用户名: 密码: 验证码:
基于改进交流阻抗法的混凝土内钢筋腐蚀检测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
交通系统是最重要的生命线系统之一,是关系社会与经济协调发展的重要基石。作为交通系统的重要单元,桥梁是交通畅通的重要保证。目前,我国大部分桥梁为钢筋混凝土桥梁,且多数桥梁是20世纪60-70年代建造的,混凝土内钢筋腐蚀已经对我国的桥梁耐久性和安全性构成了严重威胁。钢筋腐蚀的早期检测出并采取适当的措施,一则可以防止腐蚀进一步发展,可以极大地提高桥梁的耐久性,延长桥梁的服役时间;二则可以有利于制定桥梁体系的优化养护、维修策略,以阻止桥梁失效事故的发生。本文以混凝土内钢筋腐蚀的检测技术为出发点,选择基于表面测量技术的交流阻抗法作为研究对象,利用等效电路法系统研究各因素对表观阻抗谱的影响规律,在此基础上提出了一种实用于钢筋混凝土腐蚀评价的改进交流阻抗法。
     为了建立基于表面测量的交流阻抗法的等效电路,首先研究钢筋与混凝土界面处的阻抗。经过比较,确定界面阻抗的等效电路。利用该等效电路及其阻抗谱图,推导出阻抗谱的曲线特征量(如阻抗虚部峰值时的频率等)与等效电路元件的参数之间的数学关系,从理论上分析元件参数对于界面阻抗谱曲线的影响。并研究将Cole-Cole模型引入界面阻抗的模拟,分析了该模型随参量变化的规律,并证明了如果取值合理,该模型也可以用于模拟钢筋与混凝土界面处的阻抗的变化规律。
     然后,本文利用检测简图,通过建立适当的坐标系,利用泊松方程以及本问题的边界条件,推导出电流强度一定时,混凝土内任意一点的电势表达式。根据阻抗与电势差之间的关系,分析得到表观阻抗谱的主要影响因素有:界面阻抗、探针排布间距、钢筋埋深和混凝土电阻率等。
     其后,考虑上述因素的影响,分别以基本等效电路和Cole-Cole模型模拟界面阻抗,建立了基于表面测量的交流阻抗法等效电路。计算在该等效电路中表观阻抗谱的表达式。
     最后,通过改变各个参量的值,并利用Matlab软件对计算得到的相应阻抗谱曲线进行了从低频到高频的扫描,最终得到了界面阻抗、钢筋埋深等因素对于表观阻抗谱的影响规律,并根据得到的结论对该方法在实际中的应用提出建议。
Bridge, the important and key element in transportation system, plays an important role in smoothly and healthy traffic system and the national economy. For now, most of bridges in China are RC bridges and built in the 1960s~1970s. However, due to poor bridge management and element aging of the bridge, corrosion of steel in concrete is so serious that it had induced more and more bridge failure and fatal accidents in China. Certainly, the same events have also been found in all over the world. It has been proven that we can greatly improve the safety and durability of the bridges and prolong their service lives if the corrosion is detected in its early stage and some effective prevention solutions are systematically executed before the corrosion is getting worse. In this thesis, a modified concrete-surface-based AC impedance method is studied by use of the equivalent circuit method, and it is figured out how several factors affect the detected apparent impedance.
     Firstly, impedance at the interface of the rebar and concrete is discussed. Based on AC impedance method, the equivalent circuit of the impedance at the interface is set up. Meanwhile, with the use of the equivalent circuit and its impedance spectrum, the relationship between characteristics of the impedance spectrum and the parameters of the equivalent circuit is obtained and analyzed. Also, the Cole-Cole model is applied to simulate the interface impedance. It is proved that with the proper dereferencing, Cole-Cole model can be effectively used to estimate the interface impedance and its corresponding characteristics.
     Secondly, with the set up of the coordinate system and the knowledge of electrical science, expression of potential at point in the concrete is obtained. According to the relationship between the impendence and the potential, it is proved that the main influencing factors for the detected apparent impedance include: the interface impendence, the distance between electrodes, the embedded depth of the rebar and the resistivity of the concrete.
     Thirdly, an equivalent circuit for the apparent impedance is built considering the interface impendence, the distance between electrodes, the embedded depth of the rebar and the resistivity of the concrete, and its expression is got.
     Lastly, serial spectrums with different the above parameters are obtained based on frequency scanning method in the software platform of MATLAB. How these factors influence the impedance spectrum and some advices for practical use concluded from above research are given at the end of this thesis.
