用户名: 密码: 验证码:
铝管表面复合钝化及防腐性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以冰箱、冰柜蒸发器用铝管为研究对象,通过浸渍法在铝管表面进行硅烷稀土铈的复合钝化,论文对其钝化工艺进行了考察和优化,得出最佳的成膜工艺条件:室温下硅烷水解最佳时间为40h,硅烷、稀土铈溶液钝化温度分别为30℃和60℃,钝化时间均为60s,成膜温度均为100℃。论文还通过线性扫描法筛选并确定了用十二烷基磺酸钠(SDS)作为添加剂,并考察了其对耐蚀性的影响。采用硫酸铜点滴、碱浸失重、析氢、中性盐雾试验和电化学手段来考察两种复合膜层的耐蚀性,并分别利用扫描电镜和X射线衍射能谱对钝化膜层表面形貌和成分进行了分析。
     耐蚀性测试表明:与空白样和单一沉积膜相比,复合膜层的耐蚀性大幅度提高;其中复合膜耐硫酸铜点滴时间为56"50,碱浸失重速率为0.0006261g/(cm2·h),开始析出氢气的时间为3.5h,耐中性盐雾试验的时间为226h,自腐蚀电流和阻抗值分别为7.2991×10-6A/cm2和12586Ω,其耐蚀性能不如铬酸盐转化膜;而经过表面活性剂SDS协同改性的复合改性膜层,其点滴时间为1'04"48,碱浸失重失重速率为0.0001657g/(cm2·h),开始析出氢气的时间为4.5h,耐中性盐雾试验的时间为252h,自腐蚀电流为4.9582×10-7A/cm2,其耐蚀性优于铬酸盐转化膜。SEM形貌图表明表面钝化膜层较单一沉积膜层均匀致密,但不如经SDS改性复合膜层的形貌;膜层EDX成分分析,结果表明膜层主要由Al、O、Ce、Si和S元素组成,同时由于SDS的加入,使得膜层的S、Si含量有大幅度增加。本论文还对钝化成膜机理和耐蚀机理进行了初步的分析。
     SDS改性硅烷稀土铈钝化由于其工艺快速简便、环保和耐蚀性好等优点可望成为一项实用的铝及其合金的防腐钝化技术,是一种较理想的铬酸盐钝化替代工艺,具有广阔的应用前景。
The silane-rare earth cerium composite coatings on the aluminum-tube used in evaporator of refrigerators were prepared by immersion in the workable solution in the paper. The best process conditions of coatings formed that the time of silane hydrolyzing is 40h at room temperature, passivation temperature of silane and rare earth cerium solution are 30℃and 60℃respectively, passivation time and temperature of coatings formed are 60s and 100℃respectively, were obtained by optimizing preparation process. Anionic surfactant sodium dodecyl sulfonate SDS used as additive to prepare modified silane-rare earth cerium composite coatings was selected by means of linear sweep voltammetry. The corrosion resistance of the two coatings was assessed by copper sulfate dropping test, alkaline leaching weight loss, collecting hydrogen experiment, neutral salt spray test and electrochemical methods. Scanning Electron Microscope(SEM) and X-ray Energy Dispersive Spectroscopy(EDX) were used to analysis morphology and composition of the coatings.
     The results of testing indicate that corrosion resistance of the composite coatings greatly improved compared with blank sample. The time of copper sulfate dropping is 56"50, loss weight rate is 0.0006261 W/S-h(g/cm2·h), releasing hydrogen's time is 3.5h, the anti-pitting corrosion time is 226h, the self-corrosion current and impedance value are 7.2991E-6A/cm2and 12586Ωrespectively, which show that the composite coatings is less effective than the coatings with Cr. However, the results of corrosion resistance showed that the composite coatings modified with SDS are better than the coatings with Cr, which The time of copper sulfate dropping is 1'04"48, loss weight rate is 0.0001657 W/S·h(g/cm2·h), releasing hydrogen's time is 4.5h, the anti-pitting corrosion time is 252h, the self-corrosion current is 4.9582E-7A/cm2. SEM observation showed that the modified composite conversion coat is much more uniform and dense than the composite coatings; EDX test showed that the complex coat is mainly composed of N, O, Si, Al and Ce and the content of S and Si increased greatly because of SDS adding. The coatings formed and corrosion protection mechanisms of the composite coatings were also analyzed in the paper.
     SDS modified silane-rare earth cerium composite coatings, which can be well used to replace the chromate treatment, is expected to be a practical passivation technology of the aluminum and aluminum alloy because of simple process, environmental friendly and excellent corrosion resistance.
