用户名: 密码: 验证码:
脉冲激光沉积法制备β-FeSi_2半导体薄膜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体β-FeSi_2是一种潜在的性能优良的发光、光电、热电、太阳能电池材料,它可用于制作薄膜光电器件、薄膜太阳能电池、热电器件、磁性半导体器件。β-FeSi_2也是一种环保型半导体材料,其从制造、使用和废弃都可以不对生态造成破坏。论文首先综述了β-FeSi_2的基本性能、应用前景、常用的制备方法及国内外研究现状;本学位论文是围绕脉冲激光沉积法制备β-FeSi_2薄膜而开展的一系列的研究工作。
     (1)采用分析纯的Fe粉和Si粉为原料合成了FeSi_2合金,研究了硅粉和铁粉合成FeSi_2的动力学过程。
     (2)研究了飞秒激光作用在FeSi_2合金靶、Bi_4Ti_3O_(12)陶瓷靶、Cu单质靶上等离子体羽的一般规律;研究了飞秒激光作用产生的等离子体的传输规律。
     (3)将飞秒脉冲激光沉积法(fsPLD, femtosecond Pulse Laser Deposition)引入到β-FeSi_2薄膜的制备工艺中,并与准分子(excimer)激光沉积法进行了比较,得到了脉冲激光沉积β-FeSi_2薄膜的适宜条件;采用飞秒脉冲激光沉积法在Si(100)、Si(111)衬底上制备了单相均匀连续的β-FeSi_2薄膜,有效的解决了传统脉冲激光沉积法中产生大量微米级的微滴的技术缺陷。
     (4)研究了fsPLD在沉积β-FeSi_2薄膜过程中,在不同的衬底上、不同的沉积温度和退火温度下,β-FeSi_2薄膜的生长规律。研究了β-FeSi_2/Si薄膜的生长和Si衬底取向之间的关联性。
     (5)采用fsPLD +固相反应法(RDE, Solid-state Reaction Epitaxy)在Si(100)和Si(111)衬底上制备了β-FeSi_2薄膜,这是脉冲激光沉积β-FeSi_2薄膜的一种新的尝试。
     (6)采用X射线衍射仪(XRD, X-Ray Diffraction)、扫描探针显微镜(SPM, Scan Probe Microscope)、场扫描电镜(FSEM, Field Scan Electron Microscope)、能谱仪(EDS, Energy-Dispersive X-Ray Spectroscopy)、显微激光拉曼光谱仪(MRS, Micro Raman spectrophotometer)、背散射(EBSD, Electron Back Scattering Diffraction)、高分辨透射电镜(HRTEM, High Resolution Transmission Electron Microscopy)等仪器研究了薄膜的结构、组分、表面形貌;采用紫外可见光光谱仪(UV-VIS-NIR spectrophotometer)、傅立叶红外光谱仪(FTIR,Fourier- Transform Infrared Spectrophotometer)研究了薄膜的光学性质;在室温下观察到了β-FeSi_2薄膜在1.53μm的光致发光;薄膜的直接能隙约为0.85eV。
     (7)将在500℃的温度下沉积并保温5 h的β-FeSi_2/Si(100)薄膜制作成霍尔元件,在多功能物性测量系统(PPMS, Physical Properties Measurement System)中测得该样品的电阻率ρ1为8.28×10-3 ?cm,霍耳系数RH=4.3×102 m3/coul,该薄膜样品为P型半导体。在500℃的温度下沉积并保温5 h的β-FeSi_2/Si(100)和β-FeSi_2/Si(111)薄膜样品的I-V特性曲线观察到0.22 V和0.25 V光生伏特。
     (8)采用飞秒脉冲激光沉积在Si衬底上制备了多晶钛酸铋铁电薄膜。在室温下的制备的Bi_4Ti_3O_(12)薄膜呈高c轴取向的;衬底温度为500℃的温度时,Bi_4Ti_3O_(12)薄膜呈高a轴取向的。测量了所制备的Bi_4Ti_3O_(12)薄膜铁电特性和I-V特性;通过建立一个分布参数电路模型讨论了铁电特性和I-V特性曲线之间的关联性。
The semiconducting low temperature phase of iron disilicide, Orthorhombic,β-FeSi_2 has attracted strong technological interest, since it is a promising material for silicon based optoelectronics, it could be grown epitaxially on Si substrates and a direct bandgap of about 0.87eV; its photo- and electroluminescence are well matched to the transmission window of optical silica fibers at 1.55μm. And it is a potential application for active component applications such as in light detectors, near-infrared sources, solar cell material and thermoelectric material.β-FeSi_2 has other excellent features, such as the rich abundance of its constituents in natural resources and its no toxicity.
     (1) A review of the investigation of synthesize ofβ-FeSi_2 thin films and its characteristic were present;And a summarization about pulsed laser deposition process (PLD) was present also.
     (2) The principle of pulsed laser deposition process were introduced, some experiment results and its discussion were present.
