用户名: 密码: 验证码:
中国北方地区冲积扇地貌发育特征与影响因素分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
越来越多的研究表明,冲积扇的演化受构造、气候、基准面、流域地质地貌条件、植被覆盖程度以及人类活动等诸多环境因素的影响,因此,冲积扇研究具有十分重要的理论意义和现实意义。
     我国北方地区气候条件多样,许多规模悬殊的山间和山前盆地边缘都有冲积扇发育。论文以吕梁山、贺兰山、祁连山等三个地区的冲积扇为研究对象,通过实地考察与实验分析相结合的方法,辅以遥感和地理信息系统手段,对各地区冲积扇的形态、结构、物质组成和沉积过程等特征进行研究;对断陷盆地边缘冲积扇发育规律进行了探讨;对不同断陷盆地内的冲积扇进行了对比;对三个地区的冲积扇进行了对比;对冲积扇地区农地的发育规律进行了探讨。
     研究表明,不同地区冲积扇的地貌特征和沉积特征有较大差异。吕梁山地区冲积扇的规模相对较小,沉积过程以河流充填沉积为主,其次为片流沉积;贺兰山东麓南段和北段的冲积扇形成了强烈对比:南段的冲积扇以水石流沉积为主,面积和坡度都较大,而北段的冲积扇以河流过程为主,粒度细,面积和坡度都相对较小;祁连山地区冲积扇规模大,沉积过程为河流沉积。从冲积扇发育的时代看,晚更新世冲积扇是各地区冲积扇的主体。
     对侯马盆地冲积扇的研究揭示了断陷盆地边缘冲积扇的发育规律。结果表明,冲积扇的形态、结构、沉积过程等与冲积扇所处盆地构造部位密切相关。扇顶切割程度、流域内沉积物充填状况、扇顶基岩出露特征以及沉积过程的类型等可以做为判别断陷盆地中边界断层活动强弱的标志。
     太原盆地、临汾盆地和侯马盆地冲积扇的对比表明,构造活动、汾河基准面等因素是三个盆地中冲积扇发育程度差异的重要原因,这些因素也影响冲积扇的沉积过程、流域内沉积物充填和冲积扇扇顶切割状况。三个区域冲积扇的对比表明,三个地区冲积扇的发育程度受气候条件、冲积扇的沉积过程等因素的影响。
     对三个地区冲积扇上农地分布的研究表明,细粒组分的分布是影响冲积扇上农地发育的主要因素;冲积扇独特的沉积过程与地貌特点共同决定了冲积扇上细粒组分的分布;黄土过程作为外来过程也是冲积扇上农地发育的重要影响因素之一。
More and more research proves that alluvial fan is affected by many environmental factors such as tectonic activity, climatic conditions, base level change, drainage basin geology, geomorphology and plant covering of drainage basin, human activities; therefore, alluvial fan research bears great significance to theory of geomorphology and practicalities.
     Climatic conditions vary greatly in North China, and alluvial fans lying along margins of basins between mountains or at mountain front. Research areas of this dissertation include Lvliang Mountain, Helan Mountain and Qilian Mountain. The shape, structure, mass composition and deposition process of these alluvial fans are researched through field exploration and laboratory experiments. Remote Sensing and GIS technologies are also used. Characteristics of alluvial fans at margins of faulted basin are researched. Alluvial fans in different faulted basins of Lvliang Mountain are compared; Alluvial fans in three different regions are also compared. Agricultural land on alluvial fans is researched at chapter 5 of this dissertation.
     Great differences between alluvial fans in different regions are found. Alluvial fans at Lvliang Mountain are characterized by smaller size, channel-fill deposition and sheet-flood deposition. There has sharply contrast between alluvial fans at the north sector and at the south sector of Helan mountain: alluvial fans with larger area and steeper slope at south sector bear debris flow, but alluvial fans at north sector, which have smaller size and gentler slope, were formed mainly by stream flow. Alluvial fans at Qilian Mountain often have larger size, and their deposition process is stream flow. The main bodies of these alluvial fans were formed during Late Pleistocene.
     Research of alluvial fans at Houma basin reveals how alluvial fans are affected by faulted basins. It is found that the shape, structure and deposition process of alluvial fans relate well to its position in faulted basin. Fan head incision, channel-fill deposits in drainage basin, emergence of bedrock can be criteria of tectonic activity of boundary fault.
