用户名: 密码: 验证码:
富勒烯在新型高能燃料中的燃烧机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
NEPE推进剂是新型的硝酸酯增塑聚醚固体火箭推进剂。它集中了双基推进剂和复合推进剂的优点,属于新型高能燃料,不仅能量高、低温延伸率大,而且工艺性能、安全性能也较好,超过了现有的各种推进剂,是国际上现装备中能量最高的品种之一。但其在燃烧性能方面存在一些亟待解决的问题,特别是压强指数较高,能量性能与燃烧性能之间的矛盾,燃速与压强指数之间的矛盾,尚无有效的解决方法。燃烧机理的独特性,使得已有的双基或复合推进剂燃烧机理对它失效。以C_(60)为代表的富勒烯系列催化剂是近年来应用较广的催化剂材料之一,独特的封闭球状结构使得它们在许多方面都具有十分优良的催化性能,它们作为燃速催化剂在固体火箭推进剂中也有着十分显著的效果。
     本论文研究了以C_(60)为代表的富勒烯对NEPE推进剂中主要氧化剂、粘合剂的热分解机理以及对推进剂燃速和压强指数的影响,发现少量的富勒烯灰(FS)催化剂就可以有效催化高氯酸铵(AP)热分解,抑制聚乙二醇(PEG)老化等。同时,获得了能有效降低RDX/AP-CMDB推进剂压强指数的0.5%FS/2.5%邻苯二甲酸铅(φ-Pb)/0.5%己二酸铜(J-Cu)复合催化剂配比,以及具有较高能量、较高燃速和较低压强指数的AP+PEG/硝化甘油(NG)/1,2,4-丁三醇三硝酸酯(BTTN)+2%FS推进剂配方范围。
     (1)通过富勒烯和炭黑(CB)催化剂对推进剂中氧化剂AP热分解影响的实验研究发现,5%FS使得AP的起始分解温度(T_0),低温分解峰温(T_L)和高温分解峰温(T_H)分别提前了32℃,34℃和45℃,而5%EFS和5%C_(60)对AP的T_0,T_L和T_H影响都较小。5%CB使得AP的T_0,T_L和T_H分别降低了11℃,27℃和44℃。
     通过FS和CB含量对AP热分解影响的研究结果可以看出,FS和CB对AP热分解都表现出了很好的催化作用,相对而言,FS的催化效果更好一些。3%FS就可以明显促进AP的起始分解,低温分解和高温分解过程,随着FS含量的提高,催化作用更加明显,当FS含量增加到8%时,AP的高低温分解过程发生重合。3%CB不影响AP的起始分解阶段,抑制了AP的低温分解阶段,但5%,8%和10%CB均促进了AP的起始分解,低温分解和高温分解过程。同样,当CB含量增加到8%时,AP的高低温分解过程发生重合。
     (2)通过对AP+5%FS和AP+5%CB的热分解动力学研究可以看出,5%FS和5%CB均使得AP的高温热分解活化能明显降低。5%FS和5%CB使得AP的高温热分解活化能分别降低了约37%和34%。两种催化剂均使AP高温热分解反应的指前因子显著增加,说明催化剂能明显增加活化分子在总反应分子数中的百分比。所有催化剂均可以降低AP的着火温度,特别是5%FS可以使AP的着火温度下降47.4℃,而5%EFS,5%C_(60)和5%CB可以使AP的着火温度分别降低5.6℃,9.7℃和12.3℃。
     (3)通过对富勒烯(或CB)/φ-Pb复合催化剂对AP热分解特性影响的实验研究发现,所有复合催化剂均使AP的起始分解温度显著提前,其中FS/φ-Pb复合催化剂对AP的起始分解过程催化最为明显,5%FS/φ-Pb使得AP的起始分解温度提前约40℃,随着FS含量从5%提高到10%,AP的起始分解温度也相应提前约8℃,但随着FS含量的进一步升高,AP的起始分解温度几乎保持不变。通过复合催化剂对AP恒容燃烧热影响的结果可以看出,相对于纯AP来说,70%AP/15%φ-Pb/15%FS和70%AP/15%φ-Pb/15%CB的恒容燃烧热分别增加了约146%和115%。
     (4)富勒烯(或CB)催化剂对奥克托金(HMX)和六硝基六氮杂异戊兹烷(CL-20)的热分解特性研究结果显示,5%FS可以使得HMX的起始分解温度提前46℃,15%FS可使得HMX的分解峰温提前约15℃,而其它催化剂对HMX的热分解影响均不明显。FS使得CL-20的起始分解、分解峰温和分解结束温度都明显提前。纯CL-20的热分解和载气气氛没有关系,而氮气环境比空气环境更有利于FS对CL-20热分解的催化作用。
     (5)根据富勒烯对推进剂中粘合剂端羟基聚丁二烯(HTPB)热分解和裂解特性影响的实验研究可以看出,HTPB的热分解动力学特性仅取决于HTPB的主链结构。应用裂解-气相色谱/质谱联用技术分析了HTPB的主要裂解产物,发现在280,320,350和380℃四个不同的裂解温度下,HTPB的裂解产物中都含有4-乙烯基-1-环己烯、苯乙烯等16种产物。对缩水甘油叠氮聚醚(GAP)的热分析实验结果显示,10%FS不影响GAP的低温分解过程,当FS含量增加到30%和50%后,GAP的低温分解峰温分别提前6℃和9℃。
     (6)根据富勒烯对PEG热分解、原位升温红外光谱和裂解-气相色谱/质谱研究可以看出,FS使得PEG的起始分解温度和最大失重速率处的温度都有明显升高,同时也提高了PEG气相分解的温度,FS抑制了PEG的分解,它和PEG之间没有发生化学反应,没有生成新的具有红外吸收的官能团,它们之间仅仅是范德华力的作用。FS并没有从根本上改变PEG的分解机理,仅使得PEG的热分解峰温显著增加。FS对PEG的凝聚相分解过程影响并不明显,但使得PEG的气相分解温度明显升高,这主要是由于FS吸附的PEG气相分解产物覆盖了PEG的分解活化中心,从而抑制了PEG的气相分解。
     (7)通过富勒烯(或CB)/φ-Pb/J-Cu复合催化剂对RDX/AP-CMDB推进剂催化作用的实验研究可以看出,富勒烯/φ-Pb/J-Cu复合催化剂对RDX/AP-CMDB推进剂的热分解过程影响不大,只略微促进了RDX/AP-CMDB推进剂中硝化棉(NC)的固相分解以及RDX的液相分解。富勒烯/φ-Pb/J-Cu复合催化剂均使得RDX/AP-CMDB推进剂的恒容燃烧热略有降低,相对于不同的催化剂来说,推进剂的恒容燃烧热可表示如下:HX-013(EFS)>HX-014(C_(60))=HX-009(CB)>HX-011(FS)。0.5%FS/2.5%φ-Pb/0.5%J-Cu使得推进剂HX-010的压强指数从基础配方的0.77降到0.64,降低了20%,在所有的催化剂组合中最为有效。
     (8)通过FS对AP+GAP/NG/BTTN,HMX/AP+GAP/NG/BTTN和AP+PEG/NG/BTTN,HMX/AP+PEG/NG/BTTN推进剂的热分解、恒容燃烧热和燃速的影响结果可以得出,HMX有利于推进剂热分解过程,而AP则有利于推进剂燃速的提高。对于HMX/AP+GAP/NG/BTTN和HMX/AP+PEG/NG/BTTN推进剂来说,2%FS均比1%FS+1%PbO催化剂对推进剂的热分解和恒容燃烧热有利。其中对于AP+GAP/NG/BTTN和HMX/AP+GAP/NG/BTTN推进剂来说,2%FS可使它们的恒容燃烧热分别增加321 J·g~(-1)和851 J·g~(-1);而对于AP+PEG/NG/BTTN和HMX/AP+PEG/NG/BTTN推进剂来说,2%FS可使它们的恒容燃烧热分别增加201 J·g~(-1)和153 J·g~(-1)。特别是对于AP+PEG/NG/BTTN推进剂来说,用2%FS取代1%FS+1%PbO催化剂,在2.94MPa、4.90MPa、6.86MPa和8.83MPa压强下分别使推进剂的燃速增加78.4%、72.2%、55.5%和50.2%。