     (3) Iron powders and silicon powders with analytical pure, were used as the origin materials to synthesize a FeSi_2 alloy target by a standard ceramics sintered process. The main ingredient in the alloy target wasα-FeSi_2.
     (4) The even single phaseβ-FeSi_2 thin films were gained by fsPLD below 400℃, and the proper temperature of nsPLD is about 500℃; theβ-FeSi_2 thin films prepared by fsPLD were free of micro drop; the deposition efficiency at unit average laser power in the process of depositingβ-FeSi_2 thin films, the fsPLD system was 1000 times of nsPLD system.
     (5) X-ray Diffraction (XRD), Field Scanning Electron Microscopy (FSEM), Scanning Probe Microscopy (SPM), Electron Back Scattered Diffraction pattern (EBSD), High Resolution Transmission Electron Microscopy (HRTEM) were used to characterize the structure, composition, and properties of theβ-FeSi_2 films.
     (6) Fourier-Transform Raman Infrared Spectroscopy (FTRIS), UV-VIS-NIR spectrophotometer and Raman microscope spectroscopy were used to characterize the optical properties of theβ-FeSi_2 films; the photoluminescence from the grown single phaseβ-FeSi_2/Si thin film at a wavelength of 1.53μm was observed at room temperature (20°C). Normal incidence spectral transmittance and reflectance data indicate a minimum, direct energy gap of 0.85 eV. The two most intense lines of Raman scattering peaked at 181.3 cm-1 and 235.5 cm-1 for the film on fused quartz, but at 191.2 cm-1 and 243.8 cm-1 for the film on Si (100), were observed. 8 Raman peaks ofβ-FeSi_2/Si at 192.9 cm-1, 243.9 cm-1 and some points were observed by a Raman microscope with 514.5nm argon laser.
     (7) One way to manufacture Hall cell was introduced, and a Hall cell based onβ-FeSi_2/Si (100) thin film was finished, which was deposited and sintered at 500℃for 5 hours; the resistance ratio (ρ) and Hall coefficient (RH) were measured to be 8.28×10-3 cm and 4.3×10~2 cm~3/coul by a PPMS (Physical Properties Measurement System), respectively. And more, another simple way for Hall coefficient measurement given matched results, also. The I -V characteristic curves ofβ-FeSi_2/Si (100) andβ-FeSi_2/Si (111) deposited at 500℃were measured by Keithley 2400 with a solar simulator; the photo voltage of the configuration forβ-FeSi_2/Si (100) andβ-FeSi_2/Si (111) were 0.22V and 0.25V, respectively.
     (8) The Synthesize of the polycrystalline Bi_4Ti_3O_(12) thin films by femtosecond laser deposition on Si (111) wafers were present. The Bi_4Ti_3O_(12) thin film deposited at room temperature (20℃) was highly c-axis-oriented; but the film deposited at 500℃was highly a-axis-oriented. A circuit with distributed constants of Bi_4Ti_3O_(12)/Si was introduced to interpret the relationship between the I-V characteristic curve and the Ferroelectric hysteresis loop of Bi_4Ti_3O_(12) deposited on Si.
引文
[1] David. A. B. Miller. Silicon sees the light[J]. Nature, 1995, 378(6554): 238-238
    [2] H. Ennen, J. Schneider, G. Pomrenke et al. 1.54-μm luminescence of erbium-implanted III-V semiconductors and silicon[J]. Appl. Phys. Lett., 1983, 43(10): 943-945
    [3] H. Ennen, G. Pomrenke, A. Axmann, et al. 1.54μm electroluminescence of erbium doped silicon grown by molecular beam epitaxy[J]. Appl. Phys. Lett., 1985, 46(4): 381-383
    [4] S. Coffa, C. Franzo, F. Priolo, et al. Temperature dependence and quenching processes of the intra-4f luminescence of Er in crystalline Si[J]. Phys. Rev. B, 1994, 49(): 16313-16320
    [5] David. A. B. Miller. Silicon integrated circuits shine[J]. Nature, 1996, 384(6607): 307-308