引文
1李志强.钢筋混凝土桥梁状态评估及预测方法的研究.哈尔滨工业大学硕士学位论文. 2008: 1-2
    2洪乃丰.混凝土中钢筋腐蚀与防护技术.工业建筑. 1999, 29(8): 66-68
    3张明辉,耿欧.混凝土中钢筋腐蚀监测技术研究现状及发展趋势.混凝土. 2007, (2): 23-24
    4洪定海.混凝土中钢筋的腐蚀与保护.北京:中国铁道出版社. 1998: 3-4
    5王祥鲁.混凝土桥梁钢筋锈蚀机理及防治对策研究.长安大学硕士学位论文. 2003: 3-4
    6洪乃丰.混凝土中钢筋腐蚀与防护技术.工业建筑. 1999, 29(8): 12-13
    7洪定海,潘德强等.华南海港钢筋混凝土码头锈蚀调查报告.水运工程. 1982, (2): 15-20
    8 Haque M. N., Kawamuram M. Carbonation and Chloride Induced Corrosion in Concrete. ACI Materials Journal. 1992, 89 (1): 41-48
    9 Alonso C., Andrade C., Castellote M. Chloride Threshold Values to Depassivate Reinforcing Bars Embedded in a Standardized OPC Mortar. Cement and Concrete Research. 2000, 30: 1047-1055
    10刘新亮,刘兴远,何世兵.锈蚀钢筋混凝土结构耐久性研究现状.重庆工业高等专科学校学报. 2004, 19(1): 12-14
    11刘西拉,袁驷,宋二祥.关于我国工程建设技术发展的战略思考.土木工程学报. 2005, (12): 2-3
    12张明朝.钢筋锈蚀对钢筋混凝土桥梁耐久性的影响.建筑工程,今日科苑. 2008(8): 193-193
    13柯伟.中国腐蚀调查报告.北京:化学工业出版社, 2003: 1-2
    14牛荻涛.混凝土结构耐久性与寿命预测.科学出版社, 2003: 46-48
    15惠云玲.混凝土结构中的钢筋锈蚀程度和预测试验研究.工业建筑. 1996, 26(4): 11-13
    16邸小坛,周燕.旧建筑物的检测加固与维护.地震出版社. 1992: 1-2
    17桂志华.氯离子侵蚀条件下混凝土中钢筋锈蚀模型研究.华中科技大学硕士论文. 2005: 17-21
    18李果,袁迎曙,耿欧.气候条件对碳化混凝土内钢筋腐蚀速度的影响.混凝土. 2005, (9): 23-25
    19袁迎曙,贾福萍,蔡跃.锈蚀钢筋的力学性能退化研究.工业建筑. 2000, 30(l): 43-46
    20金伟良,赵羽习.锈蚀钢筋混凝土梁抗弯强度的试验研究.工业建筑. 2001, 31(5): 9-11
    21贺鸿珠,史美伦,李彦钊.混凝土中钢筋锈蚀测量的小振幅循环伏安法( SACV)的研究.混凝土与水泥制品. 2008, (1): 8-10
    22安新豪,王书磊,姬永生,过曾明,胡斌.混凝土结构中钢筋锈蚀过程的研究现状与评述.中国建材科技. 2008, 2: 22-23
    23杨广,戴靠山.混凝土内钢筋锈蚀的检测.山西建筑. 2005, 31 (16): 93-94
    24耿欧,李果,袁迎曙.电化学检测技术在混凝土内钢筋腐蚀研究中的应用现状与展望.混凝土. 2005, (2): 56-60
    25 John P. Broomfield. The Use of Permanent Corrosion Monitoring in New and Existing Reinforced Concrete Structures. Cement & Concrete Composites. 2002, Vol 24: 27–34
    26刘超英,孙伯永.水工混凝土中钢筋锈蚀检测技术与应用.浙江水利科技. 2003, 2: 23-30
    27常保全.混凝土中钢筋锈蚀的检测技术.建筑技术开发. 2001, 28 (3): 44-48
    28梁成浩主编.金属腐蚀学导论.机械工业出版社, 1999: 12-15
    29 Mansfield. Advances in Corrosion Science and Technology. Fontana and Staehle: Plenum Press, 1976: 12-14
    30 Stern M., Geary A. L.. Electrochemical Society. Electrochemical Polarization I A Theoretical Analysis of the Shape of Polarization Curves. 1957, 104: 56-63
    31洪定海.混凝土中钢筋的腐蚀与保护.北京:中国铁道出版社. 1998, 9: 7-9
    32 Rob B. Poldel. Test Methods for on Site Measurement of Resistivity of Concrete-a RILEM TC-154 Technical Recommendation. Construction and Building Materials, 2001(15): 125-131
    33 John McCarter W. Sensor Systems for Use in Reinforced Concrete Structures. Concrete and Building Materials.2004, 18:351-358
    34丁万平,胡治平,陈志坚. Canin-LTM钢筋锈蚀监测技术在苏通大桥中的应用.江西科学. 2005, 23( 5): 67-68
    35张云莲,张震雷,史美伦.混凝土中钢筋锈蚀电化学测量方法的介绍.材料保护. 2005, 38 (9): 73-75
    36扈显琦,梁成浩.交流阻抗技术的发展与应用.腐蚀与防护. 2004, 25(2): 57-60
    37张明辉,耿欧.混凝土中钢筋腐蚀监测技术研究现状及发展趋势.混凝土.2007, 2: 4-6
    38贺鸿珠,史美伦,李彦钊.混凝土中钢筋锈蚀测量的小振幅循环伏安法(SACV)的研究.混凝土与水泥制品. 2008, 1: 8-10