引文
[1]Fierro G, Ingo GM, Mancla Fi. XPS-Investigation on the corrosion behavior of 13Cr martensitic stainless steel in CO2-H2S-Cl environment[J]. Corrosion, 1989(10):814-821
    [2]Srinivasan S, Kane RD. Experimental simulation of multiphase CO2/H2S system[J]. Corrosion,1999(14):1168-1182
    [3]Lin CW. Effect of chromate conversion coatings with and without poly(acrylic acid) on the press formability, shearing properties and durability of galvanized steel laminates using poly(vinyl butyral) as core material[J]. Journal of Materials Science,1999(16):3951-3956
    [4]Magalhaes AAO, Margarit ICP, Mattos OR. Electrochemical characterization of chromate coatings on galvanized steel[J]. Electrochimica Acta,1999,44(24): 4281-4287
    [5]Zin IM. Efficiency of certain chromate-free pigments for the corrosion protection of galvanized steel[J]. Materials Science,2000,36(3):450-453
    [6]Mottahedi AA. A procedure for chromate conversion coating of commercial galvanized steel to olive color at normal temperature[J]. Modeling, Control and Optimization in Ferrous and Nonferrous Industry,2003,16(6):253-257
    [7]Zhang X, Bohm S, Bosch AJ, etal. Influence of drying temperature on the corrosion performance of chromate coatings on galvanized steel[J]. Materials and Corrosion-Werkstoffe Und Korrosion,2004,55(7):501-510
    [8]Mekhalif Z, Forget L, Delhalle J. Investigation of the protective action of chromate coatings on hot-dip galvanized steel:role of wetting agents[J]. Corrosion Science,2005,47(3):547-566
    [9]唐苏亚.欧盟RoHS指令对我国微电机行业的影响[J].微电机,2007,40(6):73-75
    [10]崔昌军,彭乔.铝及铝合金的阳极氧化研究综述[J].全面腐蚀控制,2002,16(6):12-17
    [11]Luis M, Patricia H, Idalina V. Electrochemical study of modified cerium-silane bi-layer on Al alloy 2024-T3[J]. Corrosion Science,2009,120(4):236-245
    [12]刘惊,胡吉明,张鉴清,等.金属表面硅烷化防护处理及其研究现状[J].中国腐蚀与防护学报,2006,26(01):59-62
    [13]王祝堂,田荣璋.铝合金及其加工手册[M].长沙:中南工业大学出版社,2000
    [14]刘永辉,张佩芬.金属腐蚀学原理[M].北京:航空工业出版社,1993
    [15]曹楚南.腐蚀电化学[M].北京:化学工业出版社,1994
    [16]Vukassovich M, Farrj PG. Molybdatein corrosion inhibition-a review[J]. Materials Performance,1986,25(5):99-102
    [17]Srinivasan S, Kane R. Experimental simulation of multiphase CO2/H2S system[J]. Corrosion,1999(14):1168-1182
    [18]Masamura K, Hashizume S, Sakai J. Polarization behavior of high-alloy OCTG in CO2 environment as affected by chlorides and sulfides[J]. Corrosion,1987(6): 359-368
    [19]张天胜.缓蚀剂[M].北京:化学工业出版社,2003
    [20]李焰,王洪仁,冯法伦,等.锌铝合金镀层表面低铬钝化膜的研究[J].东北大学学报(自然科学版),1999,20(06):630-632
    [21]卢燕平,屈祖玉.镀锌层低铬钝化膜的改性与耐蚀性研究[J].材料保护,2003,36(04):35-37
    [22]陈锦虹,任艳萍,卢锦堂,等.镀锌层三价铬钝化的研究进展[J].材料保护,2004,37(11):32-34
    [23]郑环宇,安茂忠,赖勤志.镀锌钢板无铬钝化工艺的研究[J].工艺研究,2005,9(4):18-21
    [24]曾振欧,邹锦光,赵国鹏,等.镀锌层三价铬与六价铬钝化膜的性能[J].华南理工大学学报(自然科学版),2007,35(5):104-108
    [25]任艳萍,陈锦虹.镀锌层三价铬钝化膜腐蚀行为的研究[J].材料保护,2007,40(2):7-10
    [25]王成,江峰,林海潮.Al合金表面铬酸盐处理及替代工艺研究进展[J].腐蚀科学与防护技术,2001,13(6):347-350
    [26]Liu Y, Arenas A, Garcia-Vergara S, etal. Ageing effects in the growth of chromate conversion coatings on aluminium[J]. Corrosion Science,2005,47(1):145-150