    [6]王启明.突破间带局限创新Si基激光器[J].物理, 2004, 33(5): 311-314
    [7] M. C. Bost, J. E. Mahan. Optical properties of semiconducting iron disilicide thin films[J]. J. Appl. Phys., 1985, 58(7): 2696-2703
    [8] M. C. Bost, J. E. Mahan. A clarification of the index of refraction of beta-iron disilicide [J]. J. Appl. Phys., 1988, 64(4): 2034-2037
    [9] C. A. Dimitriadis. Electrical properties ofβ-FeSi2/Si heterojunctions[J]. J. Appl. Phys., 1991, 70(10): 5423-5426
    [10] C. A. Dimitriadis, J. H. Werner, S. Logothetidis et al. Electronic properties of semiconducting FeSi2 films[J]. J. Appl. Phys., 1990, 68(4):1726-1734
    [11] E. Arushanov, E.Bucher, Ch.Kloc et al. Photoconductivity in n-typeβ-FeSi2 single crystals [J]. Phys. Rev. B, 1995, 52(1):20–23
    [12] H. Katsumata, Y. Makita, N. Kobayashi, et al. Optical absorption and photo- luminescence studies ofβ-FeSi2 prepared by heavy implantation of Fe+ ions into Si[J]. J. Appl. Phys., 1996, 80(10): 5955-5962
    [13] M. G. Grimaldi, S. Coffa, C. Spinella, et al. Correlation between structural and optical properties of ion beam synthesizedβ-FeSi2 precipitates in Si[J]. J. Lumin., 1998, 80(1-4): 467-471
    [14] T. Suemasu, Y. Iikura, K. Takakura, et al. Optimum annealing condition for 1.5μm photoluminescence fromβ-FeSi2 balls grown by reactive deposition epitaxy and embedded in Si crystal[J]. J. Lumin., 2000, 87-89(1): 528-531
    [15] N. E. Christensen. Electronic structure ofβ-FeSi2[J]. Phys. Rev. B, 1990, 42(11): 7148-7153
    [16]田上尚男,牧田雄之助.薄膜用新素材開発に関する研究[J].電子技術綜合研究所學報, 2001, 64(9): 85-87
    [17]李延春,孙力玲,曹立民等. FeSi2单晶化学气相生长[J].中国科学A,2002, 32(10): 907-917
    [18] R. Wandji, Y. Dusausoy, J. Protas, B. Roques. Preparation and study of single crystallineβ-FeSi2[J], Sciences Chimiques C, 1968, 267(23): 1587-590
    [19] J. Ouvrard, R. Wandji and B. Roques. Contribution des réactions chimiques de transportàl'étu e structurale des siliciures de fer[J]. J. Cryst. Growth, 1972, 13-14(1): 406-409
    [20] E. Arushanov, CH. Kloc, E. Bucher. Impurity band in p-typeβ-FeSi2[J]. Phys. Rev. B, 1994, 50(4): 2653-2656
    [21] CH. Kloc, E. Arushanov, M. Wendl, et al. Preparation and properties of FeSi,α-FeSi2 andβ-FeSi2 single crystals[J]. J. Alloys and Compound, 1995, 219(1-2): 93-96
    [22] A. Behr, L. Ivanenko, H. Vinzelberg, et al. Single crystal growth of non- stoichiometricβ-FeSi2 by chemical transport reaction[J]. Thin Solid Films, 2001, 381(2): 276-281
    [23] K. Irmsher, W. Gehlhoff, Y. Tomm, et al. Iron group impurities inβ-FeSi2 studied by EPR[J]. Phys. Rev. B, 1997, 55(7): 4417-4425.
    [24] Y. Tomm, L. Ivaneko, K. Irmsher, et al. Effects of doping on the electronic properties of semiconducting iron disilicide[J]. Mater. Sci. Eng. B, 1996, 37(1-3): 215-218
    [25] H. Udono, S. Takaku, I. Kikuma. Crystal growth ofβ-FeSi2 by temperature gradient solution growth method using Zn solvent[J]. J. Crystal Growth, 2002, 237-239(3): 1971–1975
    [26] Y. Gao, S. P. Wong, W. Y. Cheung, et al. Transmission electron microscopy observation of high-temperatureγ-FeSi2 precipitates formed in Si by iron implantation using a metal vapor vacuum arc ion source[J]. Appl. Phys. Lett., 2003, 83(4): 638-640
    [27] J. Alvarez, J. J. Hinarejos, E. G. Michel, et al. Electronic structure of iron silicides grown on Si (100) determined by photoelectron spectroscopies[J]. Phys. Rev. B, 1992, 45(24): 14042-14051
    [28] L. Martinelli, E. Grilli, M. Guzzi, et al. Room-temperature electroluminescence of ion-beam-synthesizedβ-FeSi2 precipitates in silicon[J]. Appl. Phys. Lett., 2003, 83(4): 794-796
