用户名: 密码: 验证码:
SAR图像配准及变化检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究了合成孔径雷达(Synthetic Aperture Radar,SAR)图像的配准及其变化检测技术。针对SAR系统的成像特点,根据不同成像平台所获取SAR数据的差异,本文首先利用星载SAR数据(日本ALOS卫星)对基于卫星轨道参数的图像概略配准技术进行了分析,利用成像卫星其空间位置的高精度估计,提高了基准图像和重轨图像在方位向上的配准精度。对缺乏高精度平台轨道运行数据的SAR图像,则利用图像中封闭均匀区域特征提取同名特征点,实现对基准图像和待配准图像之间的自动配准。在图像配准的基础上,通过对不同的变化检测量的深入分析,针对经典阈值自动选取方法在稳健性方面的不足,提出一种更加符合SAR图像统计分布的变化检测量及对应的自动阈值选择算法。最后,本文利用运动与变化的关系,将变化检测的思想引入到可移动目标的自动检测,有效地减少了目标检测中出现的虚警。具体而言,作者主要开展了以下几个方面的工作:
     (1)针对星载SAR平台的周期性和平稳性,提出一种椭圆拟合卫星轨道的方法对卫星的空间位置进行精确估计。通过将三维空间中的椭圆卫星轨道投影到二维平面,可以得到三条二维平面中的椭圆曲线,在此基础上,引入针对二维平面中椭圆的直接最小均方椭圆拟合方法(DLS-EFM),实现对椭圆几何参数的估计,从而精确估计ALOS卫星在成像过程中任意给定时刻的空间位置。
     (2)如果只结合ALOS PALSAR平台的成像几何以及成像区域的地理信息,可以实现基准数据和重轨数据在距离向上1-2个像素的概略配准,而方位向上的配准误差则高达20-30个像素。针对该问题,提出利用估计得到的卫星位置,在消除成像时间差的基础上,计算重轨干涉SAR系统的干涉基线,利用基线与目标两次成像之间的几何关系,实现了基准数据和重轨数据在方位向上的概略配准,其配准误差可控制在1个像素之内,从而可显著减少下一步高精度配准的搜索空间,提高配准的效率和准确性,使重轨干涉SAR的准实时应用成为可能。
     (3)SAR图像中均匀区域的提取对于实现SAR图像自动配准十分关键。针对SAR图像中均匀区域的特点,提出一种基于Frost滤波和区域生长的均匀区域提取算法。此外,本文还将基于活动轮廓模型的分割方法引入到封闭均匀区域提取中,有效地实现了SAR图像中背景区域与封闭均匀区域的分离。
     (4)利用SAR图像中已提取的均匀区域,提取区域的特征点,实现SAR图像的自动配准。本文利用封闭区域的周长、面积等区域统计特性构造区域相似度量,进而实现区域之间的匹配,然后利用匹配区域的质心作为同名特征点,实现图像的自动配准。此外,本文提出一种基于多边形拟合和几何哈希理论的封闭区域匹配方法,利用闭合区域中具有代表性的角点,实现封闭均匀区域之间的匹配,然后将匹配角点作为同名特征点对图像进行配准。最后,针对经典配准精度量化评估方法的不足,引入变化检测思想,通过对配准残差数据的统计特性进行分析,实现对配准精度的准量化估计。
     (5)提出一种基于SAR图像统计分布和似然比检验的变化检测量(LLI-CDM)。该变化检测量以SAR图像杂波的Gamma分布为基础,将似然比假设检验引入到变化检测。实验表明,基于该变化检测量所得到的差异图像的直方图特点鲜明:直方图曲线由两部分构成,其中高而窄的尖峰对应于占差异图像绝大部分的非变化像元部分,直方图中低且平的拖尾则代表差异图像中的变化像元部分。直方图尖峰与拖尾之间的过渡点则可看成是将未变化和变化部分分离的最佳阈值。由于变化像元其灰度值的变化量不同,导致拖尾部分不同灰度值变化的直方图随机起伏,即拖尾部分将形成一个直方图振荡区。利用直方图尖峰和拖尾的不同特点,本文提出一种相邻灰度直方图比阈值自动选择算法实现对阈值的自动选取,该阈值选取方法物理意义明确、应用简单稳健,与LLI-CDM的组合相得益彰。
     (6)基于LLI-CDM得到的差异图像中未发生变化像素的灰度值高度集中,在直方图中形成一个高且窄的尖峰,而最佳阈值处于尖峰与拖尾的过渡位置,导致每一灰度级的阈值改变都将引起变化检测结果的显著差异。而SAR变化检测中应用最广的对数比变化检测量(LOG-CDM)常采用KI、EM等阈值选择算法,其阈值的自动选取往往不够准确,与最佳阈值存在显著差异,严重影响变化检测的性能。针对该问题,本文在引入马尔可夫随机场理论的基础上,提出一种融合LLI-CDM和LOG-CDM的变化检测方法,实验结果表明,该方法能够在保持这两种变化检测量的优点的同时弥补各自的不足,显著提高了变化检测的性能。
     (7)拓展了变化检测技术的传统应用范围。针对某些固定场景内的可移动目标,如机场中的飞机目标、港口附近的舰船目标等,本文在引入变化检测技术的基础上,以固定场景的光学图像为先验信息,显著改善了该类可移动目标的检测性能。此外,本文还将变化检测技术引入到可移动目标的鉴别当中,针对CFAR检测后存在的大量虚警,利用相关系数和阈值分离有效鉴别并去除虚警,提高目标检测性能。
This paper mainly focused on the study of registration and change detectiontechniques with synthetic aperture radar (SAR) images. According to the characteristicsof the SAR imaging system and platform, this paper firstly uses the satellite orbit data toregister the reference image and repeat-pass image periodically acquired by ALOSPALSAR (Japan), which improves the registration precision in the azimuth direction.For the SAR images without precise imaging platform orbit data, a registration methodbased on the closed homogenous region extraction is presented. Then, after theregistration of the reference image and the input image, to overcome the shortages ofthe classical change detection measures based on intensity information from images, achange detection measure named LLI-CDM is proposed that is derived from thelikelihood ratio and the hypothesis test based on the Gamma distribution of the SARintensity image. In addition, this paper associates movements and changes andintroduces the change detection techniques into the study of moving target detection,which evidently decreases the false alarms from the traditional CFAR target detectionmethod. The work mainly includes the following aspects.