NEPE propellant is a new type of nitrate ester plasticized polyether solid rocket propellant.It concentrates both the advantages of double base(DB)and composite solid propellants.It not only has high energy,large low temperature elongation,but also has good technical process and safe property,which are better than other current equipped propellants.The N-15 propellant is a kind of the highest energetic propellants equipped in the modern world.But there are some problems to be solved about its combustion characteristics,such as higher pressure exponent,the contradiction between energy performance and combustion characteristics and the contradiction between burning rate and pressure exponents,etc.Thus its unique combustion mechanism leads to the invalidation of the traditional combustion mechanisms used in investigating DB and composite solid propellants.The fullerene catalysts are one of the most popular materials used in recent years,and the unique enclosed spherical structure promotes the catalytic ability in many fields.The fullerenes used as burning rate catalysts in solid propellant have very dramatic effects. This dissertation includes the effects of fullerenes on the thermal decomposition of the main oxides and binders,and the effects of fullerenes on the burning rates and pressure exponents of NEPE propellants.According to the results of these investigations,a small amount of fullerene soot(FS)could obviously promote the thermal decomposition of ammonium perchlorate(AP)and inhibit the aging process of polyethylene glycol(PEG).One 0.5%FS/2.5%lead phthalic acid(Φ-Pb)/0.5% copper adipic acid(J-Cu)composite catalysts which could effectively decrease the pressure exponents of cyclotrimethylene trinitramine(RDX)/AP-composite modified double-base(CMDB)propellant have been obtained,and another AP+PEG/ nitroglycerin(NG)/1,2,4- butantriol trinitrate(BTTN)+2%FS propellant which has large combustion heat,high buming rate and low pressure exponent is also gained.
     (1)From the results of the effects of fullerenes and carbon black(CB)catalysts on the thermal decomposition of AP,one could see that the initial decomposition temperature(T_0),low and high temperature decomposition peak temperature(T_L and T_H)of AP were advanced 32℃,34℃and 45℃by 5%FS catalyst.Also,the T_0,T_L, and T_H of AP were advanced 11℃,27℃and 44℃by 5%CB catalyst.Therefore,the T_0,T_L,and T_H of AP were affected a little by 5%EFS and 5%C_(60).
     The effects of FS and CB contents on the thermal decomposition of AP indicated that both FS and CB showed splendid catalytic effects on the thermal decomposition of AP,and the effect of FS was better.The initial decomposition,low and high temperature decomposition processes of AP were promoted by 3%FS,and the higher of FS contents,the better of the catalytic effects were.The low and high temperature decomposition processes of AP were overlapped by adding 8%or 10%FS.The To of AP was not affected,but the low temperature decomposition processes was inhibited by 3%CB.Therefore,these three decomposition processes of AP were promoted by 5%,8%and 10%CB.Also,the low and high temperature decomposition processes of AP were overlapped by adding 8%or 10%CB.
