用户名: 密码: 验证码:
非金属掺杂与纳米多孔WO_3的制备及其光解水活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过固相烧结法和阳极氧化法分别制备了F、S非金属掺杂W03粉体光催化剂和具有结构与形貌差异的W03纳米多孔薄膜,并对其结构和光催化性能进行表征。
     非金属掺杂通过影响W03粉体光催化剂的W5+和氧空位含量以及晶粒尺寸等而改变其光吸收性能和电子传输性能,从而提高其光催化活性。在以Fe3+为牺牲剂的悬浮液体系中,非金属掺杂W03的光解水活性大幅提高。在紫外光照射下,掺杂前躯体浓度为1.0%的F掺杂WO3(F-WO3)和掺杂前躯体浓度为2.0%的S掺杂WO3(S-WO3)的12h平均析氧速率分别为102.1和99.9μmol·L-1·g-1·h-1,与纯W03的80.2μmol·L-1·g-1·h-1相比分别提高了27%和25%。在可见光照射下,虽然F-W03的光解水活性没有得到提高,但掺杂前躯体浓度为2.0%的S-W03的12h平均析氧速率却高达76.7μmol·L-1·g-1·h-1,与纯W03的48.9μmol·L-1·g-1·h-1相比提高了57%。
     致密和纳米多孔薄膜退火前后的化学组成均为W03。阳极氧化纳米多孔膜为无定形结构W03,退火后转化为(002)晶面优先生长的单斜晶系W03。退火移除了大量作为光生电荷复合中心的缺陷,故结晶W03薄膜与无定形结构相比,其电子传输性能和光解水活性得到显著地提高。在可见光照射下,纳米多孔W03薄膜(0.5% NaF、50 V、25℃、30min)的稳态光电流(1.6 V vs.Ag/AgCl)和最大光电转换效率分别为5.75 mA/cm2和1.68%,分别是结晶态致密W03薄膜的4.75倍和5.09倍。由于具有较大的比表面积,纳米多孔W03薄膜不仅能吸收更多的光照能量,也能与电解质更充分地接触,从而有利于电荷的分离与传递。因此,与致密薄膜相比,纳米多孔W03具有更小的界面电荷迁移电阻、更大的载流子浓度、更小的瞬态光电流谱动力学常数和更大的瞬态时间常数。此外,通过对电解质含氟浓度、电压、温度和反应时间等参数的调节可以控制产物形貌,从而改善其光解水活性。在本文中的最优化条件(0.5% NaF、50 V、15℃、60 min)下制备的纳米多孔薄膜产生的稳态光电流(1.6 V vs.Ag/AgCl)达到6.70 mA/cm2,是结晶态致密W03薄膜的5.54倍。
F-doped WO3-x (F-WO3) and S-doped WO3-x (S-WO3) powder photocatalysts were prepared by solid-state annealing method, and nanoporous WO3 films with different structures and morphologies were prepared by anodization in neutral F--containing strong electrolytes. Structures and photocatalytic performance of samples were characterized.
     Photo absorption efficiency and electron transport propertise were influenced by doping, which changed grain size and the amount of W5+ and oxygen vacancies,and enhanced samples' photocatalytic activity. In photocatalysts containing suspensions, using Fe3+ as sacrificial agent, the photocatalytic activities for water splitting were enhanced by nonmetal-doping. Under ultraviolet (UV) irradiation of 12 h, the highest average oxygen evolution rates obtained for F-WO3 (1.0%F precursor concentration) and S-WO3 (2.0%S precursor concentration) were 102.1 and 99.9μmol·L-1·g-1·h-1 compared with 80.2μmol·L-1·g-1·h-1 for WO3-x, respectively increased by 27% and 25%.Under 12 h of visible light (VIS) irradiation, the water splitting activities were inhibited by F-doping. However, the highest average oxygen evolution rate obtained for S-WO3 (2.0% S precursor concentration) was 102.1μmol·L-1·g-1·h-1 under VIS irradiation, which is 57% higher than 48.9μmol·L-1·g-1·h-1 for WO3-x.
     Before and after annealing, both compact and nanoporous films consist essentially of WO3.The as-anodized nanoporous films were amorphous and converted to a monoclinic phase with preferential orientation in the (002) planes after annealing. Annealing removed lots of lattice imperfection, which could serve as recombination centers of photoelectrons and holes.In this way, conductivities and water splitting activities of annealed films were enhanced significantly. Under visible light irradiation, the photocurrent density (at 1.6 V vs.Ag/AgCl) and maximum photoconversion efficiency generated by the annealed nanoporous film (0.5% NaF,50 V,25℃,30 min) were 5.75 mA/cm2 and 1.68%,respectively. These values were 4.75 and 5.09 times of that generated by annealed compact WO3 film. Due to the larger surface area, nanoporous WO3 films can not only absorb more light energy, but also contact fully with the electrolyte, which is conducive to charge separation and transfer. Compared with compact films, nanoporous WO3 has smaller interface charge transfer resistance, larger carrier concentration, smaller transient photocurrent kinetics constant and larger transient time constant. Moreover, morphologies of the samples could be controlled by adjusting fluoride concentration, voltage, reaction temperature and time, and thus improve the photocatalytic water splitting activity. Nanoporous films prepared under optimal conditons (0.5% NaF,50 V,15℃,60 min) can generate photocurrent of 6.70 mA/cm2(1.6 V vs.Ag/AgCl),5.54 times the value of annealed compact WO3 films.
引文
[1]Cole B, Marsen B, Miller E L, et al.Evaluation of nitrogen doping of tungsten oxide for photoelectrochemical water splitting. J. Phys. Chem. C,2008,112(13): 5213-5220.
    [2]Xin G, Guo W, Ma T L.Effect of annealing temperature on the photocatalytic activity of WO3 for O2 evolution. Appl.Surf. Sci.,2009,256(1):165-169.
    [3]Lee S H, Cheong H M, Tracy C E, et al.Raman spectroscopic studies of electrochromic a-W03.Electrochim. Acta,1999,44(18):3111-3115.
    [4]Cheng W, Baudrin E, Dunn B,et al.Synthesis and electrochromic properties of mesoporous tungsten oxide.J.Mater. Chem.,2001,11(1):92-97.
    [5]Antonaia A, Addonizio M L, Minarini C, et al.Improvement in electrochromic response for an amorphous/crystalline WO3 double layer. Electrochim. Acta,2001, 46(13-14):2221-2227.