     (1) Considering the periodicity and stability of space-borne SAR platform, anellipse fitting method is proposed for the estimation of the position of the satellite.Through projecting the3-D ellipse into perpendicular planes, three2-D ellipse can beacquired, which can decrease the number of parameters of the ellipse equation from tento six. Based on the direct least square ellipse fitting method (DLS-EFM), using theestimated geometrical parameters of the ellipse, the position of the satellite at any giventime can be precisely obtained.
     (2) Combined with the imaging parameters of ALOS PALSAR and thegeographical information of the observational region, the reference data and therepeat-pass data can be matched with1-2pixels mis-registration error in the rangedirection, whereas the mis-registration error in the azimuth direction could be20-30pixels. Using the estimated positions of the satellite, the interferometric baseline of thereference data and the repeat-pass data can be acquired through eliminating thedifference of the imaging time. During the estimation of the interferometric baseline,using the geometric relations among the target and the first-pass and repeat-passpositions of the satellite, the registration in the azimuth direction can be obviouslyimproved with only1pixels mis-registration error. Therefore, it decreases the searchspace for the next fine registration, which is essential for the repeat-pass interferometricSAR applications and makes it possible for real-time extensions.
     (3) The extraction of the closed homogeneous regions is crucial for automatic SARimage registration. A method based on Frost filter is proposed to extract the homogeneous regions using the characteristics of SAR images. In addition, the activecontour model based region segmentation is introduced to extract the homogeneousregions, which can accurately separate the homogeneous regions from the background.
     (4) Using the extracted closed homogeneous regions, control points can beacquired and used to realize the automatic SAR image registration. At first, thesimilarity between regions from the reference and input images can be defined with thecombination of region’s perimeter and area, which can be used to find the best matchedregion pairs. After the matching of regions, the centroids of the regions are adopted toregister the images. In addition, a method based on polygonal fitting and geometrichashing theory is presented to match the regions. The points of the matched polygonscan be selected as the tie-points for image registration. At last, through introducing thechange detection techniques, the residual data of the reference image and the registeredimages can be used to make the quantitative evaluation of the mis-registration error.
     (5) A change detection measure named LLI-CDM is proposed, which is based onthe statistical distribution of SAR image and likelihood ratio. This measure is derivedfrom the hypothesis that the SAR clutters follow the Gamma distribution, and then thehypothesis test is introduced to discriminate the changed and unchanged pixels. Theexperiments show that the histogram of the residual image using this change detectionmeasure is composed with two parts, which are corresponded to the change andunchanged pixels, respectively. The high and narrow peak represents the unchangedpixels while the low and flat tail represents the changed pixels of the residual image.The transition point between these two parts can be seemed as the optimum threshold todiscriminate the changed and unchanged pixels. Since the offsets of the changed pixelsare different, the histogram of the tail part forms an oscillating area. Using thedifferentia between the peak and tail, an automatic threshold selection method based onthe adjacent histogram ratio is proposed, which takes a clear physical signification and itis also simple and stable, making the performance of change detection fine with theLLI-CDM.
     (6) The histogram of the residual image acquired from the LLI-CDM forms a veryhigh and narrow peak, which represents the unchanged pixels. The optimum thresholdfor the change detection is at the bottom of the peak, and therefore one gray-level valuechanged of the threshold results in obviously different change detection outcome. Forthe well-known logarithm change detection measure (LOG-CDM), the automaticthreshold selection methods for this measure, such as KI, EM, sometimes cannot obtainthe optimum threshold, making the change detection result unaccepted. Therefore, thispaper introduces the Markov field theory and presents a change detection methodcombining the LLI-CDM and LOG-CDM, which strengths the advantages and avoidsthe shortages of each other. The experimental results validate the performance of thenew method combined with the two change detection measures.