     Comparison of alluvial fans in Taiyuan basin, Linfen basin and Houma basin shows that tectonic activity and Fen river base level account for the differences of alluvial fans in these three basins, and they also affect deposition process, channel-fill deposits in drainage basin and fan head incision. Comparison of alluvial fans in three regions shows that climatic conditions and deposition process impact fan size greatly.
     Research of agricultural land on alluvial fans shows that fine deposits mainly determine the agricultural land; and fine deposits are determined by particular deposition process and geomorphology of alluvial fans together; as an allochthonic deposit, loess plays an important role in the development of agricultural land on alluvial fans.
引文
Al-Farraj, A. and Harvey, A.M. Desert pavement characteristics on wadi terrace and alluvial fan surfaces: Wadi Al-Bih, UAE and Oman. Geomorphology, 2000, 35(3-4): 279-297.
    Allen, P.A. Sediments and Processes on a Small Stream-Flow Dominated, Devonian Alluvial-Fan, Shetland Islands. Sedimentary Geology, 1981, 29(1): 31-66.
    Beaty, C.B. Origin of alluvial fans, White Moumtains, California and Nevade Annal. Assoc. Amer. Geogr., 1963, 53: 16-135.
    Bhardwaj, B.D. and Singh, A. Sedimentology of a Recent Alluvial-Fan of Ganga River, Rishikesh, India. Journal of the Geological Society of India, 1992, 39(6): 457-465.
    Blair, T.C. Sedimentary Processes, Vertical Stratification Sequences, and Geomorphology of the Roaring River Alluvial-Fan, Rocky-Mountain-National-Park, Colorado. Journal of Sedimentary Petrology, 1987, 57(1): 1-18.
    Blair, T.C. Alluvial fan and catchment initiation by rock avalanching, Owens Valley, California. Geomorphology, 1999a, 28(3-4): 201-221.
    Blair, T.C. Cause of dominance by sheetflood vs. debris-flow processes on two adjoining alluvial fans, Death Valley, California. Sedimentology, 1999b, 46(6): 1015-1028.
    Blair, T.C. Sedimentology of the debris-flow-dominate Warm Spring Canyon alluvial fan, Death Valley, California. Sedimentology, 1999c, 46(5): 941-965.
    Blair, T.C. Sedimentology and progressive tectonic unconformities of the sheetflood-dominated Hell's Gate alluvial fan, Death Valley, California. Sedimentary Geology, 2000, 132(3-4): 233-262.
    Blissenbach, E. Relation of surface angle distribution to particle size distribution on alluvial fans. Journal of Sedimentary Petrology, 1952, 22(2): 25-28.
    Bull, W.B. The alluvial fan environment. Progress in Physical Geography 1, 1977: 222-270.
    Catto, N.R. Morphology and Development of an Alluvial-Fan in a Permafrost Region, Aklavik Range, Canada. Geografiska Annaler Series a-Physical Geography, 1993, 75(3): 83-93.
    Chamyal, L.S., Khadkikar, A.S., Malik, J.N. and Maurya, D.M. Sedimentology of the Narmada alluvial fan, western India. Sedimentary Geology, 1997, 107(3-4): 263-279.
    Chorley, R.J., Schumm, S.A. and Sugden, D.E., 1984. Geomorphology, London.
    Clarke, M.L. Infrared Stimulated Luminescence Ages from Aeolian Sand and Alluvial-Fan Deposits from the Eastern Mojave Desert, California. Quaternary Science Reviews, 1994, 13(5-7): 533-538.
    Clevis, Q., de Boer, P. and Wachter, M. Numerical modelling of drainage basin evolution and three-dimensional alluvial fan stratigraphy. Sedimentary Geology, 2003, 163(1-2): 85-110.
    Coulthard, T.J., Macklin, M.G. and Kirkby, M.J. A cellular model of Holocene upland river basin and alluvial fan evolution. Earth Surface Processes and Landforms, 2002, 27(3): 269-288.
    Darby, D.A., Whittecar, G.R., Garrett, J.R. and Barringer, R.A. Anomalous Heavy Mineral Size Relationships in a Humid Alluvial-Fan, Colombia - Implications for Placer Formation. Economic Geology, 1988, 83(5): 1015-1025.
