19 (2002) 2671. E.C. Vagenas, Complex Paths and Covariance of Hawking Radiation in 2D Stringy Black Holes, Nuovo Cim. B 117 (2002) 899 [hep-th/0111047].
    [87]R. Banerjee and B.R. Majhi, Quantum tunneling beyond semiclassical approximation, JHEP 06 (2008) 095 [arXiv:0805.2220]. R. Banerjee and B.R. Majhi, Quantum Tunneling and Trace Anomaly, Phys. Lett. B 674 (2009) 218 [arXiv:0808.3688].
    [88]B.R. Majhi, Fermion Tunneling Beyond Semiclassical Approximation, Phys. Rev. D 79 (2009) 044005 [arXiv:0809.1508].
    [89]R. Banerjee, B.R. Majhi, and D. Roy, Corrections to Unruh effect in tunneling formalism and map-ping with Hawking effect, arXiv:0901.0466. B.R. Majhi and S. Samanta, Hawking Radiation due to Photon and Gravitino Tunneling, arXiv:0901.2258.
    [90]H.M. Siahaan and Triyantam, Hawking Radiation from a Vaidya Black Hole:A Semi-Classical Approach and Beyond, arXiv:0811.1132.
    [91]S.K. Modak, Corrected entropy of BTZ black hole in tunneling approach, Phys. Lett. B 671 (2009) 167 [arXiv:0807.0959].
    [92]R. Banerjee and S.K. Modak, Exact Differential and Corrected Area Law for Stationary Black Holes in Tunneling Method, arXiv:0903.3321.
    [93]J. Zhang and Z. Zhao, Charged particles'tunnelling from the Kerr-Newman black hole, Phys. Lett. B 638 (2006) 110. Y. Hu, J. Zhang, and Z. Zhao, Massive particles'Hawking radiation via tunneling from the G.H Dilaton black hole, Mod. Phys. Lett. A 21 (2006) 2143 [gr-qc/0611026]. Y. Hu, J. Zhang, and Z. Zhao, Massive uncharged and charged particles'tunneling from the Horowitz-Strominger Dilaton black hole, Int. J. Mod. Phys. D 16 (2007) 847 [gr-qc/0611085]. J. Zhang and Z. Zhao, Hawking radiation of charged particles via tunneling from the Reissner-Nordstrom black hole, JHEP 10 (2005) 055.
    [94]Q.Q. Jiang, S.Q. Wu and X. Cai, Hawking radiation as tunneling from the Kerr and Kerr-Newman black holes, Phys. Rev. D 73 (2006) 064003 [Erratum ibid.73 (2006) 069902] [hep-th/0512351]. S.Q. Wu and Q.Q. Jiang, Remarks on Hawking radiation as tunneling from the BTZ black holes, JHEP 03 (2006) 079 [hep-th/0602033]. J.R. Ren, R. Li, and F.H. Liu, Mod. Phys. Lett. A 23 (2009) 3419 [arXiv:0705.4336]. R. Banerjee, B.R. Majhi, and S. Samanta, Noncommutative Black Hole Thermodynamics, Phys. Rev. D 77 (2008) 124035 [arXiv:0801.3583]. E.C. Vagenas, Are Extremal 2D Black Holes Really Frozen?, Phys. Lett. B 503 (2001) 399 [hep-th/0012134]. E.C. Vagenas, Two-Dimensional Dilatonic Black Holes and Hawking Radiation, Mod. Phys. Lett. A 17 (2002) 609 [hep-th/0108147]. E.C. Vagenas, Semiclassical Corrections to the Bekenstein-Hawking entropy of the BTZ Black Hole via Self-Gravitation, Phys. Lett. B 533 (2002) 302 [hep-th/0109108]. E.C. Vagenas, Generalization of the KKW Analysis for Black Hole Radiation, Phys. Lett. B 559 (2003) 65 [hep-th/0209185]. M.R. Setare and E.C. Vagenas, Self-Gravitational Corrections to the Cardy-Verlinde Formula of Achucarro-Ortiz Black Hole, Phys. Lett. B 584 (2004) 127 [hep-th/0309092]. M.R. Setare and E.C. Vagenas, Self-Gravitational Corrections to the Cardy-Verlinde Formula and the FRW Brane Cosmology in SdS5 Bulk, Int. J. Mod. Phys. A 20 (2005) 7219 [hep-th/0405186]. A.J.M. Medved and E.C. Vagenas, On Hawking. Radiation as Tunneling with Logarithmic Correc-tions, Mod. Phys. Lett. A 20 (2005) 1723 [gr-qc/0505015].