     (7) The applications of the change detection technique has been extended. For themoving targets in a stationary scene, such as the airplanes at the airport, the ships at theharbor, this thesis introduces the change detection technique into the target detection,using the optical image of the stationary scene as the a prior knowledge, whichimproves the performance of moving target detection. In addition, change detectiontechniques can be used in the moving target discrimination. Using the correlationcoefficient and the threshold selecting method, the false alarms can be accuratelyremoved.
引文
[1]匡纲要,高贵,蒋咏梅.合成孔径雷达目标检测理论、算法及应用[M].长沙:国防科学技术大学出版社,2007.
    [2] Franceschetti G., Lanari R. Synthetic aperture radar processing [M],1st ed.Florida: CRC Press LLC,1999.
    [3]李德仁,周月琴,马洪超.卫星雷达干涉测量原理与应用[J].测绘科学,2000,25(1):9-13.
    [4] Oliver C., Quegan S. Understanding synthetic aperture radar images [M],2nded. Raleigh: SciTech Publishing, Inc.,2004.
    [5] Rencz A. N. Remote Sensing for the Earth Sciences [M],3rd ed. vol.3: JohnWiley&Sons, Inc.,1998.
    [6] Schowengerdt R. Remote sensing (models and methods for image processing)
    [M],3rd ed. Arizona: Academic Press,2006.
    [7] Cumming I. G., Wong F. H. Digital processing of synthetic aperture radar data:algorithms and implementation [M]. Norwood: Artech House, Inc.,2005.
    [8]高贵. SAR图像目标ROI自动获取技术研究[D],博士,长沙:国防科学技术大学,2007.
    [9] ERSDAC. PALSAR Reference Guide [M],3rd ed.,2006.
    [10]熊博莅.多时相SAR图像变化检测技术[D],硕士,长沙:国防科学技术大学,2006.
    [11] Goodenough D. G., Chen H., Dyk A. Evaluation of convair-580andsimulated Radarsat-2polarimetric SAR for forest change detection [C]. IEEEInternational Symposium on Geoscience,2006:1788-1791.
    [12] Desclée B., Bogaert P., Defourny P. Object-based method for automaticforest change detection [C]. IEEE International Geoscience and Remote SensingSymposium,2004:3383-3386.
    [13] Jha C. S., Unni N. V. M. Digital change detection of forest conversion of adry tropical Indian forest region [J]. International Journal of Remote Sensing,1994,15(13):2543-2552.
    [14] Bruzzone L., Melgani F. A data fusion approach to unsupervised changedetection [C]. IEEE International Geoscience and Remote Sensing Symposium,2003:1374-1376
    [15] Hoekman D. H., Quinones M. J. Land cover type and biomassclassification using AIRSAR data for evaluation of monitoring scenarios in theColombian Amazon [J]. IEEE Transactions on Geoscience and Remote Sensing,2000,38(2):685-696.
    [16] Hame G., Heiler I., Miguel-Ayanz J. S. An unsupervised change detectionand recognition system for forestry [J]. International Journal of Remote Sensing,1998,19(6):1079-1099.
    [17] Ban Y., Hu H. RADARSAT fine-beam SAR data for land-cover mappingand change detection in the rural-urban fringe of the greater Toronto area [J]. UrbanRemote Sensing Joint Event,2007:1-7.
    [18] Tang F., Prinet V. Computing invariants for structural change detection inurban areas [J]. Urban Remote Sensing Joint Event,2007:1-6.
    [19] Kwon S., Shin S., Kim K. A development of change detection system forurban monitoring [C]. IEEE International Symposium on Geoscience,2006:1508-1511.
    [20] Torres-Vera M. A., Prol-Ledesma R. M., Garcia-Lopez D. Three decadesof land use variations in Mexico City [J]. International Journal of Remote Sensing,2009,30(1):117-138.
    [21]刘直芳,张剑清.城区变化检测的一种方法[J].测绘通报,2001,2:1-2.
    [22] Chi H., Ling F., Wang Q., et al. Urban dynamic change detection usinginterferometric SAR in Southeast China [C]. Proc. Dragon1Programme Final Results(2004-2007), Beijing, China.2008:1-7.
    [23] Raphael K., Rousselin T., Francois F., et al. Change detection for roadcondition mapping based on dry and rainy season VHR Dual-Pol radar imagery overtropical areas.application to Chad [C]. Radar Conference-Surveillance for a SaferWorld,2009:1-3.
    [24] Makkeasorn A., Chang N.-B., Li J. Seasonal change detection of riparianzones with remote sensing images and genetic programming in a semi-arid watershed[J]. Journal of Environmental Management,2009,90:1069-1080.
    [25] Mason D. C., Speck R., Devereux B., et al. Flood detection in urban areasusing TerraSAR-X [J]. IEEE Transaction on Geoscience and Remote Sensing,2010,48(2):882-894.