    De Chant, L.J., Pease, P.P. and Tchakerian, V.P. Modelling alluvial fan morphology. Earth Surface Processes and Landforms, 1999, 24(7): 641-652.
    Denny, C.S. Alluvial fans in the Death Valley Region, Califonia and Nevada. United States Geological Survey Professional Paper, 1965, 466: 62.
    Dill, H.G. Heavy Mineral Response to the Progradation of an Alluvial-Fan - Implications Concerning Unroofing of Source Area, Chemical-Weathering and Palaeo-Relief (Upper Cretaceous Parkstein Fan Complex, Se Germany). Sedimentary Geology, 1995, 95(1-2): 39-56.
    Dorn, R.I., Deniro, M.J. and Ajie, H.O. Isotopic Evidence for Climatic Influence on Alluvial-Fan Development in Death-Valley, California. Geology, 1987, 15(2): 108-110.
    Drew, F. Alluvial and lacustrine deposits and glacial records of the upper Indus basin. Geol. Soc. London Auaterly J., 1873, 29: 441-47.
    Eckis, R. Alluvial Fans in the Cucamonga District ,Southern California. Journal of Geology, 1928, 36: 225~247.
    Eyles, N. and Kocsis, S. Sedimentology and Clast Fabric of Subaerial Debris Flow Facies in a Glacially-Influenced Alluvial-Fan. Sedimentary Geology, 1988, 59(1-2): 15-28.
    Farr, T.G. and Chadwick, O.A. Geomorphic processes and remote sensing signatures of alluvial fans in the Kun Lun mountains, China. Journal of Geophysical Research-Planets, 1996, 101(E10): 23091-23100.
    Field, J. Channel avulsion on alluvial fans in southern Arizona. Geomorphology,2001,37(1-2): 93-104.
    Gilbert, G.K., 1875. Report on the geology of portions if Neveda, Utah, California and Arizona, 1871-72.
    Report upon Geographical and Geological Exploration and Surveys West of the 100 Meridian, 1, 21-187 pp.
    Gilvear, D.J.,J. Cecil,H. Parsons. Channel change and vegetation diversity on a low-angle alluvial fan, River Feshie, Scotland. Aquatic Conservation-Marine and Freshwater Ecosystems,2000,10(1): 53-71.
    Goudie, A.S., 2003. Encyclopedia of Geomorphology, 1. Routledge, London and New York, 15-19 pp.
    Harvey, A.M. The occurrence and role of arid zone alluvial fans. Arid Zone Geomorphology, 1987: 136-158.
    Harvey, A.M. The role of base-level change in the dissection of alluvial fans: case studies from southeast Spain and Nevada. Geomorphology, 2002, 45(1-2): 67-87.
    Harvey, A.M. The impact of Quaternary sea-level and climatic change on coastal alluvial fans in the Cabo de Gata ranges, southeast Spain. Geomorphology, 1999a, 28(1-2): 1-22.
    Harvey, A.M., Wigand, P.E. and Wells, S.G. Response of alluvial fan systems to the late Pleistocene to Holocene climatic transition: contrasts between the margins of pluvial Lakes Lahontan and Mojave, Nevada and California, USA. Catena, 1999b, 36(4): 255-281.
    Hooke, R.L. The Trollheim Alluvial-Fan and Facies Model Revisited - Discussion. Geological Society of America Bulletin, 1993, 105(4): 563-564.
    Hsu, L. and Pelletier, J.D. Correlation and dating of Quaternary alluvial-fan surfaces using scarp diffusion. Geomorphology, 2004, 60(3-4): 319-335.
    Kesel, R.H. Alluvial-Fan Systems in a Wet-Tropical Environment, Costa-Rica. National Geographic Research, 1985, 1(4): 450-469.
    Kesel, R.H. and Lowe, D.R. Geomorphology and Sedimentology of the Toro Amarillo Alluvial-Fan in a Humid Tropical Environment, Costa-Rica. Geografiska Annaler Series a-Physical Geography, 1987, 69(1): 85-99.
    Kostaschuk, R.A., Macdonald, G.M. and Putnam, P.E. Depositional Process and Alluvial Fan-Drainage Basin Morphometric Relationships near Banff, Alberta, Canada. Earth Surface Processes and Landforms, 1986, 11(5): 471-484.
