用户名: 密码: 验证码:
多类不确定分布参数系统自适应镇定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要针对多类不确定系统,包括不确定热方程、带有不确定扩散主导的执行器动态的ODE系统、不确定耦合PDE-ODE系统,研究其自适应镇定问题.此外,还研究了一类带有空间变系数的耦合PDE-ODE系统的状态反馈和输出反馈镇定问题.具体地,本文的主要研究内容分为如下四部分:
     一、不确定热方程自适应镇定
     该部分内容是本文的第二章,主要研究了带有不确定控制系数和边界扰动的热方程的自适应镇定问题.利用Lyapunov直接法,给出了自适应状态反馈控制器的显式形式,保证闭环系统所有状态是有界的,且原始系统状态是L2稳定的,特别是当扰动消逝时,原始系统状态收敛到零.值得指出的是,构造的控制器仅需要热方程在某端点处的测量值,降低了已有文献的测量负担.此外,通过灵活选取参数调节律的初始值,适当放宽了相关文献中相容性条件对系统初始条件的限制.
     二、带有不确定扩散主导的执行器动态的ODE系统自适应镇定
     该部分内容是本文的第三、四章.其中,第三章研究了带有不确定扩散主导的执行器动态的ODE系统自适应状态反馈镇定问题.与相关文献相比,所研究的系统具有较严重的不确定性,因而所研究问题更难以解决.首先通过引入一无穷维状态变换,原始系统转化为一个关键的目标系统.由此目标系统出发更方便进行控制设计与闭环系统性能分析.然后通过确定等价原理等相关自适应技术给出了自适应状态反馈控制器的显式形式,保证闭环系统所有状态有界且原始系统状态收敛到零.第四章研究了带有不确定扩散主导的执行器动态的ODE系统自适应输出反馈镇定问题.与上一章要求执行器状态完全可测不同,该章仅要求执行器某边界值可量测,增大了控制设计的难度.首先通过构造状态观测器估计不可测状态,之后利用无穷维反推、确定等价原理等方法构造了自适应控制器,保证闭环系统所有状态有界且原始系统状态收敛到零.
     三、带有空间变系数的耦合PDE-ODE系统镇定
     该部分内容是本文的第五章,主要研究了带有空间变系数的耦合PDE-ODE系统的状态反馈和输出反馈镇定问题.与相关文献相比,空间变系数的存在使得所研究系统更具有一般性且更难以控制.通过无穷维反推方法,分别构造了状态反馈和输出反馈控制器,保证闭环系统在特定范数意义下是指数稳定的.值得指出的是,在输出反馈设计情形,通过选择适当的观测器增益,完全去除了已有结果对ODE子系统的限制.
     四、不确定耦合PDE-ODE系统自适应镇定
     该部分是本文的第六、七章,主要研究了两类不同的不确定耦合PDE-ODE系统的自适应镇定问题.其中,第六章研究了仅含有一个未知参数的耦合PDE-ODE系统的自适应镇定问题.不确定性的存在使得所研究的系统本质不同于已有文献,并且导致已有方法无效.受相关文献启发,采用无穷维反推和确定等价原理等方法设计自适应状态反馈控制器,保证闭环系统所有状态有界且原始系统状态收敛到零.与之不同的是,第七章考虑了具有多个未知参数的耦合PDE-ODE系统自适应镇定问题,特别是考虑了ODE子系统中含有多个未知参数的情形.这使得所研究的系统具有较强的一般性,且使控制设计较为困难.利用已有方法,特别是无穷维反推法,构造了自适应控制器,保证闭环系统所有状态有界且原始系统状态收敛到零.
     以上四部分还分别给出了相应的仿真算例,验证了所提理论方法的有效性.