    [26] Matsuoka M., Yamazaki F. Use of satellite SAR intensity imagery fordetecting building areas damaged due to earthquakes [J]. Earthquake Spectra,2004,20(3):975-994.
    [27] Chini M., Prierdicca N., Emery W. J. Exploiting SAR and VHR opticalimages to quantify damage caused by the2003Bam earthquake [J]. IEEE Transactionson Geoscience and Remote Sensing,2009,47(1):145-152.
    [28]金亚秋,王大芳. ALOS SAR图像2EM-MRF方法自动检2008年5月中国汶川地震区域[J].自然科学进展,2009,19(4):412-420.
    [29] Hong Z., Xiaotao H., Yulin C., et al. Single-channel UWB SAR groundmoving targets detection method using change detection based on single-passsub-aperture images [C]. Synthetic Aperture Radar,2007:266-270.
    [30] Martino G. D., Iodice A., Riccio D., et al. A novel approach for disatermonitoring:fractal models and tools [J]. IEEE Transactions on Geoscience and RemoteSensing,2007,45(6):1559-1570.
    [31] Ali M. A. H. Automatic registration of visible-band and SAR satellite andaerial remotely sensed images [D], Waterloo: University of Waterloo,2003.
    [32] Zou W. Improving the accuracy of image co-registration [D], Hong Kong:The Hong Kong Polytechinc University,2004.
    [33] Bruzzone L., Cossu R. An adaptive approach to reducing registration noiseeffects in unsupervised change detection [J]. IEEE Transaction on Geoscience andRemote Sensing,2003,41(11):2455-2465.
    [34] Dai X., Khorram S. The effects of image misregistration on the accuracy ofremotely sensed change detection [J]. IEEE Transactions on Geoscience and RemoteSensing,1998,36(5):1566-1577.
    [35] Farin D., With P. H. N. d. Misregistration errors in change detectionalgorithms and how to avoid them [C]. IEEE International Conference on ImageProcessing,2005:438-441.
    [36] Radke R. J., Andra S., Al-Kofahi O., et al. Image change detectionalgorithms: a systematic survey [J]. IEEE Transactions on Image Processing,2005,14(3):294-307.
    [37]马建文,田国良,王长耀等.遥感变化检测技术发展综述[J].地球科学发展,2004,19(2):192-196.
    [38]陈富龙,张红,王超. SAR变化检测技术发展综述[J].遥感技术与应用,2007,22(1):109-115.
    [39]高峰.图像配准中的几何特征不确定性建模及匹配方法研究[D],博士,国防科学技术大学,2011.
    [40] Zitova B., Flusser J. Image registration methods: a survey [J]. Image andVision Computing,2003,(21):977-1000.
    [41] Brown L. G. A survey of image registration techinques [J]. ACMComputer Surveys,1992,24(4):325-376.
    [42]吕金建.基于特征的多源遥感图像配准技术研究[D],博士,长沙:国防科学技术大学,2008.
    [43]刘苏钱.基于特征的SAR图像配准方法研究[D],硕士,长沙:国防科学技术大学,2007.
    [44] Alkaabi S., Deravi F. A new approach to corner extraction and matchingfor automated image registration [C]. IEEE Geoscience and Remote SensingSymposium,2005:3517-3521.
    [45]曾庆业.基于小波的特征提取及其在遥感图像配准中的应用[D],博士,北京:中国科学院遥感应用研究所,2004.
    [46] Ho J., Yang M.-H., Rangarajan A., et al. A new affine registrationalgorithm for matching2D point sets [C]. IEEE Workshop on Applications of ComputerVision,2007:1-6.
    [47] Li W., Leung H. A maximum likelihood apporach for image registrationusing control point and intensity [J]. IEEE Transaction on Image Processing,2004,13(8):1115-1127.
    [48] Myronenko A., Song X. Point set registration: coherent point drift [J].IEEE Transaction on Pattern Analysis and Machine Intelligence,2010,32(12):2262-2275.
    [49] Zou W., Li Z., Ding X. Determination of optimum window size for SARimage co-registration with decomposition of auto-correlation [J]. The PhotogrammetricRecord,2007,22(119):238-256.
    [50] Suri S., Reinartz P. Mutual-information-based registration of TerraSAR-Xand Ikonos Imagery in urban areas [J]. IEEE Transaction on Geoscience and RemoteSensing,2010,48(2):939-949.
    [51] Xie H., Pierce L. E., Ulaby F. T. Mutual information based registration ofSAR images [C]. IEEE International Geoscience and Remote Sensing Symposium,2003:4028-4031.
    [52] Lu G., Yan Y., Kou Y., et al. Image registration based on criteria of featurepoint pair mutual information [J]. IET Image Process,2011,5(6):560-566.
    [53]陈涛.图像仿射不变特征提取方法研究[D],博士,长沙:国防科学技术大学,2006.