    Krainer, K. Sieve Deposition on a Small Modern Alluvial-Fan in the Lechtal Alps (Tyrol, Austria). Zeitschrift Fur Geomorphologie, 1988, 32(3): 289-298.
    Levson, V.M. and Rutter, N.W. Influence of bedrock geology on sedimentation in Pre-Late Wisconsinan alluvial fans in the Canadian Rocky Mountains. Quaternary International, 2000, 68: 133-146.
    Malik, J.N., Sohoni, P.S., Merh, S.S. and Karanth, R.V. Active tectonic control on alluvial fan architecture along Kachchh mainland Hill Range, western India. Zeitschrift Fur Geomorphologie, 2001, 45(1): 81-100.
    Mcfadden, L.D., Ritter, J.B. and Wells, S.G. Use of Multiparameter Relative-Age Methods for Age Estimation and Correlation of Alluvial-Fan Surfaces on a Desert Piedmont, Eastern Mojave Desert, California. Quaternary Research, 1989, 32(3): 276-290.
    McGee, W.J. Sheetflood Erosion. Bull. Geol. Soc. Amer., 1897, 13: 381-407.
    Melton, M.A. The gromorphic and paleoclimatic significance of allvial deposits in southern arizona. Journal of geology, 1965, 73: 1-38.
    Miliaresis, G.C. and Argialas, D.P. Extraction and delineation of alluvial fans from digital elevation models and landsat thematic mapper images. Photogrammetric Engineering and Remote Sensing, 2000, 66(9): 1093-1101.
    Moore, J.M. and Howard, A.D. Large alluvial fans on Mars. Journal of Geophysical Research-Planets, 2005, 110(E4): -.
    Moreno, C. and RomeroSegura, M.J. The development of small-scale sandy alluvial fans at the base of a modern coastal cliff: Process, observations and implications. Geomorphology, 1997, 18(2): 101-118.
    Mulchandani, N., Bhandari, S., Raj, R. and Vaid, S.I. Alluvial fan sedimentation in Heran and Kara river valleys of lower Narmada basin, western India. Journal of the Geological Society of India, 2005, 65(4): 451-458.
    Nichols, G. and Thompson, B. Bedrock lithology control on contemporaneous alluvial fan facies, Oligo-Miocene, southern Pyrenees, Spain. Sedimentology, 2005, 52(3): 571-585.
    Nott, J.F., Thomas, M.F. and Price, D.M. Alluvial fans, landslides and Late Quaternary climatic change in the wet tropics of northeast Queensland. Australian Journal of Earth Sciences, 2001, 48(6): 875-882.
    Nowroozi, A.A., Whittecar, G.R. and Daniel, J.C. Estimating the yield of crushable stone in an alluvial fan deposit by electrical resistivity methods near Stuarts Draft, Virginia. Journal of Applied Geophysics, 1997, 38(1): 25-40.
    Oguchi, T. and Ohmori, H. Analysis of Relationships among Alluvial-Fan Area, Source Basin Area, Basin Slope, and Sediment Yield. Zeitschrift Fur Geomorphologie, 1994, 38(4): 405-420.
    Okunishi, K. and Suwa, H. Assessment of debris-flow hazards of alluvial fans. Natural Hazards, 2001, 23(2-3): 259-269.
    Parker, G. Progress in the modeling of alluvial fans. Journal of Hydraulic Research, 1999, 37(6): 805-825.
    Parker, G., Paola, C., Whipple, K.X. and Mohrig, D. Alluvial fans formed by channelized fluvial and sheet flow. I: Theory. Journal of Hydraulic Engineering-Asce, 1998a, 124(10): 985-995.
    Parker, G. Alluvial fans formed by channelized fluvial and sheet flow. II: Application. Journal of Hydraulic Engineering-Asce, 1998b, 124(10): 996-1004.
    Perucca, L.P.,J. Paredes. Alluvial fan flooding in the Department of Pocito, province of San Juan, Argentina. Episodes,2004,27(3): 190-194.
    Pope, R.J.J. and Millington, A.C. Unravelling the patterns of alluvial fan development using mineral magnetic analysis: Examples from the Sparta Basin, Lakonia, southern Greece. Earth Surface Processes and Landforms, 2000, 25(6): 601-615.