    [6]Huang Y, Zhang Y, Zeng X, et al.Study on Raman spectra of electrochromic c-WO3 films and their infrared emittance modulation characteristics.Appl.Surf. Sci.,2002,202(1-2):104-109.
    [7]Ozkan E, Lee S H, Liu P, et al. Electrochromic and optical properties of mesoporous tungsten oxide films.Solid State Ionics,2002,149(1-2):139-146.
    [8]Ozkan E, Lee S H, Tracy C E, et al.Comparison of electrochromic amorphous and crystalline tungsten oxide films. Sol.Energy Mater. Sol.Cells,2003,79(4): 439-448.
    [9]Badilescu S,Ashrit P V. Study of sol-gel prepared nanostructured WO3 thin films and composites for electrochromic applications.Solid State Ionics,2003,158 (1-2):187-197.
    [10]Sun M, Xu N, Cao Y W, et al. Nanocrystalline tungsten oxide thin film: preparation, microstructure, and photochromic behavior. J. Mater. Res.,2000,15 (4):927-933.
    [11]Gavrilyuk A I. Photochromism in WO3 thin films.Electrochim. Acta,1999,44 (18):3027-3037.
    [12]Tong M, Dai G, Wu Y, et al.WO3 thin film prepared by PECVD technique and its gas sensing properties to NO2.J. Mater. Sci.,2001,36(10):2535-2538.
    [13]Shpak A P, Korduban A M, Medvedskij M M, et al.XPS studies of active elements surface of gas sensors based on WO3-x nanoparticles. J. Electron Spectrosc.Relat. Phenom.,2007,156:172-175.
    [14]Meng D, Yamazaki T, Shen Y, et al.Preparation of WO3 nanoparticles and application to NO2 sensor. Appl.Surf. Sci.,2009,256 (4):1050-1053.
    [15]Fardindoost S,Iraji zad A, Rahimi F, et al.Pd doped WO3 films prepared by sol-gel process for hydrogen sensing. Int. J. Hydrogen Energy,2010,35 (2): 854-860.
    [16]Guo Y, Ono K, Murata N, et al.Production of photo-catalyst TiO2 and high-temperature phase WO3 ultra-fine particles by DC arc discharge. J. Cryst. Growth,2005,275(1-2):e2031-e2036.
    [17]Hong S J, Jun H, Borse P H, et al.Size effects of WO3 nanocrystals for photooxidation of water in particulate suspension and photoelectrochemical film systems.Int. J. Hydrogen Energy,2009,34 (8):3234-3242.
    [18]Huirache-Acuna R, Paraguay-Delgado F, Albiter M A, et al.Synthesis and characterization of WO3 nanostructures prepared by an aged-hydrothermal method. Mater. Charact.,2009,60(9):932-937.
    [19]Santato C, Ulmann M, Augustynski J. Enhanced visible light conversion efficiency using nanocrystalline WO3 films. Adv. Mater.,2001,13(7):511-514.
    [20]Santato C, Odziemkowski M, Ulmann M, et al. Crystallographically oriented mesoporous WO3 films:Synthesis, characterization, and applications.J. Am. Chem.Soc.,2001,123:10639-10649.
    [21]Leftheriotis G, Papaefthimiou S, Yianoulis P, et al.Structural and electrochemical properties of opaque sol-gel deposited WO3 layers. Appl.Surf. Sci.,2003,218 (1-4):275-280.
    [22]Brescacin E, Basato M, Tondello E. Amorphous WO3 films via chemical vapor deposition from metallorganic precursors containing phosphorus dopant. Chem. Mater.,1999,11(2):314-323.
    [23]Baeck S H, Choi K S,Jaramillo T F, et al.Enhancement of photocatalytic and electrochromic properties of electrochemically fabricated mesoporous WO3 thin films. Adv. Mater.,2003,15(15):1269-1273.
    [24]Deepa M, Srivastava A K, Saxena T K, et al.Annealing induced microstructural evolution of electrodeposited electrochromic tungsten oxide films.Appl.Surf. Sci.,2005,252(5):1568-1580.
    [25]Colton R J,Guzman A M,Rabalais J W. Electrochromism in some thin-film transition-metal oxides characterized by x-ray electron spectroscopy. J. Appl. Phys,1978,49:409-416.
    [26]Nanba T, Ishikawa M, Sakai Y, et al.Changes in atomic and electronic structures of amorphous WO3 films due to electrochemical ion insertion. Thin Solid Films, 2003,445(2):175-181.
    [27]Miller E L, Marsen B,Cole B, et al.Low-temperature reactively sputtered tungsten oxide films for solar-powered water splitting applications.Electrochem. Solid-State Lett.,2006,9:G248-G250.
    [28]Marsen B, Cole B,Miller E L. Influence of sputter oxygen partial pressure on photoelectrochemical performance of tungsten oxide films. Sol.Energy Mater. Sol.Cells,2007,91(20):1954-1958.
    [29]Li W,Fu Z. Nanostructured WO3 thin film as a new anode material for lithium-ion batteries.Appl.Surf. Sci.,2010,256 (8):2447-2452.
    [30]Khatko V, Mozalev A, Gorokh G, et al. Evolution of surface morphology, crystallite size, and texture of WO3 layers sputtered onto Si-supported nanoporous alumina templates. J.Electrochem. Soc.,2008,155:K116-K123.
    [31]Szilagyi I M, Madarasz J, Pokol G, et al.Stability and controlled composition of hexagonal WO3.Chem. Mater.,2008,20(12):4116-4125.
    [32]Bamwenda G R, Uesigi T, Abe Y, et al. The photocatalytic oxidation of water to O2 over pure CeO2, WO3,and TiO2 using Fe3+ and Ce4+ as electron acceptors. Appl.Catal.A:General,2001,205(1-2):117-128.
    [33]Bamwenda G R, Arakawa H. The visible light induced photocatalytic activity of tungsten trioxide powders. Appl.Catal.A:General,2001,210(1-2):181-191.
    [34]Bamwenda G R, Arakawa H. The photoinduced evolution of O2 and H2 from a WO3 aqueous suspension in the presence of Ce4+/Ce3+. Sol.Energy Mater. Sol. Cells,2001,70(1):1-14.
    [35]Asim N, Radiman S,Yarmo M A. Synthesis of WO3 in nanoscale with the usage of sucrose ester microemulsion and CTAB micelle solution. Mater. Lett.,2007,61 (13):2652-2657.
    [36]Chakrapani V, Thangala J, Sunkara M K. WO3 and W2N nanowire arrays for photoelectrochemical hydrogen production. Int. J.Hydrogen Energy,2009,34 (22):9050-9059.