     (2)A comparison of the thermal decomposition dynamics parameters of AP+5%FS and AP+5%CB indicated that the thermal decomposition activation energy of AP were lowered by 5%FS and 5%CB.The thermal decomposition activation energy of AP was lowered about 37%and 34%by 5%FS and 5%CB respectively.The thermal decomposition activation energy of AP+5%FS was a little smaller than that of AP+5%CB showed the better catalytic effect of FS.The pre-exponential factor of AP thermal decomposition was increased by these two catalysts,and this phenomenon showed the percentage of active molecules was increased by 5%FS and 5%CB.The ignition temperatures of AP were lowered about 5.6℃,9.7℃and 12.3℃by 5%EFS, 5%C_(60)and 5%CB respectively.Among all catalysts,FS showed the best effect and the ignition temperature of AP was lowered about 47.4℃by 5%FS.
     (3)The investigation of the effects of fullerenes(or CB)/Φ-Pb composite catalysts on the thermal decomposition characteristics of AP showed that the initial decomposition process of AP was apparently promoted by these composite catalysts, among which FS/Φ-Pb showed the best catalytic effect,and the T_0 of AP was decreased about 40℃by 5%FS/15%Φ-Pb composite catalysts.The T_0 of AP was decreased about 8℃when the content of FS was increased from 5%to 15%.The combustion heat of 70%AP/15%Φ-Pb/15%FS and 70%AP/15%Φ-Pb/15%CB were increased about 146%and 115%when compared to that of pure AP.
     (4)The effects of fullerenes and CB on the thermal decomposition characteristics of cyclotetramethylenete tranitramine(HMX)and hexanitrohexaaza-isowurtzitane (CL-20)were investigated by TG-DTG,DTA,and PDSC.The results showed that the initial decomposition temperature of HMX was advanced 46℃by 5%FS,and the decomposition peak temperature of HMX was lowered about 15℃by 15%FS.The initial decomposition temperature,decomposition peak temperature and the decomposition terminated temperature of CL-20 were obviously promoted by FS.The thermal decomposition of pure CL-20 didn't depend on the carrier gases and it was nitrogen not air atmosphere that was in favor of the catalytic ability of FS.
     (5)The results of the effects of fullerenes on the thermal decomposition and pyrolysis characteristics of HTPB showed the thermal decomposition dynamic characteristic of HTPB is only depending on the main-chain structure of HTPB.The pyrolysis-GC/MS results of HTPB at 280,320,350 and 380℃showed that there exists 16 main products at all four different temperatures,including 4-ethenyl-cyclohexene,styrene,etc.The thermal decomposition results of glycidyl azide polymer(GAP)showed that the low temperature decomposition of GAP was not affected by 10%FS.Therefore,that of GAP were advanced 6℃and 9℃by 30%FS and 50%FS.
     (6)The effects of fullerenes on the thermal decomposition of PEG have been investigated by TG,in-situ FTIR and pyrolysis-gas chromatography/mass spectrometry(Py-GC/MS).The results showed that the addition of fullerenes obviously restrained the thermal decomposition of PEG.The initial decomposition temperatures and maximum decomposition peak temperatures were evidently postponed by FS.There is no chemical reaction between FS and PEG,no new functional group with IR absorptive activity,but only vander's force between FS and PEG.FS didn't alter the thermal decomposition mechanism of PEG,but restrained the thermal decomposition of PEG.The effect of FS on the condense phase decomposition of PEG was not obvious,but FS made the increase of the gaseous decomposition temperature of PEG.This is mainly because the absorbance of gaseous decomposition products of PEG covered the surface of PEG.
     (7)According to the results of the effects of fullerenes or CB/Φ-Pb/J-Cu composite catalysts on the combustion characteristics of RDX/AP-CMDB propellant, we found that the thermal decomposition of RDX/AP-CMDB propellant wasn't affected by these composite catalysts,but only the solid phase decomposition of nitrocellulose(NC)and liquid phase decomposition of RDX were slightly promoted by fullerenes/Φ-Pb/J-Cu composite catalysts.The combustion heat of RDX/AP-CMDB propellant was slightly decreased by fullerenes and the combustion heat values of RDX/AP-CMDB propellant with different catalysts are HX-013(EFS)>HX-014(C_(60))=HX-009(CB)>HX-011(FS).Compared to the basis formulation,the pressure exponent of HX-010 was lowered about 20%by 0.5%FS/2.5%Φ-Pb/0.5%J-Cu,and among all composite catalysts this is the best one.
     (8)The results of the effects of FS on the thermal decomposition,combustion heats and burning rates of AP+GAP/NG/BTTN,HMX/AP+GAP/NG/BTTN, AP+PEG/NG/BTTN and HMX/AP+ PEG/NG/BTTN propellants showed that the thermal decomposition processes of these four propellants were benefitted with the addition of HMX and the burning rates of these four propellants were benefitted with the addition of AP.The combustion heats and buming rates of HMX/AP+GAP/NG/BTTN and HMX/AP+PEG/NG/BTTN propellants were benefitted by 2%FS with respect to 1%FS+1%PbO.When using 2%FS instead of 1%FS+1%PbO,the combustion heats of AP+GAP/NG/BTTN,HMX/AP+ GAP/NG/BTTN,AP+PEG/NG/BTTN and HMX/AP+PEG/NG/BTTN propellants were increased 321 J·g~(-1),851 J·g~(-1),201 J·g~(-1)and 153 J·g~(-1)respectively.Also the burning rates of AP+PEG/NG/BTTN propellant were increased about 78.4%,72.2%, 55.5%and 50.2%at 2.94MPa,4.90MPa,6.86MPa and 8.83MPa when using 2%FS instead of 1%FS+1%PbO.