    39 Guangling S. The Oretical Analysis of the Measurement of Polarization Resistance in Reinforced Concrete. Cement & Concrete Composites. 2000, 22: 407– 415
    40 Feliu S., Gonzalez J. A.. Possibilities of the Guard Ring for Electrical Signal Confinement in the Polarization Measurements of Reinforcements. Corrosion. 1990, 46 (12): 123-130
    41 Feliu S., Gonzalez J. A.. Confinement of the Electrical Signal for in Sit Measurement of Polarization Resistance in Reinforced Concrete. ACI Materials Journal. 1990, 12: 9-10
    42 Andrade C.. On-site measurements of corrosion rate of reinforcements. Construction and Building Materials. 2001, (15): 45-50
    43白新德,耿怀之.屏蔽环技术可行性的理论及实验检.建筑技术. 2000, 18 (5): 23-25
    44胡融刚.钢筋/混凝土体系腐蚀过程的电化学研究.厦门大学博士学位论文. 2004: 2-4
    45陈爱英,陈旭庆.钢筋混凝土中钢筋腐蚀原理的研究.城市道桥与防洪. 2005, 1(1): 90: 25-28
    46 Syed A.. A Prediction Model for the Residual Flexural Strength of Corroded Reinforced Concrete Beams. Doctoral Thesis of King Fahd University. 2005: 12
    47 Dawson J. L.. Corrosion Science. Houston Press, 1978: 19-20
    48 Vera Cruz R. P., Nishikata A., Tsuru T. AC Impedance Monitoring of Pitting Corrosion of Stainless Steel Under a Wet-Dry Cyclic Condition in Chloride-Containing Environment. Corrosion Science. 1996, 38(8): 1397-1406
    49 Millard S. G., Law D.,Bungey J. H.. Environmental influences on linear polarization corrosion rate measurement in reinforced concrete. NDT & E International. 2001, 34: 409-417
    50张濡亮.复电阻率法三维正演问题研究.中国地质大学(北京)硕士学位论文. 2008: 2-4
    51 Pelton W. H., Ward S. H., and Hallof, P. G.. Mineral Description and Removal of Inductive Coupling with Multifruency IP. Geophysics. 43(3): 588-609
    52武绪东.用REM法探测碳氢化合物.勘探地球物理进. 1983, (04): 100-103
    53 Ward S. H. Resistivity and Induced Polarization Method. Geotechnical and Environmental Geophysics. 1990, 1: 147-190
    54 Monteiro P. J. M., Morrison F., Frangos W. Nondestructive Measurement of Corrosion State of Reinforcing Steel in Concrete. ACI Materials Journal. 1998(6): 23-25
    55胡融刚.钢筋/混凝土体系腐蚀过程的电化学研究.厦门大学博士学位论文. 2004: 46-47
    56贺鸿珠,史美伦,李彦钊.混凝土中钢筋锈蚀测量的小振幅循环伏安法(SACV)的研究.混凝土与水泥制品. 2008, 1: 8-10
    57胡功银.多个时间常数电化学阻抗谱的参数解析系统.大连理工大学硕士学位论文: 31-33
    58吴旭,石建光.混凝土工程中钢筋腐蚀检测技术与评价.福建建筑. 2007, 5: 17-19
    59 Cole K. S. and Cole R. H. Dispersion and Absorption in Dielectrics. J. Chem. Phys. 1941, 9: 341
    60 Pelton W. H., Ward S. H., Hallof P. G.. Mineral Description and Removal of Inductive Coupling with Multifruency IP. Geophysics. 1978, 43(3): 24-29
    61张濡亮.复电阻率法三维正演问题研究.中国地质大学(北京)硕士学位论文. 2008: 6-7
    62 Jieying Z. Non Invasive Surface Measurement of the Corrosion Impedance of Rebar in Concrete. Doctoral Thesis of University of California at Berkeley, 2001: 52-57
    63 Pelton W. H., Ward S. H., Hallof P. G.. Mineral Description and Removal of Inductive Coupling with Multifruency IP. Geophysics.1978, 43(3): 124-128

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700