    [37]Best J P, Dunstan D E. Nanotechnology for photolytic hydrogen production: Colloidal anodic oxidation. Int. J.Hydrogen Energy,2009,34(18):7562-7578.
    [38]Kudo A. Recent progress in the development of visible light-driven powdered photocatalysts for water splitting. Int. J.Hydrogen Energy,2007,32(14): 2673-2678.
    [39]Hu C C, Nian J N, Teng H. Electrodeposited p-type Cu2O as photocatalyst for H2 evolution from water reduction in the presence of WO3.Sol.Energy Mater. Sol. Cells,2008,92(9):1071-1076.
    [40]Sayama K, Mukasa K, Abe R, et al. A new photocatalytic water splitting system under visible light irradiation mimicking a Z-scheme mechanism in photosynthesis.J. Photochem. Photobiol.A,2002,148 (1-3):71-77.
    [41]Higashi M, Abe R, Teramura K, et al. Two step water splitting into H2 and O2 under visible light by ATaO2N (A=Ca, Sr, Ba) and WO3 with IO3-/I- shuttle redox mediator. Chem. Phys.Lett.,2008,452(1-3):120-123.
    [42]Sayama K, Yoshida R, Kusama H, et al.Photocatalytic decomposition of water into H2 and O2 by a two-step photoexcitation reaction using a WO3 suspension catalyst and an Fe3+/Fe2+ redox system. Chem. Phys.Lett.,1997,277 (4): 387-391.
    [43]Bamwenda G R, Sayama K, Arakawa H. The effect of selected reaction parameters on the photoproduction of oxygen and hydrogen from a WO3-Fe2+-Fe3+ aqueous suspension. J.Photochem. Photobiol.A,1999,122 (3): 175-183.
    [44]Higashi M, Abe R, Takata T, et al.Photocatalytic overall water splitting under visible light using ATaO2N (A=Ca, Sr, Ba) and WO3 in a IO3-/I- shuttle redox mediated system.Chem. Mater.,2009,21 (8):1543-1549.
    [45]Abe R, Takata T, Sugihara H, et al.Photocatalytic overall water splitting under visible light by TaON and WO3 with an IO3-/I- shuttle redox mediator. Chem. Commun.,2005,2005(30):3829-3831.
    [46]Sayama K, Mukasa K, Abe R, et al.Stoichiometric water splitting into H2 and O2 using a mixture of two different photocatalysts and an IO3-/I- shuttle redox mediator under visible light irradiation. Chem. Commun.,2001,2001 (23): 2416-2417.
    [47]Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature,1972,238(5358):37-38.
    [48]Currao A. Photoelectrochemical water Splitting. CHIMIA Int. J. Chem.,2007,61 (12):815-819.
    [49]He X, Boehm R F. Direct solar water splitting cell using water, WO3,Pt, and polymer electrolyte membrane.Energy,2009,34:1454-1457.
    [50]Scaife D E.Oxide semiconductors in photoelectrochemical conversion of solar energy. Sol.Energy,1980,25(1):41-54.
    [51]Hodes G, Cahen D, Manassen J.Tungsten trioxide as a photoanode for a photoelectrochemical cell/PEC.Nature,1976,260:312-313.
    [52]Enesca A, Duta A, Schoonman J. Study of photoactivity of tungsten trioxide (WO3) for water splitting.Thin Solid Films,2007,515(16):6371-6374.
    [53]Paluselli D, Marsen B, Miller E L, et al. Nitrogen doping of reactively sputtered tungsten oxide films. Electrochem. Solid-State Lett.,2005,8:G301-G303.
    [54]Berak J M, Sienko M J. Effect of oxygen-deficiency on electrical transport properties of tungsten trioxide crystals. J. Solid State Chem.,1970,2(1): 109-133.
    [55]Emeline A V, Ryabchuk V K, Serpone N. Spectral dependencies of the quantum yield of photochemical processes on the surface of nano-/microparticulates of wide-band-gap metal oxides.1.Theoretical approach. J. Phys.Chem. B,1999, 103(8):1316-1324.
    [56]Li D, Haneda H, Hishita S,et al.Fluorine-doped TiO2 powders prepared by spray pyrolysis and their improved photocatalytic activity for decomposition of gas-phase acetaldehyde. J. Fluorine Chem.,2005,126(1):69-77.
    [57]Xu J, Ao Y, Fu D, et al.Low-temperature preparation of F-doped TiO2 film and its photocatalytic activity under solar light. Appl.Surf. Sci.,2008,254(10): 3033-3038.
    [58]Li D, Haneda H, Labhsetwar N K, et al.Visible-light-driven photocatalysis on fluorine-doped TiO2 powders by the creation of surface oxygen vacancies.Chem. Phys. Lett.,2005,401 (4-6):579-584.
    [59]Park H, Choi W. Effects of TiO2 surface fluorination on photocatalytic reactions and photoelectrochemical behaviors. J. Phys. Chem. B,2004,108(13): 4086-4093.
    [60]Park J S,Choi W. Enhanced remote photocatalytic oxidation on surface-fluorinated TiO2.Langmuir,2004,20 (26):11523-11527.
    [61]Kim H, Choi W. Effects of surface fluorination of TiO2 on photocatalytic oxidation of gaseous acetaldehyde. Appl.Catal.B:Environmental,2007,69 (3-4): 127-132.
    [62]Xiang Q, Meng G F, Zhao H B, et al.Au nanoparticle modified WO3 nanorods with their enhanced properties for photocatalysis and gas sensing. J. Phys.Chem. C,2010,114(5):2049-2055.
    [63]Bittencourt C, Llobet E, Ivanov P, et al.Ag induced modifications on WO3 films studied by AFM, Raman and x-ray photoelectron spectroscopy. J. Phys. D:Appl. Phys.,2004,37 (24):3383-3391.
    [64]Bittencourt C, Felten A, Mirabella F, et al.High-resolution photoelectron spectroscopy studies on WO3 films modified by Ag addition. J. Phys.:Condens. Matter,2005,17:6813.
    [65]Wang P, Huang B, Qin X, et al. Ag/AgBr/WO3H2O:visible-light photocatalyst for bacteria destruction. Inorg. Chem.,2009,48 (22):10697-10702.
    [66]Sun S,Wang W, Zeng S,et al. Preparation of ordered mesoporous Ag/WO3 and its highly efficient degradation of acetaldehyde under visible-light irradiation. J. Hazard. Mater.,2010,178(1-3):427-433.