    Porat, N., Amit, R., Zilberman, E. and Enzel, Y. Luminescence dating of fault-related alluvial fan sediments in the southern Arava valley, Israel. Quaternary Science Reviews, 1997, 16(3-5): 397-402.
    Rachochi, A.H., 1981. Alluvial fans, an attempt at an empirical approch. Wiley, Chichester. Reading, H.G., 1996. Sedimentary Environments:Process,Facies and Stratigraphy, 570-573 pp.
    Robustelli, G., Muto, F., Scarciglia, F., Spina, V. and Critelli, S. Eustatic and tectonic control on Late Quaternary alluvial fans along the Tyrrhenian Sea coast of Calabria (South Italy). Quaternary Science Reviews, 2005, 24(18-19): 2101-2119.
    Sah, M.P. and Srivastava, R.A.K. Morphology and Facies of the Alluvial-Fan Sedimentation in the Kangra Valley, Himachal Himalaya. Sedimentary Geology, 1992, 76(1-2): 23-42.
    Saito, K. and Oguchi, T. Slope of alluvial fans in humid regions of Japan, Taiwan and the Philippines. Geomorphology, 2005, 70(1-2): 147-162.
    Schick, A.P., Grodek, T. and Wolman, M.G. Hydrologic processes and geomorphic constraints on urbanization of alluvial fan slopes. Geomorphology, 1999, 31(1-4): 325-335.
    Siame, L.L. Cosmogenic dating ranging from 20 to 700 ka of a series of alluvial fan surfaces affected by the El Tigre fault, Argentina. Geology, 1997, 25(11): 975-978.
    Smoot, J.P. Sedimentary Fabrics of Debris Flow-Dominated, Stream-Modified Alluvial-Fan, Saline Valley, California. Aapg Bulletin-American Association of Petroleum Geologists, 1982, 66(5): 633-633.
    Sorriso-Valvo, M., Antronico, L. and Le Pera, E. Controls on modern fan morphology in Calabria, southern Italy. Geomorphology, 1998, 24(2-3): 169-187.
    Staley, D.M., Wasklewicz, T.A. and Blaszczynski, J.S. Surficial patterns of debris flow deposition on alluvial fans in Death Valley, CA using airborne laser swath mapping data. Geomorphology, 2006, 74(1-4): 152-163.
    Stimson, J., Frape, S., Drimmie, R. and Rudolph, D. Isotopic and geochemical evidence of regional-scale anisotropy and interconnectivity of an alluvial fan system, Cochabamba Valley, Bolivia. Applied Geochemistry, 2001, 16(9-10): 1097-1114.
    Viseras, C., Calvache, M.L., Soria, J.M. and Fernandez, J. Differential features of alluvial fans controlled by tectonic or eustatic accommodation space. Examples from the Betic Cordillera, Spain. Geomorphology, 2003, 50(1-3): 181-202.
    Waresback, D.B., Mcpherson, J.G. and Self, S. Volcanogenic Alluvial-Fan Sedimentation, Puye Formation, New-Mexico. Aapg Bulletin-American Association of Petroleum Geologists, 1984, 68(4): 537-537.
    Waresback, D.B. and Turbeville, B.N. Evolution of a Plio-Pleistocene Volcanogenic-Alluvial Fan - the Puye Formation, Jemez Mountains, New-Mexico. Geological Society of America Bulletin, 1990, 102(3): 298-314.
    Wasson, R.J. Last Glacial Alluvial Fan Sedimentation in Lower Derwent Valley, Tasmania. Sedimentology, 1977, 24(6): 781-799.
    Weaver, W.E. and schumm, S.A. Fanhead trenching: an example of geomorphic threshold. Geological society of America, Abstracts with Programme, 1974, 6: 481.
    Wells, S.G. and Harvey, A.M. Sedimentologic and Geomorphic Variations in Storm-Generated Alluvial Fans, Howgill Fells, Northwest England. Geological Society of America Bulletin, 1987, 98(2): 182-198.
    White, K., Drake, N., Millington, A. and Stokes, S. Constraining the timing of alluvial fan response to Late Quaternary climatic changes, southern Tunisia. Geomorphology, 1996, 17(4): 295-304.