引文
白木兰,董峰。1988。三种新型催化剂对HMX热分解的催化作用研究[J]。兵工学报(火炸药专集)。2:50-55
    陈福泰,谭惠民,罗运军等。2000。B_(12)H_(12)[N(C_2H_5)_4]_2对NEPE推进剂燃烧性能的影响[J]。火炸药学报。3:19-21
    达维纳。1997。固体火箭推进剂技术[M]。
    杜廷发,刘俊峰等。1991。热分析-气相色谱联用技术分析端羟基聚丁二烯主要热解产物[J]。推进技术。2:75-79
    洪伟良,赵凤起,刘剑洪等。2004。邻苯二甲酸Pb(II)配合物纳米颗粒的合成及其燃烧催化性能研究[J]。无机化学学报。20(8):997-1000
    胡荣祖,史启祯。2001。热分析动力学[M],科学出版社,北京
    李静峰,司馥铭。2002。NEPE推进剂燃烧性能调节技术研究[J]。含能材料。10(1):4-9
    李上文,赵风起,罗阳等。国外固体推进剂研究与开发的趋势[J]。固体火箭技术,2002,25:36-42
    李疏芬,高帆,赵凤起等。2000。富勒烯在RDX-CMDB推进剂中的催化机理[J]。推进技术。21(3):75-78
    李疏芬,牛和林,张钢锤等。2002。NEPE推进剂激光点火特性[J]。推进技术。23(2):172-175
    李晓萌,刘云飞,姚维尚等。2003。低铝含量NEPE推进剂燃烧性能研究[J]。火炸药学报。26(2):50-52
    罗善国,陈富泰,谭惠民等。1999。推进剂组分对聚醚聚氨酯粘合剂热氧降解的影响(Ⅰ)硝酸酯增塑剂的影响[J]。推进技术。20(2):88-94
    马政生。1995。交联改性双基推进剂(XLDB)燃烧性能的改善及机理研究[J]。西北大学学报(自然科学版)。25(6):636-640
    牛和林,朱济,李疏芬。2001。超细铝粉对NEPE推进剂燃烧性能的影响[J]。飞航导弹,4:52-54
    潘清,汪渊,赵凤起等。2003。NEPE推进剂的热分解研究(IV)[J]。固体火箭技术。26(4):45-47
    庞爱民。1998。叠氮粘合剂推进剂热分解及燃烧性能研究综述[J]。固体火箭技术,21(4):26-30
    庞爱民,王北海,田德余。现代防御技术,高能硝胺推进剂的压强指数分析[J]。2000。28(2):34-38
    彭培根,张仁等。1987。固体推进技术的性能和原理[M],国防科技大学出版
    彭培根译,Condon JA.,Osbom J.R.著。1989。固体推进剂燃烧理论[A],国防科技大学出版。
    单文刚,李疏芬,赵凤起等。专利名称:球烯富集物作为双基系推进剂催化剂的应用,专利号:96119392.1,专利授权日:1998年10月28日,批准号:国密第688号
    唐松青,龚华,陈力等。1995。降低NEPE推进剂燃速压强指数的新型催化剂[J]。北京理工大学学报。15(6):28-31
    王基镕,李疏芬。2002。NEPE中铅盐催化剂活性物质的损失[J]。推进技术。23(2):168-171
    王瑛,孙志华,赵凤起等。2000。NEPE推进剂燃烧机理研究[J]。火炸药学报。23(4):24-26
    吴芳,庞爱民等。2002。降低NEPE推进剂燃速的途径探讨[J]。固体火箭技术,25(2):48-51
    武湃,朱慧,张炜等。2002。GAP贫氧推进剂及其组分的热失重特性研究[J]。含能材料,10(1):18-20
    姚瑞刚,罗秉和。1986。HMX高压热分解规律初探[J]。火炸药,2:3-6
    张德元,杜廷发,童乙青等。1987。端羟基聚丁二烯(HTPB)的热分解研究[J]。推进技术,1987,5:52-57
    张仁,吕振忠。1989。AP/HTPB复合推进剂的催化热分解研究[J]。推进技术。6:46-51
    张炜,张仁,江瑜。1986。AP/HTPB推进剂组分热分解特性及其匹配关系对推进剂燃速的影响[J]。推进技术。3:39-48
    张炜,朱慧,张仁。1991。铅盐在HMX推进剂中催化作用的研究[J]。推进技术。3:71-75
    赵凤起,李上文,陈沛等。2000。三种碳物质对RDX-CMDB推进剂热分解的影响[J],固体火箭技术。23(2):39-43
    赵凤起,李上文,汪渊等。2002。NEPE推进剂的热分解(I)粘合剂的热分解[J]。推进技术。23(3):249-25l
    朱慧,张仁。1990。HMX/HTPB推进剂的热分解[J]。固体火箭技术,2:49-54
    朱慧,张仁。1990。催化剂对HMX/AP/HTPB推进剂热分解特性的影响[J]。航空动力学报。5(2):155-158
    朱慧,张炜,王春华等。2001。GAP贫氧推进剂组分的常压热分解特性研究[J]。火炸药学报,1:57-59
    Adam W.,Bottke N.,Engels B.,et al.2001.An Experimental and Computational Study on the Reactivity and Regioselectivity for the Nitrosoarene Erie Reaction;Comparison with Triazolinedione and Singlet Oxygen[J].J.Am.Chem.Soc.123:5542-5548
    Anton W.,Jensen.,Coreen Daniels.2003.Fullerene-C1ated Beads as Reusable Catalysts[J].J.Org.Chem.68(2):207-210
    Atood AI.,et al.1994.Combustion of CL-20 and CL-20 Propellant formulations[J].Int.Symposium on Energetic Materials Technolgy.70-75
    Avent AG.,Birkett PR.,Darwish AD.,et al.1997.Spontaneous Oxidation of C6oPhsX(X=H,Cl) to a Benzofuranyl[60]Fullerene [J]. Chem. Commun. 1579-1580
    Batch AL., Costa DA., Winkler K. 1998. Formation of Redox Active Two Component Films by Electrochemical Co-reduction of C_(60) and Transition Metal Complexes [J]. J. Am. Chem. Soc. 120: 9614-9620
    Balch AL., Olmstead M. 1998. Reactions of Transition Metal Complexes with Fullerenes (C_(60), C_(70), etc.) and Related Materials[J]. Chem. Rev. 98:2123-2166
    Barrio M., Lopez DO., Tamarit JL., et al. 2003. Solid State Studies of C_(60) Solvates Formed in the C_(60)-BrCCl_3 System [J]. Chem. Mater. 15: 288-291
    Bergosh RC, Meier MS., Cooke JAL., et al. 1997. Dissolving Metal Reductions of Fullerenes [J]. J. Org. Chem. 62: 7667-7672
    Bertrand V., Andrzej S., Malgorzata L., et al. 2004. In Vitro Assay of Singlet Oxygen Generation in the Presence of Water-soluble Derivatives of C_(60) [J]. Carbon. 42(5-6): 1195-1198
    Bethune DS., Johnson RD., Salem JR., et al. 1993. Atoms in Carbon Cages: the Structure and Properties of Endohedral Fullerenes[J].Nature. 366:123-128