    [29] S. Jin, X. N. Li, Z. Zhang, et al. Ion beam syntheses and microstructure studies of a new FeSi2 phase[J]. J. Appl. Phys., 1996, 80(6): 3306-3309
    [30] Nishida. Study of Semiconductor-to-Metal Transition in Mn-Doped FeSi2[J]. Phys. Rev. B, 1973, 7(6): 2710-2713
    [31] Z. Yang, K. P. Homewood, M. S. Finney et al., Optical absorption study of ion beam synthesized polycrystalline semiconducting FeSi2 [J] J. Appl. Phys., 1995, 78(3): 1958-1963
    [32] M. Sugiyama, Y. Maeda. Microstructure characterization of ion-beam synthesizedβ-FeSi2 phase by transmission electron microscopy[J]. Thin Solid Films, 2001, 381(2): 225-230
    [33] Tavares, H. Bender, K. Meax. Transmission electron microscopy characterization of ion beam synthesised FeSi2 layers[J]. Thin Solid Films, 1996, 277(1-2): 90-97
    [34] T. Arakawa, G. Shao, S. Makiuchi,et al. TEM observation ofβ-FeSi2 (110), (101)/ Si (111) layers grown by reactive deposition epitaxy in the presence of a Sb flux[J]. J. Crystal Growth, 2002, 237-239(1): 249-53
    [35] T. Koga, A. Bright, T. Suzuki, et al. Growth ofβ-FeSi2 and FeSi layers by reactive deposition using Sb-related intermetallic compounds[J]. Thin Solid Films, 2000, 369(1-2): 248-252
    [36] T. Suemasu, Y. Negishi, K. Takakura et al. Influence of Si growth temperature for embeddingβ-FeSi2 and resultant strain inβ-FeSi2 on light emission from p-Si/β-FeSi2 particles/n-Si light-emitting diodes[J]. Appl. Phys. Lett., 2001, 79(12):1804-1806
    [37] T. Suemasu, T. Fujii, M. Tanaka, et al. Fabrication of p-Si/β-FeSi2 balls/n-Si structures by MBE and their electrical and optical properties[J]. J. Lumin., 1999, 80(1-4): 473-477
    [38] M. G. Grimaldi, P. Baeri, C. Spinella, et al. liquid phase epitaxy of cubic FeSi2 on Si(111) induced by pulsed laser irradiation[J]. Appl. Phys. Lett., 1992, 60(9): 1132-1134
    [39] Z. Liu, M. Okoshi, M. Hanabusa. Formation ofβ-FeSi2 films by pulsed laser deposition using iron target[J]. J. Vac. Sci. Technol. A, 1999, 17(2):619 - 623
    [40] T. Yoshitake, T. Nagamoto, K. Nagayama. Low temperature growth ofβ-FeSi2 thin films on Si (100) by pulsed laser deposition[J]. Mater. Sci. Engine. B, 2000, 72(2-3): 124-127
    [41] S. Komuro, T. Katsumata, T. Morikawa, et al. Formation ofβ-FeSi2 thin films using laser ablation[J], J. Crystal Growth, 2002, 237-239(3): 1961-1965
    [42] T. Yoshitake, G. Shiraishi, K. Nagayama. Elimination of droplets using a vane velocity filter for pulsed laser ablation ofβ-FeSi2[J]. Appl. Surf. Sci., 2002, 197-198(1): 379-383
    [43] T. Yoshitake, T.Nagamoto, K.Nagayama. Microstructure ofβ-FeSi2 thin films prepared by pulsed laser deposition[J]. Thin Solid Films, 2001, 381(2):236-243
    [44] T. Yoshitake, M. Yatabe, M. Itakura, et al. Semiconducting nanocrystalline iron disilicide thin films prepared by pulsed-laser ablation[J], Appl. Phys. Lett., 2003, 83(15):3057-3059
    [45] R. I. Batalov, R. M. Bayazitov, E. I. Terukov, et al. A pulsed synthesis ofβ-FeSi2 layers on silicon implanted with Fe+ ions[J]. SEMICONDUCTORS, 2001, 35(11): 1263-1269
    [46] C. Stuhlmann, J. Schmidt, and H. lbach. Semiconducting iron disilicide films on Si(III): A high resolution electronenergy loss spectroscopy study[J]. J. Appl. phys., 1992, 72(12):5905-5912
    [47] H. P. Geserich, S. K. Sharma, W. A. Theiner. Some Structural, Electrical and Optical Investigations on a New Amorphous Material: FeSi2[J]. Philos. Mag., 1973, 27(3): 1001-1007
    [48] K. N. Mason. Growth and Characterization of Transition Metal Silicides[J]. Prog.Cryst. Growth Charact., 1979, 44 (2): 269-307