    Williams, R.M.E., Zimbelman, J.R. and Johnston, A.K. Aspects of alluvial fan shape indicative of formation process: A case study in southwestern California with application to Mojave Crater fans on Mars. Geophysical Research Letters, 2006, 33(10): -.
    Zarn, B. and Davies, T.R.H. The Significance of Processes on Alluvial Fans to Hazard Assessment. Zeitschrift Fur Geomorphologie, 1994, 38(4): 487-500.
    Zhao, B. and Mays, L.W. Uncertainty and risk analyses for FEMA alluvial-fan method. Journal of Hydraulic Engineering-Asce, 1996, 122(6): 325-332.
    《宁夏农业地理》编写组. 宁夏农业地理. 科学出版社, 北京, 1976: 88-95.
    陈紫娥. 花东纵谷北中段冲积扇与土砂灾害. 中国地质灾害与防治学报,2001, 12(2): 13-22.
    崔卫国, 穆桂金, 文倩. 玛纳斯河山麓冲积扇演化及其对区域构造活动的响应. 水土保持研究, 2007, 14(1): 161-163.
    程绍平, 杨桂枝. 冲积扇和山前侵蚀平原的构造地貌学研究综述. 地震地质译丛, 1996, 18 (1): 1-10.
    仇方道. 甘肃省地貌特征对农业可持续发展的影响. 徐州师范大学学报(自然科学版), 1999, 17(1): 55-59.
    崔之久. 泥石流沉积与环境. 北京 海洋出版社.1996.
    邓启东, 汪一鹏, 廖玉华. 断层崖崩积楔及贺兰山山前断裂全新世活动历史. 科学通报,1984, 29(9): 557-560.
    丁锡祉, B.B.尼柯尔斯卡娅. 黑龙江流域地貌特征及其对农业的意义. 地理学报, 1959, (06): 413-421.
    冯绳武. 河西黑河(弱水)水系的变迁研究. 地理研究, 1988, 7(1): 18-26.
    高红山, 潘宝田, 邬光剑等. 祁连山东段河流阶地的形成时代与机制探讨. 2005, 25(2):197-202
    国家地震局地质研究所, 国家地震局兰州地震研究所.祁连山-河西走廊活动断裂系. 北京, 地震出版社, 1993.
    韩慕康. 构造地貌学. 地球科学进展, 1992.7(6):61一62
    侯建军,韩幕康,张保增等. 秦岭北麓断裂带晚第四纪活动的地貌表现. 地理学报, 1995, 50(2): 138-146
    李润田, 穆桂春. 关于农业地貌条件评价的研究. 地理研究, 1985(04): 22-31.
    李新坡, 莫多闻, 朱忠礼. 侯马盆地冲积扇及其流域地貌发育规律. 地理学报, 2006, 61(3): 241-248.
    李新坡, 莫多闻, 朱忠礼. 祁连山、贺兰山与吕梁山山前冲积扇上的农地对比. 地理研究. 2006, 25(6):985-993.
    李小建, 乔家君. 地形对山区农田人地系统投入产出影响的微观分析--河南省巩义市吴沟村的实证研究. 地理研究,2004,23(6): 717-726.
    李有利, 杨景春. 河西走廊平原区全新世河流阶地对气候变化的响应. 地理科学, 1997, 17(3): 248-251.
    李有利, 李保俊, 杨景春. 甘肃张掖黑河口断层更新世晚期以来的活动. 北京大学学报(自然科学版), 1995, 31(3): 351-357.
    李志强, 刘学录. 甘肃地貌区划与地貌条件的农业评价. 甘肃农业大学学报, 1994, 30(4): 444-449.
    廖玉华. 银川—吉兰泰断陷带第四纪活动特征国家地震局. 《鄂尔多斯周缘活动断裂系》课题组,鄂尔多斯周缘活动断裂系,地震出版社,1988.
    刘东生等. 黄土与环境. 北京: 科学出版社,1985. 16-22.
    刘明光. 中国自然地理图集. 中国地图出版社, 北京, 1998.
    刘忠保(译). 冲积扇的几何形态:流量和粒径的影响(Hook, R.L.). 江汉石油学院情报, 1992, 1: 88-106.