    [67]Ashokkumar M, Maruthamuthu P. Photocatalytic hydrogen production with semiconductor particulate systems:An effort to enhance the efficiency. Int. J. Hydrogen Energy,1991,16(9):591-595.
    [68]Sclafani A, Palmisano L, Marc G, et al.Influence of platinum on catalytic activity of polycrystalline WO3 employed for phenol photodegradation in aqueous suspension. Sol.Energy Mater. Sol.Cells,1998,51(2):203-219.
    [69]Abe R, Takami H, Murakami N, et al.Pristine simple oxides as visible light driven photocatalysts:Highly efficient decomposition of organic compounds over platinum-loaded tungsten oxide. J. Am.Chem. Soc,2008,130(25):7780-7781.
    [70]Zhao Z G, Miyauchi M.Nanoporous-walled tungsten oxide nanotubes as highly active visible-light-driven photocatalysts.Angew. Chem. Int. Ed.,2008,47 (37): 7051-7055.
    [71]Higashimoto S,Sakiyama M, Azuma M. Photoelectrochemical properties of hybrid WO3/TiO2 electrode. Effect of structures of WO3 on charge separation behavior. Thin Solid Films,2006,503(1-2):201-206.
    [72]Arai T, Yanagida M, Konishi Y, et al.Efficient complete oxidation of acetaldehyde into CO2 over CuBi2O4/WO3 composite photocatalyst under visible and UV light irradiation.J. Phys. Chem. C,2007,111 (21):7574-7577.
    [73]Komornicki S, Radecka M, Soba P. Structural properties of TiO2-WO3 thin films prepared by r.f. sputtering. J. Mater. Sci.:Mater. Electron.,2004,15 (8): 527-531.
    [74]Komornicki S,Radecka M, Sobas P. Structural, electrical and optical properties of TiO2-WO3 polycrystalline ceramics. Mater. Res. Bull.,2004,39(13):2007-2017.
    [75]Keller V, Garin F. Photocatalytic behavior of a new composite ternary system: WO3/SiC-TiO2.Effect of the coupling of semiconductors and oxides in photocatalytic oxidation of methylethylketone in the gas phase. Catal.Commun., 2003,4(8):377-383.
    [76]Li Y, Liu J, Huang X, et al.Hydrothermal synthesis of Bi2WO6 uniform hierarchical microspheres. Cryst. Growth Des.,2007,7(7):1350-1355.
    [77]Wu J, Duan F, Zheng Y, et al.Synthesis of Bi2WO6 nanoplate-built hierarchical nest-like structures with visible-light-induced photocatalytic activity. J. Phys. Chem. C,2007,111(34):12866-12871.
    [78]Lin J, Lin J, Zhu Y.Controlled synthesis of the ZnWO4 nanostructure and effects on the photocatalytic performance. Inorg. Chem.,2007,46 (20):8372-8378.
    [79]Tang J, Zou Z, Ye J. Photophysical and photocatalytic properties of AgInW2O8.J. Phys. Chem. B,2003,107(51):14265-14269.
    [80]Radecka M, Sobas P, Wierzbicka M, et al.Photoelectrochemical properties of undoped and Ti-doped WO3.Physica. B,2005,364(1-4):85-92.
    [81]Hameed A, Gondal M A, Yamani Z H. Effect of transition metal doping on photocatalytic activity of WO3 for water splitting under laser illumination:role of 3d-orbitals. Catal.Commun.,2004,5 (11):715-719.
    [82]Choi W, Termin A, Hoffmann M R. The role of metal ion dopants in quantum-sized TiO2:correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem.,1994,98 (51):13669-13679.
    [83]Asahi R, Morikawa T, Ohwaki T, et al.Visible-light photocatalysis in nitrogen-doped titanium oxides.Science,2001,293 (5528):269-271.
    [84]Irie H, Watanabe Y, Hashimoto K. Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders.J. Phys.Chem. B,2003,107 (23): 5483-5486.
    [85]Xu J,Ao Y,Fu D,et al.A simple route to synthesize highly crystalline N-doped TiO2 particles under low temperature. J. Cryst. Growth,2008,310(19): 4319-4324.
    [86]Hong Y C, Bang C U, Shin D H, et al.Band gap narrowing of TiO2 by nitrogen doping in atmospheric microwave plasma. Chem. Phys. Lett.,2005,413 (4-6): 454-457.
    [87]Qiu X, Burda C.Chemically synthesized nitrogen-doped metal oxide nanoparticles. Chem. Phys.,2007,339(1-3):1-10.
    [88]Kim D, Fujimoto S,Schmuki P, et al.Nitrogen doped anodic TiO2 nanotubes grown from nitrogen-containing Ti alloys. Electrochem. Commun.,2008,10: 910-913.
    [89]Zhang X, Udagawa K, Liu Z, et al.Photocatalytic and photoelectrochemical studies on N-doped TiO2 photocatalyst. J. Photochem. Photobiol.A,2009,202(1): 39-47.
    [90]Lindgren T, Lu J, Hoel A,.et al.Photoelectrochemical study of sputtered nitrogen-doped titanium dioxide thin films in aqueous electrolyte. Sol.Energy Mater. Sol.Cells,2004,84(1-4):145-157.
    [91]Ghicov A, Macak J M, Tsuchiya H, et al. TiO2 nanotube layers:Dose effects during nitrogen doping by ion implantation. Chem. Phys. Lett.,2006,419 (4-6): 426-429.
    [92]Marsen B, Miller E L, Paluselli D, et al.Progress in sputtered tungsten trioxide for photoelectrode applications.Int. J. Hydrogen Energy,2007,32(15): 3110-3115.
    [93]Sun Y, Murphy C J, Reyes-Gil K R, et al.Photoelectrochemical and structural characterization of carbon-doped WO3 films prepared via spray pyrolysis. Int. J. Hydrogen Energy,2009,34 (20):8476-8484.
    [94]Khan S U M, Al-Shahry M, Ingler Jr W B.Efficient photochemical water splitting by a chemically modified n-TiO2. Science,2002,297 (5590):2243.
    [95]Irie H, Watanabe Y, Hashimoto K. Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst. Chem. Lett.,2003,32(8):772-773.
    [96]Nagaveni K, Hegde M, Ravishankar N, et al.Synthesis and structure of nanocrystalline TiO2 with lower band gap showing high photocatalytic activity. Langmuir,2004,20 (7):2900-2907.