    [49] K. Okajima, C. Wen, M. Ihara, et al. Optical and Electrical Properties ofβ-FeSi2/Si,β-FeSi2/InP Heterojunction Prepared by RF-Sputtering Deposition[J]. Jpn. J. Appl. Phys., 1999, 38(2A): 781-786
    [50] D. Leong, M. Harry, K. J. Reeson, et al. silicon/iron-disilicide light emitting diode operating at a wavelength of 1.5μm[J]. Nature, 1997, 387(6634): 686-688
    [51] D. N. Leong, M. A. Harry, K. J. Reeson et al. On the origin of the 1.5μm luminescence in ion beam synthesized ?-FeSi2[J]. Appl. Phys. Lett., 1996, 68(12): 1649-1650
    [52] S. Chu, T. Hirohada, K. Nakajima, et al. Room-Temperature 1.56μm Electroluminescence of Highly Orientedβ-FeSi2/Si Single Heterojunction Prepared by Magnetron-Sputtering Deposition[J]. Jpn. J. Appl. Phys., 2002, 42(11A): L1200-L1202
    [53] T. Sunohara, K. Kobayashi, T. Suemasu. Epitaxial growth and characterization of Si-based light-emitting Si/β-FeSi2 film/Si double heterostructures on Si(001) substrates by molecular beam epitaxy[J]. Thin Solid Films, 2006, 508(1-2): 371-375
    [54] T. Suemasu, T. Fujii, K. Takakura, et al. Dependence of photoluminescence fromβ-FeSi2 and induced deep levels in Si on the size ofβ-FeSi2 balls embedded in Si crystals[J]. Thin Solid Films, 2001, 381(2):209-213
    [55] U. Birkholz, J. Schelm. Mechanism of electrical conduction in beta-FeSi2[J]. Phys. Status Solidi, 1968, 27(1):413-425
    [56] R. I. Batalov, R. M. Bayazitov, B. A. Andreev, et al. Photoluminescence at 1.5μm from Single-Crystal Silicon Layers Subjected to Mechanical Treatment[J]. Semiconductors, 2003, 37( 12):1380-1382
    [57] T. SUEMASU, T. FUJII, Y. IIKURA, et al. Photoluminescence from reactive deposition epitaxy (RDE) grownβ-FeSi2 balls embedded in Si crystals[J]. Jpn. J. Appl. Phys., 1998, 37(12B):L1513-L1516
    [58] L. Martinelli, E. Grilli, M. Guzzi, et al. Room-temperature electroluminescence of ion beam synthesizedβ-FeSi2 precipitates in silicon[J]. Appl. Phys. Lett., 2003, 83(4):794-796
    [59] S. H. Bae, S. Y. Lee, H. Y. Kim, S. Im. Luminescence properties of Si nanocrystalsfabricated on Si substrate by laser deposition[J]. Optical Materials, 2001, 17(1-2): 87-90
    [60] M. Milosavljevic, S.Dhar, P. Schaaf, et al. Direct synthesis ofβ-FeSi2 by ion beammixing of Fe/Si bilayers[J]. Appl. Phys. A, 2000, 71(1): 43-45
    [61] C. A. Dimitriadis, J. H. Werner. Growth mechanism and morphology of semiconducting FeSi2 films[J]. J. Appl. phys., 1990, 68(1): 93-96
    [62] C. Giannini, S. Lagomarsino, F. Scarinci, and P. Castrucci. Nature of the band gap of polycrystallineβ-FeSi2 films[J]. Phys. Rev. B, 1992, 45(15): 8822-8824
    [63] S. Eisebitt, J.-E. Rubensson, M. Nicodemus, et al. Electronic structure of buriedα-FeSi2 andβ-FeSi2 layers: Soft-x-ray-emission and -absorption studies compared to band-structure calculations[J]. Phys. Rev. B, 1994, 50(24):18330-18340
    [64] A. B. Filonov, D. B. Migas, V. L. Shaposhnikov, et al. Electronic and related properties of crystalline semiconducting iron disilicide[J]. J. Appl. Phys., 1996, 79 (10): 7708-7712
    [65] K. Lefki, P. Muret, E. Bustarret, et al. Infrared and Raman characterization of beta iron silicide[J]. Sol. State. comm., 1991, 80(10): 791-795
    [66] G. Guizzetti, F. Marabelli, M. Patrini, et al. Measurement and simulation of anisotropy in the infrared and Raman spectra ofΒ-FeSi2 single crystals[J]. Phys. Rev. B., 1997, 55(21): 14290-14297