    [95]R. Kerner and R.B. Mann, Fermions tunnelling from black holes, Class, and Quant. Grav.25 (2008) 095014 [arXiv:0710.0612]. R. Kerner and R.B. Mann, Charged fermions tunnelling from Kerr-Newman black holes, Phys. Lett. B 665 (2008) 277 [arXiv:0803.2246].
    [96]R. Li, J.R. Ren, and S.W. Wei, Hawking radiation of Dirac particles via tunneling from Kerr black hole, Class. Quant. Grav.25 (2008) 125016 [arXiv:0803.1410]. R. Li and J.R. Ren, Dirac particles tunneling from BTZ black hole, Phys. Lett. B 661 (2008) 370 [arXiv:0802.3954].
    [97]D.Y. Chen, Q.Q. Jiang, and X.T. Zu, Fermions tunnelling from the charged dilatonic black holes, Class. Quant. Grav.25 (2008) 205022 [arXiv:0803.3248]. D.Y. Chen; Q.Q. Jiang, and X.T. Zu, Hawking radiation of Dirac particles via tunnelling from ro-tating black holes in de Sitter spaces, Phys. Lett. B 665 (2008) 106 [arXiv:0804.0131]. Q.Q. Jiang, Dirac particles'tunnelling from black rings, Phys. Rev. D 78 (2008) 044009 [arXiv:0807.1358].
    [98]R. Banerjee and B.R. Majhi, Connecting anomaly and tunneling methods for the Hawking effect through chirality, Phys. Rev. D 79 (2009) 064024 [arXiv:0812.0497].
    [99]R. Banerjee and B.R. Majhi, Hawking black body spectrum from tunneling mechanismPhys. Lett. B 675 (2009) 243 [arXiv:0903.0250].
    [100]T. Zhu, J.-R. Ren, and M.-F. Li, Influence of Generalized and Extended Uncertainty Principle on Thermodynamics of FRW universe, Phys. Lett. B 674 (2009) 204 [arXiv:0811.0212[hep-th]].
    [101]A. Kempf, G. Mangano, and R. B. Mann, Phys. Rev. D 52 (1995) 1108-1118 [arXiv:hep-th/9412167].
    [102]M. Maggiore, Phys. Lett. B 319 (1993) 83 [arXiv:hep-th/9309034]; M. Maggiore, Phys. Rev. D 49 (1994) 5182-5187 [arXiv:hep-th/9305163].
    [103]D. Amati, M. Ciafaloni, and G. Veneziano, Phys. Lett. B-216 (1989) 41; Nucl. Phys. B 347 (1990) 550; Nucl. Phys. B 403 (1993) 707; K. Konishi, G. Paffuti, and P. Provero, Phys. Lett. B 234 (1990) 276.
    [104]R. J. Adler, P. Chen, and D. I. Santiago, Gen.Rel.Grav.33 (2001) 2101-2108 [arXiv:gr-qc/0106080]; K. Nozari and S. H. Mehdipour, Mod. Phys. Lett. A 20 (2005) 2937 [arXiv:0809.3144].
    [105]M. Park, Phys. Lett. B 659 (2008) 698-702 [arXiv:0709.2307].