    [54] Palenichka R. M., Zaremba M. B. Automatic extraction of control pointsfor the registration of optical satellite and LiDAR images [J]. IEEE Transaction onGeoscience and Remote Sensing,2010,48(7):2864-2879.
    [55]邓熠,李智勇,粟毅.仿射不变特征提取算法在遥感影像配准中的应用[J].中国图象图形学报,2009,14(4):615-620.
    [56] Zhang J. A study of automated image registration based on straight linefeatures [C]. Uran Remote Sensing Joint Event,2009:1-5.
    [57]张雍吉,范晋湘,段连飞.基于区域特征的光学图像与SAR图像配准方法[J].合肥学院学报(自然科学版),2008,18(4):37-40.
    [58] Wang J., Pi Y., Cao Z. Level set method for SAR image coregistration [J].IEEE Geoscience and Remote Sensing Letters,2008,5(4):615-619.
    [59]何儒云,王耀南.基于地理坐标参数的SAR图像自动概略配准法[J].湖南大学学报(自然科学版),2006,33(6):59-62.
    [60] Bruzzone L., Cossu R. An unsupervised change detection technique robustto registration noise [C]. IEEE International Geoscience and Remote SensingSymposium,2002:306-308.
    [61]徐丽华,江万寿.顾及配准误差的遥感影像变化检测[J].武汉大学学报(信息科学版),2006,31(8):687-690.
    [62] Frate F. D., Pacifici F., Solimini D. Monitoring urban band coverinrome,Italy,and its changes by single-polarization multitemporal SAR images [J]. IEEEJournal of Selected Topics in Applied Earth Observations and Remote Sensing,2008,1(2):87-97.
    [63] Wei Z., jian G., Jie W. Change detection of concealed targets usingrepeat-pass SAR images [C]. Synthetic Aperture Radar,2007,2007:275-278.
    [64]王广学. UWB SAR叶簇隐蔽目标变化检测技术研究[D],博士,长沙:国防科学技术大学,2011.
    [65] Lu D., Mausel P., Brondizio E., et al. Change detection techniques [J].Internation Journal of Remote Sensing,2004,25(12):2365-2407.
    [66] Fransson H. E. S., Magnusson M., Olsson H., et al. Detection of forestchanges using ALOS PALSAR satellite images [C]. IEEE International Geoscience andRemote Sensing Symposium,2007:2330-2333.
    [67] Singh A. Digital change detection techniques using remotely-sensed data[J]. International Journal of Remote Sensing,1989,10(6):989-1003.
    [68] Touzi R. A review of speckle filtering in the context of estimation theory[J]. IEEE Transaction on Geoscience and Remote Sensing,2002,40(11):2392-2404.
    [69] Bruzzone L., Marconcini M., Wegmüller U., et al. An advanced system forthe automatic classification of multitemporal SAR images [J]. IEEE Transactions onGeoscience and Remote Sensing,2004,42(6):1321-1334.
    [70] Bovolo F., Bruzzone L. A split-based approach to unsupervised changedetection in large-size multitemporal images: application to Tsunami-damageassessment [J]. IEEE Transaction on Geoscience and Remote Sensing,2007,45(6):1658-1670.
    [71] Preiss M., Stacy N. J. S. Coherent change detection:theoretical descriptionand experimental results [R], Defence Science and Technology Organisation, Edinburgh,South Australia,2003.
    [72] Preiss M., Gray D. A., Stacy N. J. S. Detecting scene changes usingsynthetic aperture radar interferometry [J]. IEEE Transactions on Geoscience andRemote Sensing,2006,44(8):2041-2054.
    [73] Williams M. L., Preiss M. Physics-based predictions for coherent changedetection using X-band synthetic aperture radar [J]. EURASIP Journal on AppliedSignal Processing,2005,(20):3243-3258.
    [74] Sansosti E., Berardino P., manunta M., et al. Geometrical SAR imageregistration [J]. IEEE Transaction on Geoscience and Remote Sensing,2006,44(10):2861-2870.
    [75]李德仁.利用遥感影像进行变化检测[J].武汉大学学报(信息科学版),2003,28:7-12.
    [76]钟家强,王润生.基于线特征的多时相遥感图像变化检测[J].国防科技大学学报,2006,28(5):80-83.
    [77]钟家强,王润生.一种基于线特征的道路网变化检测算法[J].遥感学报,2007,11(1):27-32.
    [78]宋野,王宏琦.基于目标检测的SAR图像变化检测方法[J].遥感技术与应用,2004,19(6):466-72.
    [79]方圣辉,佃袁勇,李微.基于边缘特征的变化检测方法研究[J].武汉大学学报(信息科学版),2005,30(2):135-138.
    [80] Chen F., Luo L., Jin Y. Automatic analysis of change detection ofmulti-temporal ERS-2SAR images by using two-threshold EM and MRF algorithms [J].Progress in Natrual Science,2004,14(3):269-275.