    [27]Campestrini P, Van Westing E, De Wit J. Influence of surface preparation on performance of chromate conversion coatings on alclad 2024 aluminium alloy: Part Ⅰ:Nucleation and growth[J]. Electrochimica Acta,2001,46(16):2553-2571
    [28]Campestrini P, Van Westing E, De Wit J. Influence of surface preparation on performance of chromate conversion coatings on Alclad 2024 aluminium alloy: Part Ⅱ:EIS investigation[J]. Electrochimica Acta,2001,46(17):2631-2647
    [29]Liu Y, Skeldon P, Thompson G, etal. Chromate conversion coatings on aluminium:Influences of alloying[J]. Corrosion Science,2004,46(2):297-312
    [30]Yong-Jun Tan, Stuart Bailey, Brian Kinsella. Studying the formation process of chromate conversion coatings on aluminium using continuous electrochemical noise resistance measurements[J]. Corrosion Science,2002,44(6):1277-1286
    [31]Zhao J, Xia L, Sehgal A, etal. Effects of chromate and chromate conversion coatings on corrosion of aluminum alloy 2024-T3[J]. Surface and Coatings Technology,2001,140(1):51-57
    [32]Treacy G, Wilcox G.. Surface analytical study of the corrosion behaviour of chromate passivated A12014 AT-6 during salt fog exposure[J]. Applied Surface Science,2000,157(1-2):7-13
    [33]Lin CW. Effect of chromate conversion coatings with and without poly(acrylic acid) on the press formability, shearing properties and durability of galvanized steel laminates using poly(vinyl butyral) as core material[J]. Journal of Materials Science,1999,34(16):3951-3956
    [34]崔昌军,彭乔.铝及铝合金的阳极氧化研究综述[J].全面腐蚀控制,2002,16(6):12-17
    [35]郭起.铝管内壁的阳极氧化处理[J].轻合金加工技术,1994,22(7):43-45
    [36]朱祖芳.铝合金阳极氧化与表面处理技术[M].北京:化学工业出版社,2004
    [37]Yakovleva N, Anicai L, Yakovlev A, etal. Chupakhina.Structural study of anodic films formed on aluminum in nitric acid electrolyte[J]. Thin Solid Films,2002, 416(1-2):16-23
    [38]De Laet J, Terryn H, Vereecken J. Development of an optical model for steady state porous anodic films on aluminium formed in phosphoric acid[J]. Thin Solid Films,1998,320(2):241-252
    [39]Song-jiang MA, Peng L, Hai-hui Z, Chao-peng F, Ya-fei K. Preparation of anodic films on 2024 aluminum alloy in boric acid-containing mixed electrolyte[J]. Transactions of Nonferrous Metals Society of China,2008,18(4):825-830
    [40]王艳芝.盐酸介质中铝合金用复合缓蚀剂的研究[J].材料保护,2002,35(6):18-20
    [41]陈旭俊,徐越.乙醇胺钼酸盐的缓蚀作用与机理[J].中国腐蚀与防护学报,1995,15(4):279-284
    [42]龚浩,徐瑞芬.有机钼酸盐MDTA对碳钢的缓蚀作用和机理[J].腐蚀与防护,1999,20(2):62-65
    [43]Zucchi F, Grassi V, Frignani A, etal. Inhibition of copper corrosion by silane coatings[J]. Corrosion Science,2004,46(11):2853-2865
    [44]Palanivel V, Huang Y, Van Ooij WJ. Effects of addition of corrosion inhibitors to silane films on the performance of AA2024-T3 in a 0.5M NaCl solution[J]. Progress in Organic Coatings,2005,53(2):153-168
    [45]刘文君,张英杰,章江洪,等.工艺因素对硅酸盐无铬钝化中耐蚀性的影响[J].表面技术,2007,36(1):60-61
    [46]鞠红,李焰.金属锌、铝的缓蚀剂研究进展[J].腐蚀科学与防护技术,2006,18(1):353-356
    [47]蒋金枝,孟凡桂.金属锌有机缓蚀剂的研究进展[J].有色金属,2003,55(1):254-257
    [48]王成,江峰,林海潮.碳酸钠在氯化钠溶液中对铝合金的缓蚀作用研究[J].材料保护,2008,33(8):1-3
    [49]王成,江峰,林海潮.硫化钠对铝合金在3.5%氯化钠溶液中缓蚀作用研究[J].腐蚀与防护,2000,21(3):104-106