    [97]Hahn R, Ghicov A, Salonen J, et al.Carbon doping of self-organized TiO2 nanotube layers by thermal acetylene treatment. Nanotechnology,2007,18: 105604.
    [98]Park J H, Kim S,Bard A J.Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett.,2006,6(1):24-28.
    [99]Ohno T, Mitsui T, Matsumura M. Photocatalytic activity of S-doped TiO2 photocatalyst under visible light. Chem. Lett.,2003,32(4):364-365.
    [100]Ohno T, Akiyoshi M, Umebayashi T, et al.Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Appl.Catal. A:General,2004,265(1):115-121.
    [101]Ohno T. Preparation of visible light active S-doped TiO2 photocatalysts and their photocatalytic activities.Water Sci.Technol.,2004,49(4):159-163.
    [102]Yu J C, Ho W, Yu J, et al.Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania.Environ. Sci.Technol.,2005, 39(4):1175-1179.
    [103]Umebayashi T, Yamaki T, Itoh H, et al.Band gap narrowing of titanium dioxide by sulfur doping. Appl.Phys.Lett.,2002,81:454.
    [104]Umebayashi T, Yamaki T, Tanaka S, et al. Visible light-induced degradation of methylene blue on S-doped TiO2.Chem. Lett.,2003,32(4):330-331.
    [105]Umebayashi T, Yamaki T, Yamamoto S,et al.Sulfur-doping of rutile-titanium dioxide by ion implantation:Photocurrent spectroscopy and first-principles band calculation studies. J. Appl.Phys.,2003,93:5156-5160.
    [106]Yamaki T, Umebayashi T, Sumita T, et al. Fluorine-doping in titanium dioxide by ion implantation technique.Nucl.Instrum. Methods Phys.Res. B,2003,206: 254-258.
    [107]Hattori A, Shimoda K, Tada H, et al.Photoreactivity of sol-gel TiO2 films formed on soda-lime glass substrates:effect of SiO2 underlayer containing fluorine. Langmuir,1999,15(16):5422-5425.
    [108]Yu J C, Yu J, Ho W, et al. Effects of F" doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders.Chem. Mater.,2002,14 (9): 3808-3816.
    [109]Ho W, Yu J C.Synthesis of hierarchical nanoporous F-doped TiO2 spheres with visible light photocatalytic activity. Chem. Commun.,2006,2006(10): 1115-1117.
    [110]Hsu C S,Lin C K, Chan C C, et al. Preparation and characterization of nanocrystalline porous TiO2/WO3 composite thin films. Thin Solid Films,2006, 494(1-2):228-233.
    [111]Chai F, Tan R, Cao F, et al.Dendritic and tubular tungsten oxide by surface sol-gel mineralisation of cellulosic substance. Mater. Lett.,2007,61(18): 3939-3941.
    [112]Zhang Y, Yuan J, Le J, et al.Structural and electrochromic properties of tungsten oxide prepared by surfactant-assisted process. Sol.Energy Mater. Sol.Cells, 2009:
    [113]Cheng L, Zhang X, Liu B, et al. Template synthesis and characterization of WO3/TiO2 composite nanotubes.Nanotechnology,2005,16:1341-1345.
    [114]Kasuga T, Hiramatsu M, Hoson A, et al.Formation of titanium oxide nanotube. Langmuir,1998,14(12):3160-3163.
    [115]Sun X, Li Y. Synthesis and characterization of ion-exchangeable titanate nanotubes.Chem. Eur. J.,2003,9(10):2229-2238.
    [116]Du G H, Chen Q, Che R C, et al. Preparation and structure analysis of titanium oxide nanotubes. Appl. Phys. Lett.,2001,79:3702-3704.
    [117]Wang W, Varghese O K, Paulose M, et al.A study on the growth and structure of titania nanotubes.J. Mater. Res.,2004,19(2):417-422.
    [118]Song X C, Zheng Y F, Yang E, et al.Large-scale hydrothermal synthesis of WO3 nanowires in the presence of K2SO4.Mater. Lett.,2007,61(18):3904-3908.
    [119]Phuruangrat A, Ham D J, Hong S J, et al. Synthesis of hexagonal WO3 nanowires by microwave-assisted hydrothermal method and their electrocatalytic activities for hydrogen evolution reaction. J. Mater. Chem,2010,20:1683-1690.
    [120]Ha J H, Muralidharan P, Kim D K. Hydrothermal synthesis and characterization of self-assembled h-WO3 nanowires/nanorods using EDTA salts.J. Alloys Compd.,2009,475 (1-2):446-451.
    [121]Lee C Y, Kim S J, Hwang I S,et al. Glucose-mediated hydrothermal synthesis and gas sensing characteristics of WO3 hollow microspheres. Sens.Actuators B: Chem.,2009,142(1):236-242.
    [122]Su X, Xiao F, Li Y, et al.Synthesis of uniform WO3 square nanoplates via an organic acid-assisted hydrothermal process. Mater. Lett.,2010,64(10): 1232-1234.
    [123]Arendt R H. Liquid-phase sintering of magnetically isotropic and anise by the reaction of BaFe2O4 with Fe2O3.J. Solid State Chem.,1973,8(4):339.
    [124]Thirumal M, Jain P, Ganguli A K. Molten salt synthesis of complex perovskite-related dielectric oxides. Mater. Chem. Phys.,2001,70(1):7-11.
    [125]Kang M Y, Cao C B, Xu X Y, et al.Molten-salt synthesis of tungsten oxide nanotubes:morphological and gas sensitivity. Chinese Sci.Bull.,2008,53 (3): 335-338.
    [126]Mozalev A, Khatko V, Bittencourt C, et al.Nanostructured columnlike tungsten oxide film by anodizing Al/W/Ti layers on Si.Chem. Mater.,2008,20 (20): 6482-6493.
    [127]Valota A, LeClere D J, Hashimoto T, et al. The efficiency of nanotube formation on titanium anodized under voltage and current control in fluoride/glycerol electrolyte. Nanotechnology,2008,19:355701.
    [128]Zhang J, Xi Z, Wu Y, et al.Growth of micron-sized tubes of tungsten oxide. Colloids Surf. A,2008,313-314:670-673.
    [129]Wu Y, Xi Z, Zhang G, et al.Growth of hexagonal tungsten trioxide tubes. J. Cryst. Growth,2006,292(1):143-148.
    [130]Mukherjee N, Paulose M, Varghese O K, et al.Fabrication of nanoporous tungsten oxide by galvanostatic anodization. J. Mater. Res.,2003,18(10): 2296-2299.