    [81] Eriksson L. E. B., Sandberg G., Ulander L. M. H., et al. ALOS PALSARcalibration and validation results from Sweden [C]. IEEE International Geoscience andRemote Sensing Symposium,2007:1589-11592.
    [82] Rosenqvist A., Shimada M., Ito N., et al. ALOS PALSAR: A PathfinderMission for Global-Scale Monitoring of the Environment [J]. IEEE Transactions onGeoscience and Remote Sensing,2007,45(11):3307-3316.
    [83] Papathanassiou K. P., Cloude S. R. Single-baseline polarimetric SARinterferometry [J]. IEEE Transactions on Geoscience and Remote Sensing,2001,39(11):2352-2363.
    [84] Xiong B., Chen J. M., Kuang G., et al. Estimation of the repeat-pass ALOSPALSAR interferometric baseline through direct least square ellipse fitting [J]. IEEETransaction on Geoscience and Remote Sensing,2012,50(9):1-8.
    [85] Xiong B., Chen Q., Lu J., et al. A Fast and Precise Registration Method forRepeat-pass Interferometric ALOS PALSAR Data through Baseline Estimation [C].IEEE Asia-Pacific Conference on Synthetic Aperture Radar, Seoul, Korea.2011:586-589.
    [86]汤晓涛. InSAR数据处理的基线估计与影像自动概略配准[J].解放军测绘学院学报,1999,16(4):260-262.
    [87] Fitzgibbon A., Pilu M., Fisher R. B. Direct least square fitting of ellipses[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1999,21(5):476-480.
    [88] F. L. Bookstein. Fitting conic sections to scattered data [J]. ComputerGraphics and Image Processing,1979,9(1):56-71.
    [89] Bamler R., Hartl P. Topical review: synthetic aperture radar interferometry[J]. Inverse Problems,1998,14:1-54.
    [90] Peng S., He K., Wang Y., et al. A high accurate approach for InSAR flatearth effect removal [C]. International Conference on Measuring Technology andMechatronics Automation, Zhang jiajie, Hunan, China.2009:742-745.
    [91] Goldstein R. M., Zebker h. A., Werner C. L. Satellite radar interferometry:two-dimensional phase unwrapping [J]. Radio Science,1988,23(4):713-720.
    [92]袁伟.基于结构信息的SAR图像配准方法研究[D],硕士,长沙:国防科学技术大学,2009.
    [93]苏娟,林行刚,刘代志.一种基于结构特征边缘的多传感器图像配准方法[J].自动化学报,2009,35(3):251-257.
    [94]傅丹,王超,徐一丹等.一种直线段匹配的新方法[J].国防科技大学学报,2008,30(1):115-119.
    [95] Harris C. G., Stephen M. J. A combined corner and edge detector [C].Proceedings of the Fourth Alvey Vision Conference, Manchester, England.1988:147-151.
    [96] Canty M. J. Image analysis classification, and change detection in remotesensing: with algorithms for ENVI/IDL [M]. Boca Raton, FL: Taylor&Francis,2006.
    [97]陈强.雷达极化基础理论及应用研究[D],博士,长沙:国防科学技术大学,2010.
    [98]周晓光.极化SAR图像分类方法研究[D],博士,长沙:国防科学技术大学,2008.
    [99] Li H., Manjunath B. S., Mitra S. K. A contour-based approach tomultisensor image registration [J]. IEEE Transaction on Image Processing,1995,4(3):320-344.
    [100] Frost V. S., Stiles J. A., Shanmugan K. S. A model for radar images and itsapplication to adaptive digital filtering of multiplicative noise [J]. IEEE Transaction onPattern Analysis and Machine Intelligence,1982,4(2):157-165.
    [101]贺志国.基于活动轮廓模型的SAR图像分割算法研究[D],博士,长沙:国防科学技术大学,2008.
    [102]贺志国.一种用于SAR图像分割的几何活动轮廓模型[J].遥感学报,2009,(2):224-231.
    [103] Kass M., Witkin A., Terzopoulos D. Snakes: active contour models [J].International Journal of Computer Vision,1988,1(1):321-332.
    [104] Chan T., Vese L. Active contours without edges [J]. IEEE Transaction onGeoscience and Remote Sensing,2001,10(2):266-277.
    [105] Hill R. D., Moate C. P., Blacknell D. Estimation building dimensions fromsynthetic aperture radar image sequences [J]. IET Radar, Sonar and Navigation,2008,2(3):189-199.
    [106] Delyon G., Refregier P. SAR image segmentation by stochastic complexityminimization with a nonparametric noise model [J]. IEEE Transaction on Geoscienceand Remote Sensing,2006,44(7):1954-1961.
    [107] Ayed L. B., Mitiche A., Belhadj Z. Multiregion level-set partitioning ofsynthetic aperture radar images [J]. IEEE Transaction on Pattern Analysis andMachine Intelligence,2005,27(5):793-800.
    [108] Paragios N., Deriche R. Geodesic active regions for supervised texturesegmentation [C]. IEEE International Conference on Computer Vision,1999:926-932.