    [50]王成,江峰,林海潮.磷酸盐对铝合金的缓蚀作用的研究[J].全面腐蚀控制,2000,14(1):5-8
    [51]Zucchi F, Grassi V, Frignani A, etal. Inhibition of copper corrosion by silane coatings[J]. Corrosion Science,2004,46(11):2853-2865
    [52]Cabral AM, Duarte RG, Montemor MF, etal. A comparative study on the corrosion resistance of AA2024-T3 substrates pre-treated with different silane solutions-Composition of the films formed[J]. Progress in Organic Coatings,2005, 54(4):322-331
    [53]Palanivel V, Huang Y, Van Ooij WJ. Effects of addition of corrosion inhibitors to silane films on the performance of AA2024-T3 in a 0.5M NaCl solution[J]. Progress in Organic Coatings,2005,53(2):153-168
    [54]姜德成,刘福国.新型三唑衍生物缓蚀剂在HCl中的缓蚀性能[J].中国腐蚀与防护学报,2008,28(4):231-239
    [55]Zhu DQ, Van Ooij WJ. Corrosion protection of AA2024-T3 by bis-[3-(triethoxysilyl)propyl]tetrasulfide in sodium chloride solution:Part 2: mechanism for corrosion protection[J]. Corrosion Science,2003,45(10): 2177-2197
    [56]Palanivel V, Zhu DQ, Van Ooij WJ. Nanoparticle-filled silane films as chromate replacements for aluminum alloys[J]. Progress in Organic Coatings,2003,47(3-4): 384-392
    [57]Zhu DQ, Van Ooij WJ. Enhanced corrosion resistance of AA 2024-T3 and hot-dip galvanized steel using a mixture of bis-[triethoxysilylpropyl]tetrasulfide and bis-[trimethoxysilylpropyl] amine[J]. Electrochimica Acta,2004,49(7): 1113-1125
    [58]Zhu DQ, Van Ooij WJ. Corrosion protection of metals by water-based silane mixtures of bis-[trimethoxysilylpropyl]amine and vinyltriacetoxysilane[J]. Progress in Organic Coatings,2004,49(1):42-53
    [59]Luis EM, Patricia H, Idalina V, etal. Investigation of the corrosion behaviour of a bilayer cerium-silane pre-treatment on Al 2024-T3 in 0.1M NaCl[J]. Electrochimica Acta,2007,52(2):7496-7505
    [60]Van Ooij WJ, Zhu D, Stacy M, etal. Corrosion protection properties of organofunctional silanes-an overview[J]. Tsinghua science and technology,2005, 10(6):639-664.
    [61]周宁琳.有机硅聚合物导论[M].北京:科学出版社,2000
    [62]Arkles B. Tailoring Surfaces with Silanes[J]. ChemTech,1977,7:766-771
    [63]晨光化工研究院有机硅编写组.有机硅单体及聚合物[M].北京:化学工业出版社,1986
    [64]肖纪美,霍明远.中国稀土理论与应用研究[M].北京:高等教育出版社,1992
    [65]陈根香,曹经倩,吴纯素.稀土钝化金属防腐蚀表面处理新技术[J].材料保护,1995,28(3):1-2
    [66]张巍,李久青,许江涛,等.LC4铝合金稀土转化膜耐蚀性及影响因素[J].腐蚀科学与防护技术,1999,11(6):341-344
    [67]王成,江峰,林海潮,等.LY12Al合金铈转化膜的研究[J].腐蚀科学与防护技术,2001,13(2):74-78
    [68]李久青,田虹,卢翠英.铝合金稀土转化膜碱性成膜工艺T3/T7的研究[J].腐蚀科学与防护技术,1998,10(2):98-101
    [69]于兴文,周育红,周德瑞,等.铝合金稀土转化膜碱性成膜工艺T3/T7的研究[J].电镀与环保,1998,18(5):27-30
    [70]Correa-Duarte MA, Giersig M, Liz-Marzan LM. Stabilization of CdS semiconductor nanoparticles against photodegradation by a silica coating procedure[J]. Chemical Physics Letters,1998,286(6):497-501
    [71]李焰,王洪仁,冯法伦,等.锌铝合金镀层表面低铬钝化膜的研究[J].东北 大学学报(自然科学版),1999,20(6):630-632
    [72]李久青,高陆生.铝合金稀土转化膜处理对LC4合金耐SCC性能的影响[J].腐蚀科学与防腐技术,1996,82(2):139-143
    [73]李久青,高陆生.铝合金表面四价铈盐转化膜及其耐蚀性[J].腐蚀科学与防腐技术,1996,8(4):271-274
    [74]Bethencourt M, Botana FJ, Cano MJ, etal. High protective, environmental friendly and short-time developed conversion coatings for aluminium alloys[J]. Applied Surface Science,2002,189(1-2):162-173