This dissertation focuses on the investigation of the stabilization for sev-eral classes of uncertain systems including of uncertain heat equations, ODE sys-tems with uncertain diffusion-dominated actuator dynamics and uncertain coupled PDE-ODE systems. Moreover, the dissertation also investigates the state feed-back and output feedback stabilization for a class of coupled PDE-ODE systems with spatially varying coefficient. For details, the main content of the dissertation consists of the following four parts:
     (Ⅰ) Adaptive stabilization for a class of heat equations
     This part is Chapter2of the dissertation, and studies the adaptive stabiliza-tion for a class of heat equations with uncertain control coefficient and boundary disturbance. By using Lyapunov direct method, the adaptive state feedback con-troller is explicitly constructed, which guarantees that all the closed-loop system states are bounded while the original system states being L2stable. Particularly, the original system states converge to zero while the boundary disturbance van-ishing. It is worthwhile to point out that, the designed controller only requires the measurements at one end of the heat equation, and hence reduces the burden of measurement in the existing literature. Moreover, by skilfully choosing initial condition of the parameter updating law, the restriction on the initial conditions of the system is moderately relaxed, which is usually described by the so-called compatible condition in the existing literature.
     (Ⅱ) Adaptive stabilization for ODE systems with uncertain diffusion-dominated actuator dynamics
     This part is Chapter3and4of the dissertation. Chapter3considers the adaptive state feedback stabilization for ODE systems with uncertain diffusion-dominated actuator dynamics. Comparing to the related literature, the problem under investigation is more difficult to solve due to the presence of the serious un-certainties. By introducing an infinite-dimensional backstepping transformation, a pivotal target system is firstly obtained, which makes the control design and per-formance analysis of the closed-loop system more convenient. Then, based on the certain equivalence principle and other developed adaptive techniques, an adaptive state feedback controller is designed, which guarantees all the closed-loop system states are bounded while the original systems states converging to zero. Chapter4studies the adaptive output feedback stabilization for ODE systems with uncer-tain diffusion-dominated actuator dynamics. Different from the last chapter where all the states of the actuator dynamics are measurable, only one of the bound-ary values of the actuator is available for feedback, and hence makes the control design much difficult. By constructing state observers, the estimations of the un-observable states are first obtained, then by the infinite-dimensional backstepping method and certain equivalence principle, the adaptive controller is constructed, which guarantees all the closed-loop system states are bounded while the original systems states converging to zero.
     (Ⅲ) Stabilization for coupled PDE-ODE systems with spatially varying coefficient
     This part is Chapter5of the dissertation, and investigates the stabilization of a class coupled PDE-ODE systems with spatially varying coefficient via both state feedback and output feedback. The system under consideration is more gen-eral than that of the related literature due to the presence of the spatially varying coefficient which makes problem more difficult to solve. By infinite-dimensional backstepping method, both state feedback and output feedback controllers are designed, which guarantee that the closed-loop system is exponentially stable in certain sense of norm. It is worth pointing out that, in the cases of the output feed-back, the restriction on the ODE subsystem in the existing results is completely removed by choosing appropriate state observer gains.
     (Ⅳ) Adaptive stabilization for uncertain coupled PDE-ODE sys-tems
     This part is Chapter6and7of the dissertation, and focuses on the adaptive stabilization for two classes of uncertain coupled PDE-ODE systems. Chapter6studies the adaptive stabilization for uncertain coupled PDE-ODE system with only one unknown parameter. The presence of the uncertainties makes the sys-tem under investigation essentially different from those in the existing literature, and results in the incapability of the existing methods. Motivated by the related works, adaptive controller is designed by using the infinite-dimensional backstep-ping method and certain equivalence method, which guarantees all the closed-loop system states are bounded while the original systems states converging to zero. Differently, Chapter7considers the adaptive stabilization for a class of uncer-tain coupled PDE-ODE systems with multiple unknown parameters, particularly there are unknown parameters exist in the ODE sub-system. Thus, the system under consideration is much general and much difficult to control. By the existing methods, particularly the infinite-dimensional backstepping method, the adap-tive controller is designed, which guarantees all the closed-loop system states are bounded while all the original systems states converging to zero.