    [67] R. M. Bayazitov, R. I. Batalov, E. I. Terukov, et al. X-ray and Luminescent Analysis of Finely Dispersedβ-FeSi2 Films Formed in Si by Pulsed Ion-Beam Treatment[J]. Phys. Solid State, 2001, 43(9): 1633-1636
    [68] A. G. Birdwell, R. Glosser, D. N. Leong and K. P. Homewood Raman investigation of ion beam synthesizedβ-FeSi2[J]. J. Appl. Phys., 2001, 89(2): 965-972
    [69] A. Narazaki, T. Sato, Y. Kawaguchi and H. Niino. Room-temperature preparation ofβ-FeSi2 microprecipitates by the KrF excimer laser ablation of an iron disilicide alloy target[J]. Appl. Phys. Lett., 2003, 83(15): 3078-3080
    [70] B. Schuller, R. Carius, S. Mantl. Modifications ofβ-FeSi2 precipitate layers in silicon by hydrogen Implantation [J]. Microelectronic Engineering, 2001,55(1-4): 219-225
    [71] Y. Maeda, K. Umezawaa, Y. Hayashi, et al. Raman spectroscopic study of ion-beam synthesized polycrystallineβ-FeSi2 on Si (100)[J]. Thin Solid Films, 2001, 381(2):219-224
    [72] Y. Maeda, H. Udono, Y. Terai. Raman spectra forβ-FeSi2 bulk crystals[J]. Thin Solid Films, 2004, 461(1): 165-170
    [73] L. Wang, L. Qin, Y. Zheng, et al. Optical transition properties ofβ-FeSi2 film[J]. Appl. Phys. Lett., 1994, 65(24): 3105-3108
    [74] L. Wang, C. Lin, Q. Shen, et al. Reactive Deposition epitaxial growth ofβ-FeSi2 film on Si (111): in situ observation by reflective high energy electron diffraction[J]. Appl. Phys. Lett., 1995, 66(25): 3453-3456
    [75] X. D. Chen, L. W. Wang, Q. W. Shen, et al. Characterization of FeSix prepared by co-deposition onβ-FeSi2 template[J]. Appl. Phys. Lett., 1996, 68(20): 2858-2861
    [76] L. W. Wang, M. Ostling, Kai Yang, et al. Optical transition inβ-FeSi2 film[J]. Phys. Rev. B, 1996, 54(16): 11126-11128
    [77] L. Lin, L. W. Wang, X. D. Chen. Structural characterization of co-deposition growthβ-FeSi2 film[J]. Jpn. J. Appl. Phys., 1998, 37(2): 622-626
    [78]陈向东,王连卫,林贤等.退火条件对β—FeSi2形成的影响[J].半导体学报, 1995, 16(10):794-797
    [79]王连卫,沈勤我,林贤等. FeSi2/SIMOX–一种新结构的光电子材料[J].半导体学报, 1996, 17(4): 261-264
    [80]林成鲁,王连卫,陈向东等.硅上β-FeSi2的超高真空镀膜外延及其光学性质研究[J].光电子·激光, 2000, 11(3): 329-330
    [81]姚振钰,任治璋,王向明等.用质量分离的低能离子束外延法生长β-FeSi2半导体外延膜的初步研究[J].半导体学报, 1992, 13(4) 518-521
    [82]李慧,马辉,丁维清等. Si(111)衬底上IBE法外延生长薄膜的研究[J].半导体学报, 1997, 18(4): 264-269
    [83]李晓娜,聂冬,董闯.碳掺杂β-FeSi2薄膜的电子显微学研究[J].电子显微学报, 2002, 21(1): 43-51
    [84]聂冬,李晓娜,董闯.β-FeSi2半导体薄膜与Si基体取向关系的研究[J].材料热处理学报, 2002, 23(3): 59-64
    [85]董闯,马腾才,金星等.离子注入合成β-FeSi2薄膜的显微结构[J].物理学报, 2002,51(1):115-124
    [86]潘志军,张澜庭,吴建生.掺杂半导体β-FeSi2电子结构及几何结构第一性原理研究[J].物理学报, 2005, 54(11): 5308-5313
    [87]李成,末益崇,长谷川文夫.电致发光谱测量β-FeSi2/Si异质结载流子限制(英文)[J].半导体学报, 2005, 25(3): 230-233
    [88]李伟文,赵新兵,周邦昌等.掺N的β-FeSi2基热电材料电学性能的研究[J].有色金属, 2002, 54(3): 9-11
    [89]周芸,周兆,沈容.机械合金化制备β-FeSi2热电材料的研究[J].粉末冶金技术, 2004, 22(4):228-231
    [90] J. Perrie`re, E. Millon, W. Seiler et al. Comparison between ZnO films grown by femtosecond and nanosecond laser ablation[J]. J. Appl. Phys., 2002, 91(2): 690-696
    [91] Z. Zhang, P. A. VanRompay, J. A. Nees et al. Nitride film deposition by femto- second and nanosecond laser ablation in low-pressure nitrogen discharge gas[J]. Appl. Surf. Sci., 2000, 154-155(1): 165-171
    [92] P. Lu, Y. Zhou, Q. Zheng, et al. Single-phaseβ-FeSi2 thin films prepared on Si wafer by femtosecond laser ablation and its photoluminescence at room temperature[J]. Phys. Lett. A, 2006, 350(3-4): 293-296
    [93] ZHOU You-Hua(周幼华), YANG Guang(杨光), ZHANG Zhi-Hua(张志华), et al. Optical characterization ofβ-FeSi2 thin films prepared by femtosecond laser ablation[J]. Chin. Phys. Lett., 2007, 24(2): 563-566
    [94]周幼华,陆培祥,龙华等.脉冲激光沉积β-FeSi2/Si(111)薄膜的工艺条件研究[J].中国激光, 2006, 33(9): 1277-1281