    Bircher HR., Mader P., Mathiecc J. 1998. Properties of CL-20 Based High Explosives[A]. Proceedings of 29~(th) International Conference of ICT, Karlsruhe
    Braun T., Wohlers M., Belz T. 1997. Fullerene-based Ruthenium Catalysts: A Novel Approach for Anchoring Metal to Carbonaceous Supports. I Structure [J]. Catal. Lett. 43(3-4):167-175
    Braun T, Wohlers M., Belz T., et al. 1997. Fullerene-based Ruthenium Catalysts: A Novel Approach for Anchoring Metal to Carbonaceous Supports. II. Hydrogenation Activity [J]. Catal. Lett. 43(3-4): 175-180
    Cai YF. Propell. Explos. Pyrot. 1987. Combustion Mechanism of Double-Base Propellants with Lead Burning Rate Catalysts [J]. 12(6):209-214
    Chang CS., Wen CH., Den TG. 1998. Stationary Phases 45. Chromatographic Separation of HighEnergetic Materials with C6o-Fullerene Stationary Phase[J]. Propell. Explos. Pyrot., 1998, 23(2): 111-113
    Charles W., et al. 1990. High Energy Propellant Formulation[A], United States Patent. 627169 December 14
    Chen P., Wu X L, Lin J., et al. 1999. High H_2 Uptake by Alkali-doped Carbon Nanotubes under Ambient Pressure and Moderate Temperatures [J]. Science. 285: 91-93
    Coats AW, Redfern JP. 1964. Kinetic Parameters from Thermogravimetric Data[J]. Nature.201: 68-69
    Cohen E. 1981. Combustion Characteristics of Advanced Nitramine-Based Propeilants[A]. 18~(th) symposium (Int) on combustion.
    Cohen NS., et al. 1972.Characterization of Mybrid Rocket Internal Heat Flux and HTPB Fuel Pyrolysis [J]. AIAA paper. 72-1211
    Coq B., Planeix J M., Brotons V. 1998. Fullerene-based Materials as New Support Media in Heterogeneous Catalysis by Metals [J]. Appl. Catal. A. General. 173: 175-183
    Davenas A. 1993. Solid Rocket Propulsion Technology[M], Bergman Press
    Denisyuk AP., Margolin AK., Khubaev GV., et al. 1977. The Role of Soot in the Combustion of Ballistic Propellants with Lead Containing Catalysts [J]. Fiz. goreniya vzryva.l3(4):457-584
    Eisenreich N. 1978. A Photographic Study of the Combustion Zones of Burning Double Base Propellant Strands [J]. Propell. Explos. Pyrot. 3(5):141-146
    Erden I., Song J., Cao W. 2000. A Novel Pathway in the Photooxygenation of Cyclic Allenes [J]. Org. Lett. 2: 1383-1385
    
    Evans MW., Beyer RB., Mcculley L. 1964. Initiation of Deflagration Waves at Surfaces of Ammonium Perchlorate-Copper Ammonium Chromite-Carbon Pellets [J]. J. Chem. Phys. 40 (9):2431-2438
    Fang C, Li SF. 2002. Experimental Research of the Effects of Superfine Aluminum Powders on the Combustion Characteristics of NEPE Propellants [J]. Propell. Explos. Pyrot. 27(1): 34-38
    Fang C, Li SF. 2002. Synergistic Interaction between AP and HMX [J]. J. Energ. Mat. 20(4): 311-321
    Fares MM., Hacaloglu J., Suzer S. 1994. Characterization of Degradation Products of Polyethylene Oxide by Pyrolysis Mass Spectrometry [J]. Eur. Polym. J. 30: 845-850
    Fukuzumi S., Suenobu T., Kawamura S., et al. 1997. Selective Two-electron Reduction of C_(60) by 10-methyl-9,10-dihydroacridine via Photoinduced Electron Transfer[J]. Chem. Commun. 291-292
    Geckeler KE., Hirson A. 1993. Polymer-bound C_(60) [J]. J. Am. Chem. Soc, 1993, 115(9): 3850-3851
    Greiner BE., Frederick J., Robert A., et al. 2003. Combustion Effects of C_(60) Soot in Ammonium Nitrate Propellants[J]. J. Propul. Power. 19(4): 713-715
    Haddon RC, Brus LE., Ragahavachari k. 1986. Rehybridization and π-orbital Alignment: the Key to the Existence of Spheroidal Carbon Clusters[J]. Chem. Phys. Lett. 131(3):165-169
    Hakobu B., Shuichi K., Hiroshi M. 1998. Synthesis and Sensitivity of Hexanitrohexaaza- isowurtzitane(HNIW)[J]. Propell. Explos. Pyrot. 23(6): 333-336