     For the theoretical results obtained in the above four parts, the corresponding simulation examples are presented to illustrate the effectiveness of the proposed methods.
引文
[1]Lions J. L. Optimal control of systems governed by partial differential equa-tions[M], Berlin:Springer-Verlag,1971.
    [2]Wang P. K. C. and Tung F., Optimum control of distributed-parameters systems[J], Journal of Fluids Engineering,1964,86(1):67-79.
    [3]Butkovsky A. G., Egorov A. I. and Lurie K. A., Optimal control of dis-tributed systems (a survey of soviet publications)[J], SIAM Journal on Con-trol and Optimation,1968,6(3),437-476.
    [4]Russell D. L., Controllability and stabilizability theory for linear partial differential equations:recent progress and open questions[J], SIAM Review, 1978,20(4):639-739.
    [5]Dolecki S. and Russell D. L., A general theory of observation and control [J], SIAM Journal on Control and Optimation,1977,15(2):185-220.
    [6]钱学森,宋健,工程控制论[M],北京:科学出版社,1980.
    [7]宋健,于景元,李广元,人口发展过程的预测[J],中国科学,1980(9):920932.
    [8]王康宁,关肇直,弹性振动的镇定问题[J],中国科学,1976(2):133-148.
    [9]Fu X. Y., Yong J. M. and Zhang X., Exact controllability for multidimen-sional semilinear hyperbolic equations[J], SIAM Journal on Control and Op-timization,2007,46(5):1578-1614.
    [10]Glass O., Exact boundary controllability of 3-D Euler equation[J], ESAIM: Control, Optimisation and Calculus of Variations,2000,5(1):1-44.
    [11]Cara E. F., Burgos M. G. and Teresab L. d., Boundary controllability of parabolic coupled equations[J], Journal of Functional Analysis,2010,259(7): 1720-1758.
    [12]Gerdts M., Greif G., and Pesch H. J., Numerical optimal control of the wave equation:optimal boundary control of a string to rest in finite time[J], Mathematics and Computers in Simulation,2008,79(4):1020-1032.
    [13]Arada N. and Raymond J. P., Optimal control problems with mixed control-state constraints[J], SIAM Journal on Control and Optimization,2000, 39(5):1391-1407.
    [14]Gunzburger M. D. and Kunoth A., Space-Time adaptive wavelet methods for optimal control problems constrained by parabolic evolution equations[J], SIAM Journal on Control and Optimization,2011,49(3),1150-1170.
    [15]Meurer T., Thull D. and Kugi A., Flatness-based tracking control of a piezoactuated Euler-Bernoulli beam with non-collocated output feedback: theory and experiments[J], International Journal of Control,2008,81(3): 475-493.
    [16]Meurer T. and Kugi A., Tracking control for boundary controlled parabolic PDEs with varying parameters:Combining backstepping and differential flatness[J], Automatica,2009,45(5):1182-1194.
    [17]Pisano A., Orlov Y. and Usai E., Tracking control of the uncertain heat and wave equation via power-fractional and sliding-mode techniques[J], SIAM Journal on Control and Optimization,2011,49(2):363-382.
    [18]Orlov Y., Pisano A. and Usai E., Continuous state-feedback tracking of an uncertain heat diffusion process [J], Systems & Control Letters,2010,59(12): 754-759.
    [19]Smyshlyaev A., Orlov Y. and Krstic M., Adaptive identification of two un-stable PDEs with boundary sensing and actuation[J], International Journal of Adaptive Control and Signal Processing,2009,23(2):131-149.
    [20]Baumeister J., Demetriou M. A., Rosen I. G. and Scondo W., On-line param-eter estimation for infinite-dimensional dynamic systems[J], SIAM Journal on Optimization and Control,1997,35(2):678-713.