    [95]周幼华,陆培祥,杨光等.飞秒脉冲激光沉积β-FeSi2/Si(111)薄膜及其光学性质研究[J].无机材料学报, 2007, 22(3): 731-735
    [96] L.埃克托瓦.薄膜物理学[M]. (第1版).北京:科学出版社, 1986:42-166
    [97] S. M. Metev and V. P. Veiko. Laser Assisted Microtechnology [M]. Berlin: Heidelberg, Springer, 1994:120-180
    [98] D. B. Chrisey and G.K. Hubler. Pulsed Laser Deposition of Thin Film [M]. New York:John Wiley & Sons, 1994:220-240
    [99]郑启光.激光与物质相互作用[M]. (第1版).武汉:华中理工大学出版社, 1995: 228-234
    [100]郑启光.激光先进制造技术[M]. (第1版).武汉:华中理工大学出版社, 2002: 212-236
    [101] E. Millon, O. Albert, J. C. Loulergue et al. Growth of heteroepitaxial ZnO thin films by femtosecond pulsed-laser deposition[J]. J. Appl. Phys., 2000, 88(11): 6937-6939
    [102] M. Amiotti, G. Guizzetti, F. Marabelli, et al. Optical properties of Pd2Si[J]. Phys. Rev. B, 1992, 45(23):13285-13292
    [103]郭奕玲,沈慧君.物理学史[M]. (第1版).北京:清华大学出版社, 1993: 376-401
    [104]薛凤家.诺贝尔物理学奖百年回顾[M]. (第1版).北京:国防工业出版社, 2003: 181-185
    [105]徐至展,杨晓东, L. Vigroux, F. Saviot等. 514/46fs级台式钛宝石超短超强激光系统[J].中国科学A, 2000, 30(1): 63-69
    [106]周炳琨,高以智,陈家骅等.激光原理[M]. (第1版).北京:国防工业出版社, 1995: 243-250
    [107]刘翠青,程兆谷,李现勤等.新型脉冲CO2激光器参数的测量[J].中国激光, 2001, 28(8): 725-728
    [108] G. Cerullo, S. De Silvestri, V. Magni, et al. Resonators for Kerr-lens mode-locked femtosecond Ti: sapphire lasers[J]. Opt. Lett., 1994, 19(11): 807-809
    [109]周岳亮.脉冲激光淀积高温超导薄膜[J].物理, 1998, 27(3): 167-173
    [110] Y. Zhang, H. Gu S. Iijima. Single-wall carbon nanotubes synthesized by laser ablation in a nitrogen atmosphere[J]. Appl. Phys. Lett., 1998, 73(26): 3827-3829
    [111] B. Geohegan, A. A. Puretzky, D. J. Rader. Nanoparticle formation and transport during pulsed laser deposition of YBa2Cu3O7-d[J]. Appl. Phys. Lett., 1999, 74(25): 3788-3790
    [112] T. J. Goodwin, V. J. Leppert, S. H. Risbud, et al. Synthesis of gallium nitride quantum dots through reactive laser ablation[J]. Appl. Phys. Lett., 1997, 70(23): 3122-3124
    [113] R. A. Neifeld, S. Gunapala, G. Liang, et al. Systematics of thin films formed by excimer laser ablation: Results on SmBa2Cu3O7[J]. Appl, Phys, lett., 1988, 53(8):703-704
    [114] A. Namiki, T. Kawai, K. Ichige. Angle-resolved time-of-flight spectra of neutral particles desorbed from laser irradiated CdS[J]. Surf. Sci., 1986, 166(1): 129-140
    [115] R. K. Singh. Fundamental process during pulsed-laser deposition of thin films[J]. Proc. SPIE, 2002, 2045(1):10-27
    [116]吴自勤,王兵.薄膜生长[M]. (第1版).北京:科学出版社, 2001:170-240
    [117]李恒德,肖纪美.材料表面与界面[M]. (第1版).北京:清华大学出版社, 1990:51-58
    [118] M. Ozegowski, K.Meteva, S. Metev, et al. Pulsed laser deposition of multi- component metal and oxide films[J]. Appl. Surf. Sci., 1999, 138(1):68-74
    [119] B.П.魏柯, C. M.麦捷夫著,吴国安,邓存熙译.激光工艺与微电子技术[M]. (第1版).北京:国防工业出版社, 1997: 366-380
    [120]李晓溪,贾天卿,冯东海等.超短脉冲激光照射下氧化铝的烧蚀机理[J].物理学报, 2004, 53(7): 2154-2158
    [121]黄庆举,方尔梯.脉冲激光烧蚀金属Cu产生电子和离子发射研究[J].激光与红外, 1999, 29(5): 285-287
    [122] A. Simon, Z. Kántor, I. Rajta, et al. Micro-RBS as a technique for the determination of the surface topography of Bi film prepared by pulsed laser deposition[J]. Nucl. Instr. Meth. B., 2001, 181(1): 360-366
    [123]周岳亮,赵维义.脉冲激光淀积高温超导薄膜的几个技术问题[J].低温物理学, 1999, 21(1):18-24
    [124] B. Holzapfel, B. Roas, L. Schultz, et al. Off-axis laser deposition of YBa2Cu3O7–δthin films[J]. Appl. Phys. Lett., 1992, 61(26):3178-3180
    [125] T. Venkatesan, D. B. Chrisey, G. K. Hubler. Pulsed Laser Deposition of Thin Films[M]. New York: Wiley, 1994:315-320
    [126]戢明,宋全胜,曾晓雁.脉冲激光沉积( PLD)薄膜技术的研究现状与展望[J].真空科学与技术, 2003, 23(1):22-26