    [131]Tsuchiya H, Macak J M, Sieber I, et al. Self-organized porous WO3 formed in NaF electrolytes. Electrochem. Commun.,2005,7(3):295-298.
    [132]O'sullivan J P, Wood G C.The morphology and mechanism of formation of porous anodic films on aluminium. Proc. R. Soc.London, Ser. A,1970,317 (1531):511-543.
    [133]Taveira L V, Macak J M, Tsuchiya H, et al.Initiation and growth of self-organized TiO2 nanotubes anodically formed in NH4F/(NH4)2SO4 electrolytes. J. Electrochem. Soc.,2005,152(10):B405-B410.
    [134]Yasuda K, Macak J M, Berger S, et al. Mechanistic aspects of the self-organization process for oxide nanotube formation on valve metals. J. Electrochem.Soc.,2007,154:C472C-478.
    [135]Macak J M, Tsuchiya H, Ghicov A, et al.TiO2 nanotubes:Self-organized electrochemical formation, properties and applications. Curr. Opin. Solid State Mater. Sci.,2007,11:3-18.
    [136]Macak J M, Hildebrand H, Marten-Jahns U, et al.Mechanistic aspects and growth of large diameter self-organized TiO2 nanotubes. J. Electroanal.Chem.,2008,621 (2):254-266.
    [137]Gong D, Grimes C, Varghese O K, et al.Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res.,2001,16(12):3331-3334.
    [138]Mor G K, Varghese O K, Paulose M, et al.Fabrication of tapered, conical-shaped titania nanotubes.J. Mater. Res.,2003,18(11):2588-2593.
    [139]Mor G K, Varghese O K, Paulose M, et al.A review on highly ordered, vertically oriented TiO2 nanotube arrays:Fabrication, material properties, and solar energy applications.Sol.Energy Mater. Sol.Cells,2006,90(14):2011-2075.
    [140]Jaroenworaluck A, Regonini D, Bowen C R, et al.Nucleation and early growth of anodized TiO2 film. J. Mater. Res.,2008,23(8):2116-2124.
    [141]Bai J, Zhou B, Li L, et al.The formation mechanism of titania nanotube arrays in hydrofluoric acid electrolyte. J. Mater. Sci.,2008,43(6):1880-1884.
    [142]Joo S,Muto I, Hara N. In situ ellipsometric analysis of growth processes of anodic TiO2 nanotube films. J. Electrochem. Soc.,2008,155:C154-C161.
    [143]Nguyen Q A S,Bhargava Y V, Devine T M. Initiation of organized nanopore/nanotube arrays in anodized titanium oxide.J.Electrochem. Soc.,2009, 156:E55-E61.
    [144]Bhargava Y V, Nguyen Q A S, Devine T M. Initiation of organized nanopore/nanotube arrays in titanium oxide. J. Electrochem. Soc.,2009,156: E62-E68.
    [145]Chen C C, Say W C, Hsieh S J, et al.A mechanism for the formation of annealed compact oxide layers at the interface between anodic titania nanotube arrays and Ti foil.Appl.Phys. A:Mater. Sci.Process.,2009,95(3):889-898.
    [146]Tao J, Zhao J, Tang C, et al.Mechanism study of self-organized TiO2 nanotube arrays by anodization. New J. Chem.,2008,32(12):2164-2168.
    [147]Zwilling V, Darque-Ceretti E, Boutry-Forveille A, et al.Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surf. Interface Anal.,1999,27(7):629-637.
    [148]Beranek R, Hildebrand H, Schmuki P. Self-organized porous titanium oxide prepared in HSO/HF electrolytes. Electrochem. Solid-State Lett.,2003,6: B12-B14.
    [149]Bauer S,Kleber S, Schmuki P. TiO2 nanotubes:Tailoring the geometry in H3PO4/HF electrolytes.Electrochem. Commun.,2006,8(8):1321-1325.
    [150]Macak J M, Tsuchiya H, Schmuki P. High-aspect-ratio TiO2 nanotubes by anodization of titanium.Angew. Chem. Int. Ed.,2005,44 (14):2100-2102.
    [151]Hahn R, Macak J M, Schmuki P. Rapid anodic growth of TiO2 and WO3 nanotubes in fluoride free electrolytes.Electrochem. Commun.,2007,9 (5): 947-952.
    [152]Likodimos V, Stergiopoulos T, Falaras P, et al. Phase composition, size, orientation, and antenna effects of self-assembled anodized titania nanotube arrays:A polarized micro-raman investigation. J. Phys.Chem. C,2008,112(33): 12687-12696.
    [153]Richter C, Wu Z, Panaitescu E, et al. Ultra-high-aspect-ratio titania nanotubes. Adv. Mater.,2007,19(7):946-948.
    [154]Albu S P, Kim D, Schmuki P. Growth of aligned TiO2 bamboo-type nanotubes and highly ordered nanolace.Angew. Chem. Int. Ed.,2008,47:1916-1919.
    [155]Yasuda K, Schmuki P.Electrochemical formation of self-organized zirconium titanate nanotube multilayers. Electrochem. Commun.,2007,9(4):615-619.
    [156]Macak J M, Albu S,Kim D H, et al.Multilayer TiO2 nanotube formation by two-step anodization. Electrochem. Solid-State Lett.,2007,10:K28-K31.
    [157]Zhang G, Huang H, Zhang Y, et al. Highly ordered nanoporous TiO2 and its photocatalytic properties. Electrochem. Commun.,2007,9(12):2854-2858.
    [158]Ghicov A, Tsuchiya H, Macak J M, et al.Titanium oxide nanotubes prepared in phosphate electrolytes. Electrochem. Commun.,2005,7(5):505-509.
    [159]Macak J M, Sirotna K, Schmuki P. Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes.Electrochim. Acta,2005,50(18):3679-3684.
    [160]Cai Q, Paulose M, Varghese O K, et al.The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation. J.Mater. Res.,2005,20(1):230-236.
    [161]Tian T, Xiao X, Liu R, et al.Study on titania nanotube arrays prepared by titanium anodization in NH4F/H2SO4 solution. J. Mater. Sci.,2007,42(14): 5539-5543.
    [162]Ruan C, Paulose M, Varghese O K, et al. Enhanced photoelectrochemical-response in highly ordered TiO2 nanotube-arrays anodized in boric acid containing electrolyte.Sol. Energy Mater. Sol. Cells,2006,90 (9): 1283-1295.