    莫多闻. 冲积扇研究的发展及其理论与实际意义. 见:地貌.环境.发展(一九九九嶂石岩会议文集). 中国环境科学出版社. 1999.
    莫多闻, 朱忠礼, 杨晓燕. 我国西北冲积扇上的黄土. 第四纪研究, 2000, 20(3).
    莫多闻,朱忠礼,万林义. 贺兰山东麓冲积扇发育特征. 北京大学学报(自然科学版), 1999,35(6): 816-823
    莫多闻. 汾河下游盆地及邻区地貌研究. 北京大学博士论文. 1984.
    倪绍祥. 土地类型与土地评价概论(第二版). 高等教育出版社, 北京, 1999, 171-215.
    宁夏回族自治区地质矿产局. 宁夏回族自治区区域地质志. 地质出版社, 北京, 1990, 431-438.
    欧阳海, 郑步忠, 王雪娥等. 农业气候学. 气象出版社, 北京, 1990, 295-381.
    潘树荣, 伍光和, 陈传康等. 自然地理学(第二版). 北京, 高等教育出版社,1985.
    乔彦肖, 赵志忠. 冲洪积扇与泥石流扇的遥感影像特征辨析. 地理学与国土研究, 2001,17(3): 35-38.
    冉勇康, 李志义, 尤惠川等. 河西走廊黑河口断层上的古地震及年代研究. 地震地质, 1988, 10(4):118—125
    任明达. 冲积扇比较沉积学——地下水和油气的富集规律.沉积学报,1983, 1(4):78~91
    汤懋苍, 祁连山区降水的地理分布特征. 地理学报, 1985, 40(4):323-332.
    万林义, 构造活动对冲积扇发育过程的影响和控制作用_以祁连山北麓、贺兰山东麓与吕梁山东麓为例(北京大学论文).1998.
    王乃樑, 杨景春等. 山西地堑系新生代沉积与构造地貌. 科学出版社, 1996.
    吴关生(译). 在加利福尼亚死亡裂谷, 漫流和碎屑流进程对两个相邻冲积扇控制的原因(Blair, Y.C.). 石油勘探开发情报, 2000, 5: 20-32.
    刑嘉明. 太行山北段的山前冲积扇及其与地下水的关系. 中国地理学会 1963 年年会论文选集(地貌学). 科学出版社. 1963.
    许清海, 王子惠, 杨小兰等. 全新世滦河冲积扇的发育和河型变化, 地理学与国土研究, 1994, 10(3):40-44.
    杨景春, 李有利. 地貌学原理. 北京大学出版社, 北京, 2001.
    杨景春, 郭正堂, 曹家栋. 用地貌学方法研究贺兰山山前断层全新世活动状况. 地震地质, 1985(7): 23~31
    杨文才. 下辽河平原周边冲积扇沉积模式的探讨. 沉积学报,1989,7(3): 63-72
    杨晓平, 邓起东, P.Molnar 等. 新疆天山南麓库尔楚西北冲洪积扇面的 10Be 年代. 核技术, 2004, 27(2): 125-129.
    尹泽生. 祁连山区域地貌与制图研究.科学出版社, 1992.
    张家诚. 气候变化对中国农业生产的影响初探. 地理研究, 1982, 1(2): 8-15.
    张维岐, 廖玉华, 潘祖寿. 初论贺兰山前洪积扇断层陡坎. 地震地质, 1982, 4(2): 32-34
    赵昭昞. 福建地貌基本特征与农业生产的关系. 地理学报, 1993, 48(2): 143-151.
    中国科学院地理研究所经济地理研究室. 中国农业地理总论. 科学出版社, 北京, 1980: 3-9.
    周明鉴等译. 沉积环境和相. 科学出版社, 北京. 1986.
    周特先, 王利曹, 明志宁. 夏构造地貌格局及其形成与发展. 地理学报, 1985, 40(3): 215-223.
    朱忠礼. 我国北方地区冲积扇比较研究及数值模拟. 北京大学博士论文. 2002.
    朱忠礼, 莫多闻, 万林义等 .冲积扇坡度的初步研究, 嶂石岩地貌学会论文集. 中国环境科学出版社.1999.
    朱忠礼, 莫多闻. 河西走廊冲积扇发育刍议, 地貌与第四纪环境研究文集, 海洋出版社. 1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700