    [106]K. Nozari and A. S. Sefiedgar, Gen. Rel. Grav.39 (2007) 501-509 [arXiv:gr-qc/0606046]; A. J. M. Medved and E. C. Vagenas, Phys. Rev. D 70 (2004) 124021 [arXiv:hep-th/0411022]; R. Zhao and S. L. Zhang, Phys. Lett. B 641 (2006) 208-211; H. X. Zhao, H. F. Li, S. Q. Hu, and R. Zhao, arXiv:gr-qc/0608023.
    [107]R. Zhao, Y. Q. Wu, and L. C. Zhang, Class. Quant. Grav.20 (2003) 4885; X. Li, Phys. Lett. B 540 (2002) 9-13 [arXiv:gr-qc/0204029]; W. Kim, Y. W. Kim, and Y. J. Park, Phys. Rev. D 74 (2006) 104001 [arXiv:gr-qc/0605084]; Y. S. Myung, Y. W. Kim, and Y. J. Park, Phys. Lett. B 645 (2007) 393-397 [arXiv:gr-qc/0609031]; W. Kim, and J. J. Oh, JHEP 0801 (2008) 034 [arXiv:0709.0581]; W. Kim, E. J. Son, and M. Yoon, JHEP 01 (2008) 035 [arXiv:0711.0786]; Zhao Ren, Zhang Li-Chun, Li Huai-Fan, and Wu Yue-Qin, arXiv:0801.4118.
    [108]M. R. Setare, Phys. Rev. D 70 (2004) 087501 [arXiv:hep-th/0410044]; Int. J. Mod. Phys. A 21 (2006) 1325 [arXiv:hep-th/0504179]; S. Das and E. C. Vagenas, Phys. Rev. Lett.101 (2008) 221301 [arXiv:0810.5333]; M. V. Battisti and G. Montani, Phys. Lett. B 656 (2007) 96 [arXiv:gr-qc/0703025]; Phys. Rev. D 77 (2008) 023518[arXiv:0707.2726]; arXiv:0808.0831; M. V. Battisti, arXiv:0805.1178; S. F. Hassan and M. S. Sloth, Nucl. Phys. B 674 (2003) 434[arXiv:hep-th/0204110].
    [109]C. Bambi and F. R. Urban, Class. Quant. Grav.25 (2008) 095006 [arXiv:0709.1965].
    [110]R. K. Kaul and P. Majumdar, Phys. Rev. Lett.84,5255 (2000) [arXiv:gr-gc/0002040];A. Ghosh and P. Mitra, Phys. Rev. D 71,027502 (2005) [arXiv:gr-qc/0401070]; M. Domagala and J. Lewandowski, Class. Quant. Grav.21,5233 (2004) [arXiv:gr-qc/0407051]; K. A. Meissner, Class. Quant. Grav.21,5245 (2004) [arXiv:gr-qc/0407052].
    [111]A. J. M. Medved, Class.Quant.Grav.22 (2005) 133-142 [arXiv:gr-qc/0406044].
    [112]R. Banerjee and B. R. Majhi, Phys. Lett. B 662 (2008) 62 [arXiv:0801.0200]; JHEP 0806 (2008) 095 [arXiv:0805.2220]; arXiv:0808.3688.
    [113]R.G. Cai, L.M. Cao, and Y.P. Hu, Corrected Entropy-Area Relation and Modified Friedmann Equa-tions, JHEP 08 (2008) 090 [arXiv:0807.1232].
    [114]X. Han, H. Li, and Y. Ling, Phys. Lett. B 666 (2008) 121 [arXiv:0807.4269]; B. Bolen and M. Cavaglia, Gen.Rel.Grav.37 (2005) 1255-1262 [arXiv:gr-qc/0411086]; Ⅰ. Arraut, D. Batic, and M. Nowakowski, arXiv:0810.5156.
    [115]W. Kim, E. J. Son, and M. Yoon, arXiv:0808.1805.