    [163]Tsuchiya H, Macak J M, Taveira L, et al. Self-organized TiO2 nanotubes prepared in ammonium fluoride containing acetic acid electrolytes.Electrochem. Commun., 2005,7(6):576-580.
    [164]Mor G K, Shankar K, Paulose M, et al.Enhanced photocleavage of water using titania nanotube arrays. Nano Lett.,2005,5(1):191-195.
    [165]Ruan C, Paulose M, Varghese 0 K, et al.Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte.J.Phys.Chem. B,2005,109 (33): 15754-15759.
    [166]Paulose M, Shankar K, Yoriya S,et al.Anodic growth of highly ordered TiO2 nanotube arrays to 134 um in length. J. Phys. Chem. B,2006,110 (33): 16179-16184.
    [167]Yoriya S,Paulose M, Varghese O K, et al.Fabrication of vertically oriented TiO2 nanotube arrays using dimethyl sulfoxide electrolytes. J. Phys. Chem. C,2007, 111:13770-13776.
    [168]Shankar K, Mor G K, Prakasam H E, et al.Highly-ordered TiO2 nanotube arrays up to 220 mum in length:use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnology,2007,18:065707.
    [169]Macak J M, Tsuchiya H, Taveira L, et al.Smooth anodic TiO2 nanotubes. Angew. Chem. Int. Ed.,2005,44(45):7463-7465.
    [170]Macak J M, Schmuki P. Anodic growth of self-organized anodic TiO2 nanotubes in viscous electrolytes. Electrochim. Acta,2006,52 (3):1258-1264.
    [171]Albu S P, Ghicov A, Macak J M, et al.Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications.Nano Lett., 2007,7(5):1286-1289.
    [172]Albu S P, Ghicov A, Macak J M, et al.250 μm long anodic TiO2 nanotubes with hexagonal self-ordering. Phys. Stat. Sol.RRL,2007,1 (2):R65-R67.
    [173]Paulose M, Prakasam H E, Varghese O K, et al.TiO2 nanotube arrays of 1000 um length by anodization of titanium foil:phenol red diffusion. J. Phys.Chem. C, 2007,111:14992-14997.
    [174]Yang L, He D, Cai Q, et al.Fabrication and catalytic properties of Co-Ag-Pt nanoparticle-decorated titania nanotube arrays. J.Phys. Chem. C 2007,111: 8214-8217.
    [175]Yoriya S,Mor G K, Sharma S, et al.Synthesis of ordered arrays of discrete, partially crystalline titania nanotubes by Ti anodization using diethylene glycol electrolytes. J. Mater. Chem.,2008,18(28):3332-3336.
    [176]Paramasivam I, Macak J M, Selvam T, et al.Electrochemical synthesis of self-organized TiO2 nanotubular structures using an ionic liquid (BMIM-BF4). Electrochim. Acta,2008,54(2):643-648.
    [177]Macak J M, Taveira L V, Tsuchiya H, et al.Influence of different fluoride containing electrolytes on the formation of self-organized titania nanotubes by Ti anodization. J. Electroceram.,2006,16(1):29-34.
    [178]Macak J M, Albu S P, Schmuki P. Towards ideal hexagonal self-ordering of TiO2 nanotubes. Phys. Stat. Sol.RRL,2007,1 (5):181-183.
    [179]Prida V M, Manova E, Vega V, et al.Temperature influence on the anodic growth of self-aligned titanium dioxide nanotube arrays.J.Magn. Magn. Mater.,2007, 316(2):110-113.
    [180]Seyeux A, Berger S,LeClere D, et al. Influence of surface condition on nanoporous and nanotubular film formation on titanium. J.Electrochem. Soc., 2009,156:K17-K22.
    [181]Thebault F, Vuillemin B, Oltra R, et al.Modeling of growth and dissolution of nanotubular titania in fluoride-containing electrolytes.Electrochem. Solid-State Lett,2009,12:C5-C9.
    [182]Valota A, LeClere D J, Skeldon P, et al.Influence of water content on nanotubular anodic titania formed in fluoride/glycerol electrolytes. Electrochim. Acta,2009, 54:4321-4327.
    [183]Berger S,Kunze J, Schmuki P, et al. Influence of water content on the growth of anodic TiO2 nanotubes in fluoride-containing ethylene glycol electrolytes.J. Electrochem. Soc.,2010,157:C18-C23.
    [184]Xie Z B,Adams S,Blackwood D J, et al.The effects of anodization parameters on titania nanotube arrays and dye sensitized solar cells.Nanotechnology,2008, 19:405701.
    [185]Lin C J, Yu W Y, Lu Y T, et al. Fabrication of open-ended high aspect-ratio anodic TiO2 nanotube films for photocatalytic and photoelectrocatalytic applications. Chem. Commun,2008,(45):6031.
    [186]Lai Y, Sun L, Chen Y, et al.Effects of the structure of TiO2 nanotube array on Ti substrate on its photocatalytic activity. J. Electrochem. Soc.,2006,153: D123-D127.
    [187]Zhang Z, Yuan Y, Shi G, et al.Photoelectrocatalytic activity of highly ordered TiO2 nanotube arrays electrode for Azo dye degradation. Environ. Sci.Technol, 2007,41(17):6259-6263.
    [188]Zhuang H F, Lin C J, Lai Y K, et al. Some critical structure factors of titanium oxide nanotube array in its photocatalytic activity. Environ. Sci.Technol,2007, 41(13):4735-4740.
    [189]Lin C J, Lu Y T, Hsieh C H, et al. Surface modification of highly ordered TiO2 nanotube arrays for efficient photoelectrocatalytic water splitting. Appl.Phys. Lett,2009,94:113102.
    [190]Liang H, Li X. Visible-induced photocatalytic reactivity of polymer-sensitized titania nanotube films. Appl. Catal.B:Environmental,2009,86(1-2):8-17.
    [191]Gracien E B,Shen J, Sun X R, et al.Photocatalytic activity of manganese, chromium and cobalt-doped anatase titanium dioxide nanoporous electrodes produced by re-anodization method. Thin Solid Films,2007,515(13): 5287-5297.
    [192]Varghese O K, Paulose M, Shankar K, et al.Water-photolysis properties of micron-length highly-ordered titania nanotube-arrays. J. Nanosci.Nanotechnol, 2005,5(7):1158-1165.
    [193]Berger S,Tsuchiya H, Ghicov A, et al.High photocurrent conversion efficiency in self-organized porous WO3. Appl.Phys.Lett,2006,88:203119.