    [127] Millon, O. Albert, J. C. Loulergue, et al. Growth of heteroepitaxial ZnO thin films by femtosecond pulsed-laser deposition[J]. J. Appl. Phys., 2000, 88(11):6937-6839
    [128] J. E. Dominguez, X. Q. Pan, L. Fu, et al. Epitaxial SnO2 thin films grown on 1012 Sapphire by femtosecond pulsed laser deposition[J]. J. Appl. Phys., 2002, 91(3):1060-1065
    [129] A. Qian, V. Craciun, R. K. Singh, S. D. Dutta et al. High intensity femtosecond laser deposition of diamond-like carbonthin films[J]. J. Appl. Phys., 1999, 86(4):2281-2290
    [130]周幼华,郑启光,杨光等.飞秒脉冲激光沉积Si基a轴择优取向的钛酸铋铁电薄膜[J].中国激光, 2006, 33(6):832-836
    [131]周幼华,郑启光,杨光等.飞秒脉冲激光沉积Si基a轴取向的钛酸铋铁电薄膜及I-V特性研究[J].无机材料学报, 2006, 21(5):1230-1236
    [132] C. J. Lu, Y. Qiao, Y. J. Qi, et al. Large anisotropy of ferroelectric and dielectric properties for Bi3.15Nd0.85Ti3O12 thin films deposited on Pt/Ti/SiO2/Si[J]. Appl. Phys. Lett., 2005, 87(22): 2229011-2229013
    [133] C. A.皮尔斯[英]硅化学及其应用[M].(第1版).上海:上海教育出版社,1984:13-15
    [134] W. Rozmus, V. T. Tikhonchuk, R. Cauble. A model of ultrashort laser pulse absorption in solid targets[J]. Phys. Plasmas, 1996, 3(1): 360-367
    [135] J. Zweiback and T. Ditmire. Femtosecond laser energy deposition in strongly absorbing cluster gases diagnosed by blast wave trajectory analysis[J]. Phys. Plasmas, 2001, 8(10):4545-4550
    [136] N. Matsumoto, H. Shima, T. Fujii, et al. Organic electroluminescence cells based on thin films deposited by ultraviolet laser ablation[J], Appl. Phys. Lett., 1997, 71(17): 2469-2471
    [137] M. Okoshi, K. Higashikawa, M. Hanabusa. Pulsed laser deposition of ZnO thin films using a femtosecond laser[J]. Appl. Surf. Sci., 2000, 154-155(1): 424-427
    [138] P. Pronko, P. A.VanRompay, Z. Zhang et al. Isotope Enrichment in Laser Ablation Plumes and Commensurately Deposited Thin Films[J]. Phys. Rev. lett., 1999, 83(13): 2596-2599
    [139] Z. Liu, M. Watanabe, M. Hanabusa. Electrical and photovoltaic properties of iron-silicidersilicon heterostructures formed by pulsed laser deposition[J]. Thin Solid Films, 2001, 381(2): 262-266
    [140] A. E. White, K. T. Short, R. C. Dynes, et al. Single-crystal growth of buried CoSi2 layers[J]. Appl. Phys. Lett., 1987, 50(2):95-97
    [141] B. H. Olk, S. M. Yalisove, G. L. Doll. Defect-induced absorption-band-edge values inβ-FeSi2[J]. Phys. Rev. B, 1995, 52(3):1692-1697
    [142] B. Schuller, R. Carius, S. Mantl. Optical and structural properties ofβ-FeSi2 precipitate layers in silicon[J]. J. Appl. Phys., 2003, 94(1):207-211
    [143] M.A. Khashan, A.M. El-Naggar, E. Shaddad. A new method of determining the optical constants of a thin film from its reflectance and transmittance interferograms in a wide spectral range: 0.2-3μm[J]. Opt. Commun., 2000, 178(1):123-132
    [144] O. S.希文斯[英国],尹树百译.固体薄膜的光学性质[M]. (第1版).北京:国防工业出版社, 1965: 97-149
    [145]方俊鑫,陆栋.固体物理学(下)[M]. (第1版).上海:上海科学出版社, 1981:104-105
    [146]程光煦.拉曼布里渊散射-原理及应用[M]. (第1版).北京:科学出版社, 2001:69-107
    [147]刘竟青.新型的激光拉曼光谱系统- inVia[J]现代仪器, 2005, (1):35-38
    [148]田民波,刘德令.薄膜科学与技术手册(上册)[M]. (第1版).北京:机械工业出版社, 1991:10-13
    [149]李恒德,肖纪美.材料表面与界面[M]. (第1版).北京:清华大学出版社, 1990:279-289
    [150]黄春辉,李富友,黄岩宜.光电功能超薄膜[M]. (第1版).北京:北京大学出版社, 2001:151-208
    [151] K.seeger (西德).半导体物理学[M] . (第1版).北京:人民教育出版社,1980:69-79
    [152]方俊鑫,陆栋.固体物理学(下册)[M]. (第1版).上海:上海科学技术出版社, 1981:15-122
    [153]黄昆,谢希德.半导体物理学[M] .(第1版).北京:科学出版社, 1958:93-101
    [154]叶良修.半导体物理学[M]. (第1版).北京:高等教育出版社, 1983:154-218
    [155]吴思诚,王祖铨.近代物理实验[M].(第2版).北京:北京大学出版社, 1995:443-451
    [156]丁慎训,张孔时.物理实验教程—普通物理实验部分[M]. (第1版).北京:清华大学出版社, 1992: 103-106

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700