    [116]R. Li, J.R. Ren, and D.F. Shi, Fermions Tunneling from Apparent Horizon of FRW Universe, Phys. Lett. B 670 (2009) 446 [arXiv:0812.4217].
    [117]E.T. Akhmedov, V. Akhmedova, T. Pilling, and D. Singleton, Thermal Radiation Of Various Gravitational Backgrounds, Int. J. Mod. Phys. A 2 (2007) 1705 [hep-th/0605137]. E.T. Akhmedov, V. Akhmedova, and D. Singleton, Hawking Temperature In The Tunneling Picture, Phys. Lett. B 642 (2006) 124 [hep-th/0608098]. B.D. Chowdhury, Problems With Tunneling Of Thin Shells From Black Holes, Pramana 70 (2008) 593 [hep-th/0605197]. T. Pilling, Tunneling Derived From Black Hole Thermodynamics, Phys. Lett. B 660 (2008) 402 [arXiv:0709.1624].
    [118]V. Akhmedova, T. Pilling, A. de Gill, and D. Singleton, Comments On Anomaly Ver-sus Wkb/Tunneling Methods For Calculating Unruh Radiation, Phys. Lett. B 673 (2009) 227 [arXiv:0808.3413]. T. Pilling, Quasi-classical Hawking Temperatures and Black Hole Thermodynamics, arXiv:0809.2701. E.T. Akhmedov, T. Pilling, and D. Singleton, Subtleties In The Quasi-Classical Calculation Of Hawk-ing Radiation, Int. J. Mod. Phys. D 17 (2008) 2453 [arXiv:0805.2653]. V. Akhmedova, T. Pilling, A. de Gill, and D. Singleton, Temporal Contribution To Gravitational Wkb-Like Calculations, Phys. Lett. B 666 (2008) 269 [arXiv:0804.2289];
    [119]H. Kodama, Conserved Energy Flux For The Spherically Symmetric System And The Back Reaction Problem In The Black Hole Evaporation, Prog. Theor. Phys.63 (1980) 1217.
    [120]S.Q. Wu and Q.Q. Jiang, Remarks On Hawking Radiation As Tunneling From The Btz Black Holes, JHEP 0603 (2006) 079 [hep-th/0602033]. H.L. Li and S.Z. Yang, Hawking Radiation From The Charged Btz Black Hole With Back-Reaction, Euro. Phys. Lett.79 (2007) 20001. Q.Q. Jiang, S.Q. Wu, and X. Cai, Hawking radiation as tunneling from the Kerr and Kerr-Newman black holes, Phys. Rev. D 73 (2006) 064003 [hep-th/0512351]. R. Banerjee and B.R. Majhi, Quantum Tunneling And Back Reaction, Phys. Lett. B 662 (2008) 62 [arXiv:0801.0200]. A.J.M. Medved and E.C. Vagenas, On Hawking Radiation As Tunneling With Back-Reaction, Mod. Phys. Lett. A 20 (2005) 2449 [gr-qc/0504113].
    [121]K. Chiang, S.M. Ke, D.T. Peng, and T. Feng, Hawking radiation as tunneling and the first law of thermodynamics at apparent horizon in the FRW universe, arXiv:0812.3006.
    [122]K.X. Jiang, T.Feng, and D.T. Peng, Hawking radiation of apparent horizon in a FRW uni-verse as tunneling beyond semiclassical approximation, Int. J. Theor. Phys (2009 in press) (Doi:10.1007/s10773-009-9988-y).
    [123]T. Zhu, J.-R. Ren, and D. Singleton, Hawking-like radiation as tunneling from the apparent horizon in a FRW Universe, Int.J. Mod. Phys. D 19 (2010) 159 [arXiv:0902.2542[hep-th]].