    [194]Nah Y C, Ghicov A, Kim D, et al.Enhanced electrochromic properties of self-organized nanoporous WO3.Electrochem.Commun,2008,10 (11): 1777-1780.
    [195]de Tacconi N R, Chenthamarakshan C R, Yogeeswaran G, et al.Nanoporous TiO2 and WO3 films by anodization of titanium and tungsten substrates:Influence of process variables on morphology and photoelectrochemical response.J. Phys. Chem. B,2006,110(50):25347-25355.
    [196]Watcharenwong A, Chanmanee W, de Tacconi N R, et al.Anodic growth of nanoporous WO3 films:Morphology, photoelectrochemical response and photocatalytic activity for methylene blue and hexavalent chrome conversion. J. Electroanal.Chem.,2008,612(1):112-120.
    [197]Guo Y, Quan X, Lu N, et al. High photocatalytic capability of self-assembled nanoporous WO3 with preferential orientation of (002) planes.Environ. Sci. Technol,2007,41(12):4422-4427.
    [198]Yang M, Shrestha N K, Schmuki P. Thick porous tungsten trioxide films by anodization of tungsten in fluoride containing phosphoric acid electrolyte. Electrochem.Commun.,2009,11(10):1908-1911.
    [199]Perry S S,Galloway H C, Cao P, et al.The influence of chemical treatments on tungsten films found in integrated circuits.Appl.Surf. Sci.,2001,180(1-2):6-13.
    [200]Su L, Dai Q, Lu Z. Spectroelectrochemical and photoelectrochemical studies of electrodeposited tungsten trioxide films. Spectrochim. Acta, Part A,1999,55(11): 2179-2185.
    [201]Song H, Jiang H, Liu X, et al.Efficient degradation of organic pollutant with WOX modified nano TiO2 under visible irradiation. J.Photochem. Photobiol. A, 2006,181(2-3):421-428.
    [202]Ho W,Yu J C,Lee S.Low-temperature hydrothermal synthesis of S-doped TiO2 with visible light photocatalytic activity. J. Solid State Chem.,2006,179 (4): 1171-1176.
    [203]Yang B,Zhang Y, Drabarek E, et al.Enhanced photoelectrochemical activity of sol-gel tungsten trioxide films through textural control.Chem. Mater.,2007,19 (23):5664-5672.
    [204]Takeshita K, Yamakata A, Ishibashi T, et al.Transient IR absorption study of charge carriers photogenerated in sulfur-doped TiO2.J. Photochem. Photobiol.A, 2006,177(2-3):269-275.
    [205]Emeline A V, Kataeva G V, Ryabchuk V K, et al.Photostimulated generation of defects and surface reactions on a series of wide band gap metal-oxide solids. J. Phys. Chem. B,1999,103:9190-9199.
    [206]Taveira L V, Macak J M, Sirotna K, et al.Voltage oscillations and morphology during the galvanostatic formation of self-organized TiO2 nanotubes. J. Electrochem. Soc.,2006,153:B137.
    [207]Allam N K, Grimes C A. Formation of vertically oriented TiO2 nanotube arrays using a fluoride free HCl aqueous electrolyte.J.Phys. Chem. C,2007,111: 13028-13032.
    [208]Allam N K, Shankar K, Grimes C A. Photoelectrochemical and water photoelectrolysis properties of ordered TiO2 nanotubes fabricated by Ti anodization in fluoride-free HCl electrolytes.J. Mater. Chem.,2008,18 (20): 2341-2348.
    [209]Panaitescu E, Richter C, Menon L. A study of titania nanotube synthesis in chloride-ion-containing media. J.Electrochem. Soc.,2008,155:E7-E13.
    [210]Nguyen Q A S,Bhargava Y V, Devine T M.Titania nanotube formation in chloride and bromide containing electrolytes. Electrochem. Commun.,2008:
    [211]Paulose M, Mor G K, Varghese O K, et al.Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays.J.Photochem. Photobiol.A,2006,178(1):8-15.
    [212]Zhang L W, Wang Y J, Cheng H Y, et al.Synthesis of porous Bi2WO6 thin films as efficient visible-light-active photocatalysts. Adv. Mater.,2008,21(12): 1286-1290.
    [213]Leng W H, Zhang Z, Zhang J Q, et al.Investigation of the kinetics of a TiO2 photoelectrocatalytic reaction involving charge transfer and recombination through surface states by electrochemical impedance spectroscopy. J. Phys.Chem. B,2005,109(31):15008-15023.
    [214]Shi R, Huang G, Lin J, et al.Photocatalytic activity enhancement for Bi2WO6 by fluorine substitution. J. Phys. Chem. C,2009,113:19633-19638.
    [215]Lin J, Zong R, Zhou M, et al.Photoelectric catalytic degradation of methylene blue by C60-modified TiO2 nanotube array. Appl.Catal. B:Environmental,2009, 89(3-4):425-431.
    [216]Li J, Zheng L, Li L, et al.Fabrication of TiO2/Ti electrode by laser-assisted anodic oxidation and its application on photoelectrocatalytic degradation of methylene blue.J. Hazard. Mater.,2007,139(1):72-78.
    [217]Kim D J, Pyun S I.Stress generation and annihilation during hydrogen injection into and extraction from anodic WO3 films. Electrochim. Acta,1999,44(11): 1723-1732.
    [218]Tsuchiya H, Macak J M, Ghicov A, et al.Characterization of electronic properties of TiO2 nanotube films. Corros. Sci.,2007,49(1):203-210.
    [219]Lu H F, Li F, Liu G, et al.Amorphous TiO2 nanotube arrays for low-temperature oxygen sensors. Nanotechnology,2008,19:405504.
    [220]Yagi M, Maruyama S,Sone K, et al.Preparation and photoelectrocatalytic activity of a nano-structured WO3 platelet film. J. Solid State Chem.,2008,181(1): 175-182.
    [221]Faughnan B W, Crandall R S,Lampert M A. Model for the bleaching of WO3 electrochromic films by an electric field. Appl.Phys.Lett.,1975,27:275-277.
    [222]Hagfeldt A, Lindstrom H, Sodergren S, et al.Photoelectrochemical studies of colloidal TiO2 films:The effect of oxygen studied by photocurrent transients. J. Electroanal.Chem,1995,381(1-2):39-46.
    [223]Tafalla D, Salvador P, Benito R M. Kinetic approach to the photocurrent transients in water photoelectrolysis at n-TiO2 electrodes. J. Electrochem. Soc., 1990,137:1810-1815.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700