    Hamwi A., Marchand V. 1996. Oxidized Fullerene Derivatives Containing Hydroxyl, Nitro and Fluorine Groups[J].Fuller. Sci. Tech. 4:835-851
    Haufler RE., Conceicao J., Chibante LPF., et al. 1990. Efficient Production of C_(60) (buckminster- fullerene), C_(60)H_(36), and the Solvated Buckide Ion [J]. J. Phys. Chem., 94 (24): 8634-8636
    Hawer CJ. 1994. A Simple and Versatile Method for the Synthesis of C_(60) Copolymers [J]. Macromolecules. 27(17): 4836-4837
    Herrmann K.., Ilge W. 1930. Rontgenographische Structuren Forschung der Kubischen Modification der Perchloraten, Z. Krist., -Bd. 75, -pp.S41-44
    Hewkin DJ., Hicks JA., Powling J. et al. 1971. The Combustion of Nitricester Based Propellants: Ballistic Modification by Lead Compounds [J]. Combustion Science and Technology. (2): 307-327
    Howard JB., Mckinnon JT., Makarovsky Y., et al. 1991. Fullerenes C_(60) and C_(70) in flames [J]. Nature. 352:139-141
    Ibers JA.1960. Nuclear Magnetic Resonance Study of Polycrystalline NH_4ClO_4 [J]. J. Chem. Phys. 32(5): 1448-1449
    Ilya Yanov., Jerzy Leszczynski., Sulman E., et al. 2004. Properties, Dynamics, and Electronic Structure of Atoms and Molecules Modeling of the Molecular Structure and Catalytic Activity of the New Fullerene-based Catalyst (η~2-c_(60))pd(PPh_3)_2: An application in the Reaction of Selective Hydrogenation of Acetylenic Alcohols [J]. International Journal of Quantum Chemistry. 100(5): 810-817
    Jacobs PWM., Whitehead HM. 1969. Decomposition and Combustion of Ammonium Perchlorate. Chem. Rev. 69:551-590
    Jiang Z., Li SF., et at. 2006. Research on the Combustion Properties of Propellants with Low Content of Nano Metal Powders [J]. Propell. Explos. Pyrot. 2: 139-147
    Jiang Z., Wang TF., Li SF., et at. 2006. Thermal Behavior of Ammonium Perchlorate and Metal Powers of Different Grade [J]. J. Them. Anal. Cal. 85(2):315-320
    Kratschmer W., Lamb LD., Fostiropoulos K., et al.1990. Solid C_(60): a New Form of Carbon[J]. Nature. 347:354-358
    Kimura E., Oyumi Y., Yoshida T. 1995. Catalytic Effects of Lead Citrate on the HMX Azide Polymer Propellants [J]. J. Energ. Mat. 13(1-2): 1-14
    
    Kirhore K., Sunitha MR. 1979. Effect of Transition Metal Oxides on Decomposition and Deflagration of Composite Solid Propellant Systems: A Survey[J]. AIAA. J. 17(10):l 118-1125
    
    Knott GM., Brewster MQ. 2000. Two-dimensional Combustion Modeling of Heterogeneous Solid Propellants with Finite Peclet Number[J]. Combustion and Flame. 121(1-2):91-106
    Korobeinich OR, Bolshova TA., Paletsky AA. 2001. Modeling the Chemical Reactions of Ammonium Dinitramide (ADN) in a Flame [J]. Combustion and Flame. 126(1-2):1516-1523
    Korobeinchev OP. 2002. Mass Spectrometric Study of Combustion and Thermal Decomposition of GAP [J].Combustion and Flame. 129(1 -2): 136-150
    
    Kroto HW., Heath JR., O'Brien SC, et al. 1985.C_(60)-buckminsterfullerene[J]. Nature. 318:162-163
    Krusic PJ., Wasserman E., Keizer PN., et al. 1991. Electron Spin Resonance Study of the Radical Reactivity of C_(60)[J].Science. 254:1183-1185
    Kubota N., Masamoto T. 1976. Flame Structures and Burning. Rate Characteristics of CMDB Propellants [A]. 16~(th) symposium (International) on combustion, the combustion institute, Pittsburgh, Pa. 1202-1209
    
    Kubota N. 1992. Survey of Solid Propellant Combusition[A]. ICT 22nd. 40
    KubotaN.1989. Combustion mechanism of HMX [J]. Propell. Explos. Pyrot. 14(1): 6-11
    Kuo KK., Summerfield M.1984. Fundamentals of Solid-propellant Combustion[M], Progress in Astronautics Vol.90.AIAA Inc, New York
    Lengelle G, et al. 1984. Fundamental of Solid Propellants Combustion [M]. Chap.9 (Prog.Astronant Aeronant 90).