    [75]于兴文,曹楚南.LY12铝合金表面双层稀土转化膜的研究[J].材料研究学报,2000,14(3):291-295
    [76]李久青,高陆生,卢翠英,等.铝合金表面稀土转化膜研究进展[J].腐蚀科学与防护技术,1996,8(4):271-275
    [77]Caruso R, De-Sanctis O, Frattini A, etal. Synthesis of precursors for chemical solution deposition of PZT thin films[J]. Surface and Coatings Technology,1999, 122(1):46-50
    [78]Hinton BRW, Wilson L. The corrosion inhibition of Zinc with cerous chloride[J], Corrosion Science,1989,29(8):967-985
    [79]Hinton BRW, Arnott DR, Ryan NE. Cerium conversion coatings for the corrosion protection of aluminum[J]. Materials Forum,1986,9(3):162-173
    [80]Hinton BRW, Amoot DR. The characteristics of corrosion inhibiting film formed in the presence of rare earth cations[J]. Microstructure Science,1989,17(2): 311-320
    [81]Arnott DR, Hinton BRW, Ryan NE. Cationic film forming inhibitors for the corrosion protection of AA7075 aluminum alloy in chloride solutions[J]. Materials Performance,1987,26(8):42-47
    [82]Arnott DR, Hinton BRW, Ryan NE. Cationic film forming inhibitors for the protection of AA7075 aluminum alloy against corrosion in aqueous chloride solution[J]. Corrosion Science,1989,45(1):12-19
    [83]Hinton BRW. Inventor metal cleaning treatment with acidic solutions containing rare earth ions and suitable for desmutting. AU Patent WO08008,1995
    [84]于兴文,曹楚南,林海潮.A16061/SiC-P复合材料表面Ce转化膜腐蚀行为的研究[J].金属学报,2000,36(3):313-317
    [85]Davenport AJ, Isaacs HS, Kendig MW. Investigation of the role of cerium compounds as corrosion inhibitors for aluminum[J]. Corrosion Science,1991, 32(5-6):653-663
    [86]Mansfeld F. Use of electrochemical impedance spectroscopy for the study of corrosion protection by polymer coatings[J]. Journal of Applied Electrochemical, 1995,25(3):187-202
    [87]石磊,王清,王释波.转化膜性能的测试技术[J].腐蚀与防护,2004,25(10):441-444
    [88]徐溢,王楠,张小凤,等.直接用作金属表面新型防护涂层的硅烷偶联剂水解效果分析[J].腐蚀与防护,2000,21(4):157-159
    [89]徐溢,唐守渊,滕毅,等.金属表面处理用硅烷试剂的水解与缩聚[J].重庆大学学报,2002,25(10):72-74
    [90]Luis EM, Patricia HS, Idalina VA, etal. Investigation of the corrosion behaviour of a bilayer cerium-silane pre-treatment on Al 2024-T3 in 0.1M NaCl[J]. Electrochimica Acta,2007,52(2):7496-7505
    [91]Luis MP, Patricia HS, Idalina VA, etal. Electrochemical study of modified cerium-silane bi-layer on Al alloy 2024-T3[J]. Corrosion Science,2009,120(4): 236-245
    [92]Raps D, Hack T, Wehr J, etal. Electrochemical study of inhibitor-containing organic-inorganic hybrid coatings on AA2024[J]. Corrosion Science,2009,125(6): 2173-2187
    [93]Tamborim SM, Maisonnave AP, Azambuja DS, etal. An electrochemical and superficial assessment of the corrosion behavior of AA 2024-T3 treated with metacryloxypropylmethoxysilane and cerium nitrate[J]. Surface and Coatings Technology,2008,202(6):5991-6001
    [94]张鉴清,曹楚南.电化学阻抗谱方法研究评价有机涂层[J].腐蚀与防护,1998,19(3):99-104
    [95]杜巧云,葛虹.表面活性剂基础及应用[M].北京:中国石化出版社,1996
    [96]邱文革,陈树森.表面活性剂在金属加工中的应用[M].北京:化学工业出版社,2003
    [97]徐以兵,何德良,周舟,等.表面活性剂对铝合金表面电化学沉积硅烷膜层的影响[J].表面技术,2008,7(3):1-3
    [98]葛科.盐酸介质中铝的腐蚀与防护研究[D].重庆:重庆大学,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700