    [21]Orlov Y. and Bentsman J., Adaptive distributed parameter systems identi-fication with enforceable identifiability conditions and reduced-order spatial differentiation [J], IEEE Transactions on Automatic Control,2000,45(2): 203-216.
    [22]Zhao Z. X. and Guo B. Z., Adaptive simultaneous coefficient identification of a stable one-dimensional heat equation[C], in Proceedings of the 31th Chinese Control Conference, Hefei, China,2012:1280-1284.
    [23]Triggiani R., Boundary feedback stabilization of parabolic equations[J], Ap-plied Mathematics and Optimization,1980,6(1):201-220.
    [24]Kim J. U., Renardy Y., Boundary control of the Timoshenko beam[J], SIAM Journal on Control and Optimization,1987,25(6):1417-1429.
    [25]Lasiecka I., Triggiani R., Control Theory for Partial Differential Equations: Continuous and Approximation Theories[M], Cambridge:Cambridge Uni-versity Press,2000.
    [26]Boskovic D. M., Krstic M., Liu W. J., Boundary control of unstable heat equation via measurement of domain-averaged temperature[J], IEEE Trans-actions on Automatic Control,2001,46(12):2022-2028.
    [27]Liu W. J., Boundary feedback stabilization of an unstable heat equation [J], SIAM Journal on Control and Optimization,2004,42(3):1033-1043.
    [28]Smyshlyaev A., Krstic M., Closed-form boundary state feedbacks for a class of 1-D partial integro-differential equations[J], IEEE Transactions on Auto-matic Control,2004,49(12):2185-2202.
    [29]Krstic M., Smyshlyaev A., Adaptive boundary control for unstable parabolic PDEs-Part I:Lyapunov design [J], IEEE Transactions on Automatic Control, 2008,53(7):1575-1591.
    [30]Smyshlyaev A., Krstic M., Adaptive boundary control for unstable parabolic PDEs-Part Ⅱ:Estimation-based designs[J], Automatica,2007,43 (9):1543-1556.
    [31]Smyshlyaev A., Krstic M., Adaptive boundary control for unstable parabolic PDEs-Part Ⅲ:Output feedback examples with swapping identifiers[J], Automatica,2007,43(9):1557-1564.
    [32]Guo B. Z. and Guo W., Adaptive stabilization for a Kirchhoff-type nonlinear beam under boundary output feedback control[J], Nonlinear Analysis,2007, 66(2):427-441.
    [33]Liu W. J., Krstic M., Adaptive control of Burgers' equation with unknown viscosity[J], International Journal of Adaptive Control and Signal Process-ing,2001,15(7):745-766.
    [34]Nguyen Q. C., Hong K. S., Asymptotic stabilization of a nonlinear axially moving string by adaptive boundary control[J], Journal of Sound and Vi-bration,2010,329(22):4588-4603.
    Fard M. P., Sagatun S. I., Exponential stabilization of a transversely vibrat- ing beam by boundary control via Lyapunov's direct method[J], Journal of Dynamic Systems, Measurement, and Control,2001,123(2):195-200.
    [36]Zienkiewicz O. C. and Taylor R. L., The Finite Element Method (Fourth Edition) [M], London, McGRAW-HILL BOOK COMPANY,1977.
    [37]Duffy D. J., Finite Difference Methods in Financial Engineering[M], Chich-ester, West Sussex, England, John Wiley & Sons Ltd,2006.
    [38]Nguyen P. A. and Raymondb J. P., Pointwise control of the Boussinesq system[J], Systems & Control Letters,2011,60(4):249-255.
    [39]Bamieh B., Paganini F. and Dahleh M. A., Distributed control of spatially invariant systems[J], IEEE Transactions on Automatic Control,2002,47(7): 1091-1107.
    [40]Bohm M., Demetriou M. A., Reich S. and Rosen I. G., Model reference adap-tive control of distributed parameter systems[J], SIAM Journal on Control and Optimization,1998,36(1):33-81.