    Lengelle G, Bizot A., Duterque J., et al. 1984. Steady-state Burning of Homogeneous Propellants [M]. Fundamentals of solid-propellant combustion, 361-407
    Lin YH., Cai RF., Chen Y., et al. 1999. Synthesis of Transition-metal Based Nonlinear Optical Organometallic Fullerene Derivatives C_(60)M_2 (M= Pd, Pt)[J]. J. Mater. Sci. Lett.l8:1383-1385
    Liu B., Bunker CE., Sun YP. 1996. Preparation and Characterization of Soluble Pendant [60]Fullerene-polystyrene polymers[J].J. Chem. Soc. Chem. Commun. 10: 1241-1242
    Lobbecke S., Bohn MA., Pfeil A., et al. 1998. Thermal Behavior and Stability of HNIW(CL-20)[A]. Proceedings of the 29th International Annual Conference of ICT [C], Karlsruhe.
    Mccarty KP., Isom KB., Jacox JL. 1979. Nitramine Propellant Combwtion[A]. AIAA paper., 79-1132
    Mehta G., Uma RJ. 2000. Role of Heteroatoms in Diastereofacial Control in Cycloaddition to a Dissymmetric Cyclohexa-l,3-diene Moiety in a Polycyclic Framework. Remarkable Stereodirecting Influence of Distal Protective Groups [J]. Org. Chem. 65(6): 1685-1696
    Meyer R. 1997. Explosives[A]. VCH Verlag Chemie, Weinheim.
    Michael O., Spiros K.1995. Chemical Evidence of Singlet Oxygen Production from C_(60) and C_(70) in Aqueous and Other Polar Media[J].Tetrahedro. Letters. 36: 435-438
    Muhamed S., et.al. 2001. 1,3,3-trinitroazetidine (TNAZ). Study of Thermal Behaviour. Part II [J]. J. Energ. Mater. 19:241-254
    Muradov N. 2001. Catalysis of Methane Decomposition Over Elemental Carbon [J]. Cata. Comm. 2: 89-94
    Musso RC, Grigor AF. 1968. Decomposition Studies of Propellant Ingredients and Ingredient Combinations[J]. AIAA. paper. 68-495
    Nagashima H., Nakaoka A., Saitor Y., et al. 1992. C_(60)Pd_n: the First Organometallic Polymer of Buckminsterfullerene[J]. J. Chem. Soc.Chem. Commun. 4:377-379
    Nagashima H., Nakaoka A., Tajima S., Saito Y., et al. 1992. Catalytic Hydrogenation of Olefins and Acetylenes Over C_(60)Pd_n [J]. Chem. Lett. 1361-1364
    Nagashima H., Hosoda K., Abe T., et al. 1999. Efficient Photooxygenation of Olefins by a C_(60) Derivative Bearing an Organofluorine tail[J]. Chem. Lett. 28(6): 469-470
    Nair CGR., Ninan KN. 1978. Thermal Decomposition Studies Part X. Thermal Decomposition Kinetics of Calcium Oxalate Monohydrate — Correlations with Heating Rate and Samples Mass[J]. Thernochim. Acta. 23:161-169
    Nataliya F., Goldshlger. 2001. Fullerenes and Fullerene-based Materials in Catalysis[J]. Fullerene Science and Technology. 9(3):255-280
    Ninan KN., Krishnan K.1982. Thermal Decomposition Kinetics of Polybutadiene Binder[J]. Journal of Spacecraft and Rockets,19(1):92-94
    Ninan KN., Krishnan K. 1982. Thermal Decomposition Kinetics of Polybutadiene Binder[J]. AIAA Paper 82-4044
    Paletsky AA., Korobeinich OR, Alexander G, et.al. 2005. Flame Structure of HMX/GAP Propellant at High Pressure[J]. Proceedings of the Combustion Institute. 30:2105-2112
    Palopoli SF., Brill TB. 1991.Thermal Decomposition of Energetic Materials 52. On the Foam Zone and Surface Chemistry of Rapidly Decomposing HMX [J]. Combustion and Flame. 87(1): 45-60
    Patil DG, Brill TB. 1991. Thermal Decomposition of Energetic Materials 53. Kinetics and Mechanism of Thermolysis of Hexanitrohexazaisowurtzitane [J]. Combustion and Flame., 87(2): 145-151
    Paval Vavra.1999. Procedure for Selection of Molecular Structures of Explosives Having Performance [A]. Proceedings of 30~(th) International Conference of ICT, Karlsruhe.49:l-4
    Peters G, Jansen M. 1992. A New Fullerene Synthesis[J]. Angewandte Chemie-international edition in English. 31(2):223-224
    
    Prashant V., Kamat PV., Barazzouk S., et al.2000. Electrodeposition of C_(60) Cluster Aggregates on Nanostructured SnO_2 Films for Enhanced Photocurrent Generation[J]. J. Phys. Chem. B: 104:4014-4017
    Robertson AJB. 1949. The Thermal Decomposition of Explosives. Part II. Cyclotrimethylene- Trinitramine and Cyclotetramethylenetetranitrami[J]. Tran. Farad. Soc. 45:85-93
    Riichardt C, Gerst M., Ebenhoch J., et al. 1993. Transferhydrierung und Transferdeuterierung von Buckminsterfullerene C_(60) durch 9,10-Dihydroanthracen bzw. 9,9', 10,10'-d4-Dihydroa- nthracen[J]. Angew. Chem. 32: 584-586
    Samulski ET., Desimone JM., Hunt MO Jr., et al. 1992. Flagellenes: Nanophase-Separated, Polymer-Substituted Fullerenes[J].Chem. Mater. 4(16): 1153-1157