    [109]贾承丽. SAR图像道路和机场提取方法研究[D],博士,长沙:国防科学技术大学,2006.
    [110] Xiong B., He Z., Hu C., et al. A method of acquiring tie points in SARimage pair based on closed regions [C]. IEEE International Conference on Geoscienceand Remote Sensing, Munich, German.2012:1-4.
    [111] Lamdan Y., Wolfson H. J. Geometric hashing: a general and efficentmodel-based ercognition scheme [J].1988:238-249.
    [112] Wolfson H. J., Rigoutsos I. Geometric hashing: an overview [J]. IEEEComputational Science&Engineering1997:10-21.
    [113] Alberga V., Idrissa M., Lacroix V., et al. Performance estimation ofsimilarity measures of multi-sensor images for change detection application [C].Analysis of Multi-temporal Remote Sensing Images,2007:1-5.
    [114] Mercier G., Moser G., Serpico S. B. Conditional copulas for changedetection in heterogeneous remote sensing images [J]. IEEE Transactions onGeoscience and Remote Sensing,2008,46(5):
    [115]熊博莅,蒋咏梅,匡纲要.基于粗配准SAR图像变化检测方法[J].现代雷达,2007,29(9):39-41.
    [116]吴樊,陈曦,王超等.基于极化似然比的极化SAR影像变化检测[J].电波科学学报,2009,24(1):120-125.
    [117] Bovolo F., Bruzzone L. A novel theoretical framework for unsupervisedchange detection based on CVA in polar domain [C]. IEEE International Conference onGeoscience and Remote Sensing Symposium,2006:379-382.
    [118] Tzeng Y. C., Chen K. S. Change detection in synthetic aperture radarimages using a spatially chaotic model [J]. Optical Engineering,2007,46(8):1-9.
    [119]钟家强,王润生.基于独立成分分析的多时相遥感图像变化检测[J].电子与信息学报,2006,28(6):994-998.
    [120]张军团,林君.基于二阶灰度统计特征的SAR图像变化检测[J].吉林大学学报(信息科学版),2008,26(5):536-541.
    [121]陈志鹏,邓鹏,种劲松, et al.纹理特征在SAR图像变化检测中的应用[J].遥感技术与应用,2002,17(3):162-166.
    [122]童辉,张晓美,何国金.小波和傅立叶变换在图像变化检测上的应用比较[J].计算机工程与应用,2005,32:87-89.
    [123] Bovolo F., Bruzzone L. A detail-preserving scale-driven approach tochange detection in multitemporal sar images [J]. IEEE Transactions on Geoscience andRemote Sensing,2005,43(12):2963-292.
    [124]王洪先.一种基于小波变换的图像变化检测算法[J].现代雷达,2007,29(11):53-55.
    [125]李杰,任竞颖.一种基于小波变换的SAR图像多尺度融合变化检测方法[J].微电子学与计算机,2009,26(89):131-132.
    [126]李小春,陈鲸.一种变化检测的新算法[J].宇航学报,2005,26(3):334-338.
    [127]陈涛,郁文贤,粟毅等.基于生物视觉原理的图像结构信息变化检测方法[J].国防科技大学学报,2006,28(4):63-68.
    [128] Singh D., Chamundeeswari V., Singh K., et al. Monitoring and changedetection of natural disater(like subsidence) using synthetic aperture radar(SAR) data
    [C]. Proceeding of International Conference on microwave,2008,2008:419-421.
    [129] Ranney K. I., Khatri H. C. Modified difference change detector for smalltargets in SAR imagery [J]. IEEE Transactions on Aerospace and Electronics System,2008,44(1):57-76.
    [130] Rignot E. J. M., Zyl J. J. v. Change detection techniques for ERS-1SARdata [J]. IEEE Transaction on Geoscience and Remote Sensing,1993,31(4):896-906.
    [131] Camps-Valls G., Gomez-Ghova L., Munoz-Mari J., et al. Kernel-basedframework for multitemporal and multisource remote sensing data classification andchange detection [J]. IEEE Transactions on Geoscience and Remote Sensing,2008,46(6):1822-1835.
    [132] Ostu N. A threshold selection method from gray level histogram [J]. IEEETransactions on System, Man and Cybernetics,1979,9(1):62-66.
    [133]陈琪,熊博莅,陆军等.改进的二维OTSU图像分割方法及其快速实现[J].电子与信息学报,2010,32(5):1100-1104.
    [134] Pun T. A new method for grey-level picture thresholding using the entropyof the histogram [J]. Signal Processing,1980,2(3):223-237.
    [135] Kapur J. N., Sahoo P. K., Wong A. K. C. A new method for gray-levelpicture thresholding using the entropy of the histogram [J]. Computer Vision, Graphics,and Image Processing,1985,29(3):273-285.
    [136] Bruzzone L., Prieto D. F. A Bayesian approach to automatic changedetection [C]. IEEE International Geoscience and Remote Sensing Symposium,1999:1816-1818.