    [41]Hong K. S. and Bentsman J., Direct adaptive control of parabolic systems: algorithm synthesis and convergence and stability analysis[J], IEEE Trans-actions on Automatic Control,1994,39(10):2018-2033.
    [42]Kim J. Y. and Bentsman J., Disturbance rejection in a class of adaptive control laws for distributed parameter systems[J], International Journal of Adaptive Control and Signal Processing,2009,23(2):166-192.
    [43]Kim J. Y. and Bentsman J., Robust model reference adaptive control of parabolic and hyperbolic systems with spatially-varying parameters[C], in Proceedings of the 44th IEEE Conference on Decision and Control and the European Control Conference, Seville, Spain,2005:1503-1508.
    [44]Ammari K., Dirichlet boundary stabilization of the wave equation[J], Asymptotic Analysis,2002,30(2):117-130.
    [45]He W. and Ge S. S., Robust adaptive boundary control of a vibrating string under unknown time-varying disturbance[J], IEEE Transactions on Control Systems Technology,2012,20(1):48-58.
    [46]Qu Z. h., Robust and adaptive boundary control of a stretched string on a moving transporter[J], IEEE Transactions on Automatic Control,2001, 46(3):470-476.
    [47]Guo B. Z. and Guo W., High-gain adaptive regulator for a string equa-tion with uncertain harmonic disturbance under boundary output feedback control[J], Journal of Control Theory and Application,2003,1(1):35-42.
    [48]Nguyen Q. C. and Hong K. S., Asymptotic stabilization of a nonlinear ax-ially moving string by adaptive boundary control [J], Journal of Sound and Vibration,2010,329(22),4588-4603.
    [49]Kobayashi T. and Sakamoto T., Adaptive stabilization of Kirchhoff's non-linear strings by boundary displacement feedback [J], Mathematical Methods in The Applied Sciences,2007,30(10):1209-1221.
    [50]Smyshlyaev A. and Krstic M., Lyapunov adaptive boundary control for parabolic PDEs with spatially varying coefficients[C], in Proceedings of the American Control Conference, Minneapolis, Minnesota, USA,2006:41-48.
    [51]Smyshlyaev A. and Krstic M., Output-feedback adaptive control for parabolic PDEs with spatially varying coefficients[C], in Proceedings of the 45th IEEE Conference on Decision & Control, San Diego, CA, USA,2006: 3099-3104.
    [52]Shin I. A., On Adaptive Boundary Control for Stochastic Parabolic Systems with Unknown Potential Coefficient [J], IEEE Transactions on Automatic Control,1997,42(3):350-363.
    [53]Queiroz M. S., Dawson D. M., Nagarkatti S. P., Zhang F. M., Lyapunov-Based Control Of Mechanical Systems[M], Boston:Birkhauser,2000.
    [54]Krstic M., On global stabilization of Burgers'equation by boundary con-trol[J], Systems and Control Letters,1999,37(3):123-141.
    [55]Yang W. Y., Cao W., Chung T. S., Morris. J. M., Applied Numerical Meth-ods Using Matlab[M], Hoboken, New Jersey:John Wiley & Sons,2005.
    [56]Wang J H, Pu J S and Moore P. A practical control strategy for servo-pneumatic actuator systems[J], Control Engineering Practice,1999,7(12): 1483-1488.
    [57]Sorli M., Gastaldi L., Codina E. and Heras S., Dynamic analysis of pneu-matic actuators[J], Simulation Practice and Theory,1999,7(5-6):589-602.
    [58]Tarkiainen M. and Shiller Z., Time optimal motions of manipulators with actuator dynamics[C], in Proceedings of IEEE International Conference on Robotics and Automation, Atlanta, GA, USA,1993,2:725-730.
    [59]Su C. Y. and Stepanenko Y., Hybrid adaptive/robust motion control of rigid-link electrically-driven robot manipulators[J], IEEE Transactions on Robotics and Automation,1995,11(3):426-432.