    Sarner SF. 1966. Propellant Chemisty[A], Reinhold Publishing Corporation, New York. 86-87
    Serizawa S., Gabrielova J., Fujimoto T., et al. 1994. Catalytic Behaviour of Alkali-metal Fullerides, C_(60)M_6 and C_(70)M_6 (M = Cs,K,Na), in H_2-D_2 Exchange and Olefin Hydrogenation[J]. Chem. Soc. 7: 799-800
    Scheirs J., Bigger SW., Delatychi O. 1991. Characterizing the Solid-state Thermal Oxidation of Poly(ethylene oxide) powder [J].J. Polymer. 32:2014-2019
    Schroeder MA., Fifer RA., Miller MS., et al. 2001. Condensed-phase Processes During Combustion of Solid Gun Propellants. I. Nitrate Ester Propellants [J].Combustion and Flame. 126(1-2):1569-1576
    Sevin F., Mckee ML.2001. Reactions of 1,3-Cyclohexadiene with Singlet Oxygen. A Theoretical Study [J]. J. Am. Chem. Soc. 123: 4591-4600
    
    Sharma J., Wilmot GB., Camoplattaro AA., etal. 1991. XPS Study of Condensed Phase Combustion in Double-base Rocket Propellant with and without Lead Salt-burning Rate Modifier [J].Combustion and flame. 85(3-4):416-426
    Smith HG., Levy HA. 1962. Neutron Diffraction Study of Ammonium Perchlorate[J]. Acta Cryst. 15: 1201-1204
    Sokolov VI., Stankevich IV. 1993. The Fullerenes - new Allotropic Forms of Carbon: Molecular and Electronic Structure, and Chemical Properties [J]. Russ. Chem. Rev. 62: 419-435
    Son SF., Brewster MQ. 1995. Unsteady Combustion of Homogeneous Energetic Solids using the Laser-recoil Method [J].Combustion and Flame. 100(1-2):283-291
    Sulman E., Matveeva V., Semagina N., et al. 1999. Catalytic Hydrogenation of Acetylenic Alcohols using Palladium Complex of Fullerene C_(60)[J]. J. Mol. Catal. A: Chem. 146:257-263
    Sundar CS., Bharathi A., Hariharan Y., et al. 1992. Thermal-decomposition of C_(60) [J]. Solid State Commun. 84: 823-826
    
    Tellgmann R., Krawez N., Lin SH., et al. 1996. Endohedral Fullerene Production [J].Nature, 382: 407-408
    Van Wijnkoop M., Meidine M F., Avent A G. 1997. Platinum(0)-[60]fullerene Complexes with Chelating Phosphine Ligands. Synthesis and characterisation of (h-C_(60))Pt(P-P) [P-P = dppe, dppp][J]. J. Chem. Soc : Dalton Trans. 675-676
    Voorhees kJ., Baugh SF., Stevenson DN. 1994. An Investigation of the Thermal Degradation of Poly(ethylene)glycol[J]. J. Anal.Appl. Pyrol. 30:47-57
    Wang NX., Li JS., Li G. 1996. Synthesis of Trinitrophenyl C_(60) Derivative [J]. Propell. Explos. Pyrot. 21(6): 317-318
    Wang NX. Propell. 2001. Review on the Nitration of [60]Fullerene[J]. Explos. Pyrot. 26(3): 109-111
    Wang P., Robert MM., Bandow S., et al. 1993. Superconductivity in Langmuir-Blodgett Multilayers of Fullerene (C_(60)) Doped with Potassium[J]. J. Phys. Chem. 97(12): 2926-2927
    Wignau GD., Affholter KA., Bunick GJ., et al.1995. Synthesis and SANS Structural Characterization of Polymer-Substituted Fullerenes (Flagellenes)[J]. Macromolecules. 28(18): 6000-6006
    Yao G., Stelious K. 2002. Synthetic Studies Toward Bioactive Cyclic Peroxides from the Marine Sponge Plakortis angulospiculatus[J]. Org. Lett. 4(4): 485-488
    Yildirim T, Zhou O., Fischer JE., et al. 1992. Intercalation of Sodium Heteroclusters into the C_(60) lattice[J]. Nature. 360: 568-571
    Yoshio Oyumi.1993. Mechanism of Catalytic Effects on AMMO/HMX Composite Propellants Combustion Rates [J]. Propell. Explos. Pyrot. 18:195-200
    Yu RQ., Liu QP., Tan K.L., et al. 1997. Preparation, Characterisation and Catalytic Hydrogenation Properties of Palladium Supported on C_(60) [J]. J. Chem. Soc: Faraday Trans.93(12): 2207-2210
    Zenin A., Finjakov S. 2004. Physico-Kinetical Combustion Mechanisms of New Solid Mixed Compositions[A]. 35~(th) International Annual Conferece of ICT. 157
    Zhao FQ., Li SF., Shan WG., et al. 2000. Effects of Carbon Substances on Combustion Properties of Catalyzed RDX-CMDB Propellants[J]. Progress in Astronautics and Aeronautics. 185: 465-475
    Zhang SW, Hung NN., Thanh NT. 2003. Theoretical Study of Mechanisms, Thermodynamics, and Kinetics of the Decomposition of Gas-Phase cc-HMX (Octahydro-1,3,5,7-tetranitro- 1,3,5,7-tetrazocine) [J].J. Phys. Chem. A.107: 2981-2989
    Zhang TL., Hu RZ., Li FP. 1994. A Method to Determine the Non-isothermal Kinetic Parameters and Select the Most Probable Mechanism Function Using a Single Non-isothermal DSC Curve[J]. Thermochimica Acta. 244: 177-184

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700