    [137] Kittler J., Illingworth J. Minimum error thresholding [J]. PatternRecognition,1986,19(1):41-47.
    [138] Bazi Y., Bruzzone L., Melgani F. An unsupervised approach based on thegeneralized Gaussian model to automatic change detection in multitemporal SARimages [J]. IEEE Transactions on Geoscience and Remote Sensing,2005,43(4):874-887.
    [139] Shuai Y., Xu X., Sun H., et al. Change detection based on regionlikelihood ratio in multitemporal SAR images [C]. The8th international Conference onSignal Process,2006:
    [140] Chatelain F., Tourneret J.-Y. Bivariate Gamma distribution for multisensorSAR images [C]. Acoustics, Speech and Signal Processing,2007:1237-1240.
    [141]时公涛.基于干涉图的多通道SAR地面慢动目标自动检测技术研究
    [D],博士,长沙:国防科学技术大学,2009.
    [142] Bovolo F., Bruzzone L. A multilevel parcel-based approach to changedetection in very high resolution multitemporal images [C]. IEEE InternationalGeoscience and Remote Sensing Symposium,2005:2145-2148.
    [143] Xiong B., Chen J. M., Kuang G. A change detection measure based on alikelihood ratio and the statistical properties of SAR intensity images [J]. RemoteSensing Letters,2012,3(3):267-275.
    [144] Xiong B., Chen Q., Jiang Y., et al. A threshold selection method using twoSAR change detection mesaures based on the Morkov random field model [J]. IEEEGeoscience and Remote Sensing Letters,2012,9(2):287-291.
    [145] Melgani F., Bazi Y. Markovian fusion approach to robust unsupervisedchange detection in remotely sensed imagery [J]. IEEE Geoscience and Remote SensingLetters,2006,3(4):123-153.
    [146] Melgani F., Bazi Y. Robust unsupervised change detection with markovrandom fields [C]. IEEE International Geoscience and Remote Sensing Symposium,2006:208-211.
    [147] Kasetkasem T., Varshney P. K. An image change detection algorithmbased on Markov random field models [J]. IEEE Transactions on Geoscience andRemote Sensing,2002,40(8):1815-1823.
    [148] Gao G., Liu L., Zhao L., et al. An adaptive and fast CFAR algorithm basedon automatic censoring for target detection in high-resolution SAR images [J]. IEEETransactions on Geoscience and Remote Sensing,2009,47(6):1685-1687.
    [149]陈琪. SAR图像港口目标提取方法研究[D],博士,长沙:国防科学技术大学,2011.
    [150] Akers G. A. An approach to ground moving target indication usingmultiple resolutions of multilook synthetic aperture radar images [D], Kansas, USA:University of Kansas,2010.
    [151] Xiong B., Chen Q., Jiang Y., et al. Target detection in SAR images withthe scene mask from optical images [C]. IEEE CIE International Conference on Radar,Chengdu, China.2011:638-641.
    [152]王娜,时公涛,陆军等.一种新的极化SAR图像目标检测方法[J].电子与信息学报,2011,33(2):395-400.
    [153] Huang S., Liu D., Gao G., et al. A novel method for speckle noisereduction and ship target detetion in SAR images [J]. Pattern Recognition,2009,42:1553-1542.
    [154]陈琪,王娜,陆军等. SAR图像港口区域舰船检测新方法[J].电子与信息学报,2011,33(9):2132-2137.
    [155] Niedermeier A., Romaneeben E., Lehner S. Detection of coastlines in SARimages using wavelet methods [J]. IEEE Transaction on Geoscience and RemoteSensing,2000,38(5):2270-2281.
    [156] Im J., Jensen J. R., Tullis J. A. Development of a remote sensing changedetection system based on neighborhood correlation image analysis and intelligentknowledge-based systems [C]. IEEE International Geoscience and Remote SensingSymposium,2005:2129-2132.
    [157] Zheng Q., Chellapa R. A computational vision approach to imageregistration [J]. IEEE Transactions on Image Processing,1993,2(3):311-325.
    [158]赵凌君.高分辨率SAR图像建筑物提取方法研究[D],博士,长沙:国防科学技术大学,2009.
    [159] Zhang J., Huang S., Li Z., et al. Study on change detection formulti-temporal polarimetric SAR images [C]. Cybernetics and Intelligent Systems,2008:566-569.
    [160] Conradsen K., Nielsen A. A., Schou J., et al. A test statistic in the complexWishart distribution and its application to change detection in polarimetric SAR data [J].IEEE Transaction on Geoscience and Remote Sensing,2003,41(1):4-19.
    [161] Suchandt S., Runge H., Breit H., et al. Automatic extraction of trafficflows using TerraSAR-X along-track interferometry [J]. IEEE Transactions onGeoscience and Remote Sensing,2010,48(2):807-819.
    [162] Fjortoft R., Lopes A., Marthon P., et al. An optimal multidege detector forSAR image segmentation [J]. IEEE Transaction on Geoscience and Remote Sensing,1998,36(3):793-802.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700