    [124]T. Zhu, J.-R.g Ren, and M.-F. Li, Corrected Entropy of FRW Universe in Tunneling Method, JCAP 08 (2009) 010 [arXiv:0905.1838[hep-th]]. T. Zhu and J.-R. Ren, Corrections to Hawking-like Radiation for a FRW Universe, Euro. Phys. J. C 62 (2009) 413 [arXiv:0811.4074[hep-th]].
    [125]K. Lin and S.Z. Yang, Fermion tunneling from higher-dimensional black holes, Phys. Rev. D 79 (2009) 064035. K. Lin and S.Z. Yang, Fermions tunneling of higher-dimensional Kerr-Anti-de Sitter black hole with one rotational parameter, Phys. Lett. B 674 (2009) 127.
    [126]R. Banerjee and B.R. Majhi, Quantum Tunneling and Back Reaction, Phys. Lett. B 662 (2008) 62 [arXiv:0801.0200]. A.J.M. Medved, A comment on black hole entropy or does nature abhor a logarithm?, Class. Quant, grav.22 (2005) 133. R.K. Kaul and P. Majumdar, Logarithmic correction to the Bekenstein-Hawking entropy, Phys. Rev. Lett.84 (2000) 5255 [gr-qc/0002040]. A. Ghosh and P. Mitra, Phys. Rev. D 71 (2005) 027502 [gr-qc/0401070]. M. Domagala and J. Lewandowski, Black hole entropy from Quantum Geometry, Class. Quant. Grav. 21 (2004) 5233 [gr-qc/0407051]. K.A. Meissner, Black hole entropy in Loop-Quantum Gravity, Class. Quant. Grav.21 (2004) 5245 [gr-qc/0407052].
    [127]H. Maeda, Final fate of spherically symmetric gravitational collapse of a dust cloud in Einstein-Gauss-Bonnet gravity, Phys. Rev. D 73 (2006) 104004 [gr-qc/0602109]. M. Nozawa and H. Maeda, Dynamical black holes with symmetry in Einstein-Gauss-Bonnet gravity, Class. Quant. Grav.25 (2008) 055009. H. Maeda and M. Nozawa, Generalized Misner-Sharp quasilocal mass in Einstein-Gauss-Bonnet gravity, Phys. Rev. D 77 (2008) 064031.
    [128]R.G. Cai, Gauss-Bonnet black holes in ADS spaces, Phys. Rev. D 65 (2002) 084014 [hep-th/0109133]. T. Clunan, S.F. Ross and D.J. Smith, On Gauss-Bonnet black hole entropy, Class. Quant, grav.21 (2004) 3447 [gr-qc/0402044]. R.G. Cai and Q. Guo, Gauss-Bonnet Black Holes in dS Spaces, Phys. Rev. D 69 (2004) 104025 [hep-th/0311020]. M. Cvetic, S. Nojiri, and S.D. Odintsov, Black Hole Thermodynamics and Negative Entropy in deSitter and Anti-deSitter Einstein-Gauss-Bonnet gravity, Nucl. Phys. B 628 (2002) 295 [hep-th/0112045].
    [129]R.G. Cai, A Note on Thermodynamics of Black Holes in Lovelock Gravity, Phys. Lett. B 582 (2004) 237 [hep-th/0311240].
    [130]G. Cognola, E. Elizalde, S. Nojiri, S.D. Odintsov, and S.Zerbini, One-loop f(R) gravity in de Sitter universe, JCAP 0502 (2005) 010 [hep-th/0501096].
    [131]R.G. Cai and Y.S. Myung, Black holes in the Brans-Dicke-Maxwell theory, Phys. Rev. D 56 (1997) 3466.
    [132]G. Magnano and L.M. Sokolowski, Physical equivalence between nonlinear gravity theories and a general-relativistic self-gravitating scalar field, Phys. Rev. D 50 (1994) 5039. T.P. Sotiriou and V. Faraoni, f(R) Theories of Gravity, arXiv:0805.1726. T.P. Sotiriou, f(R) gravity and scalar-tensor theory, Class. Quant. Grav.23 (2006) 5117.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700