    [60]Dawson D. M., Qu Z. and Carroll J. J., Tracking control of rigid-link electrically-driven robot manipulators[J], International Journal of Control, 1992,56(5):991-1006.
    [61]Sekhavat P., Wu Q. and Sepehri N., Lyapunov-based friction compensation for accurate positioning of a hydraulic actuator[C], in Proceedings of the American Control Conference, Boston, Massachusetts, USA,2004:418-423.
    [62]Anupoju C. M., Su C. Y. and Oya M., Adaptive motion tracking control of uncertain nonholonomic mechanical systems including actuator dynamics[J], IEE Proceedings Control Theory and Application,152(5):575-580.
    [63]Chwa D., Choi J. Y. and Seo J. H., Compensation of actuator Dynamics in nonlinear missile control[J], IEEE Transaction on Control System Technol-ogy,12(4):620-626.
    [64]Krstic M., Compensating actuator and sensor dynamics governed by diffu-sion PDEs[J], Systems and Control Letters,58(5):372-377.
    [65]Susto G. A. and Krstic M., Control of PDE-ODE cascades with Neumann interconnections[J], Journal of Franklin Institute,347(1):284-314.
    [66]Krstic M. and Smyshlyaev A., Backstepping boundary control for first or-der hyperbolic PDEs and application to systems with actuator and sensor delays[J], Systems and Control Letters,57(9):750-758.
    [67]Krstic M., On compensating long actuator delays in nonlinear control[J], IEEE Transactions on Automatic Control,53(7):1684-1688.
    [68]Krstic M. and Pietri D. B., Delay-adaptive full-state predictor feedback for systems with unknown long actuator delay[C], in Proceedings of the Amer-ican Control Conference, St. Louis, Missouri, USA,2009:4500-4505.
    [69]Pietri D. B. and Krstic M., Adaptive trajectory tracking despite unknown input delay and plant parameters[J], Automatica,2009,45(9):2074-2081.
    [70]Krstic M., Compensating a string PDE in the actuation or sensing path of an unstable ODE[J], IEEE Transactions on Automatic Control,2009,54(6): 1362-1368.
    [71]Liberis N. B., Compensating the distributed effect of a wave PDE in the ac-tuation or sensing path of MIMO LTI systems[J], Systems & Control Letters, 2010,59(11):713-719.
    [72]Do K. D. and Pan J., Boundary control of three-dimensional inextensible marine risers[J], Journal of Sound and Vibration,2009,327(3-5):299-321.
    [73]Khalil H. K., Nonlinear Systems (Third Edition) [M], Prentice Hall, Upper Saddle River, New Jersey,2002.
    [74]Cao Y. Y. and Lam J., Robust H∞ control of uncertain markovian jump systems with time-delay[J], IEEE Transactions on Automatic Control,2000, 45(1):77-83.
    [75]Tang S. X. and Xie C. K., State and output feedback boundary control for a coupled PDE-ODE system[J], Systems and Control Letters,2011,60(8): 540-545.
    [76]Tang S. X. and Xie C. K., Stabilization for a coupled PDE-ODE control system[J], Journal of the Franklin Institute,2011,348(8):2142-2155.
    [77]Zhou Z. C. and Tang S. X., Boundary stabilization of a coupled wave-ODE system[C], in Proceedings of the Chinese Control Conference, Yantai, China, 2011:1048-1052.
    [78]Lynch A. F. and Wang D., Flatness-based control of a flexible beam in a gravitational field[C], in Proceedings of American Control Conference, Boston, Massachusetts,2004:5449-5454.
    [79]Witkowski W. R. and Rawlings J. B., Modelling and control of crystalliz-ers[C], in Proceedings of American Control Conference, Minneapolis, MN, USA,1987:1400-1405.
    [80]Masoud A. A. and Masoud S. A., A self-organizing, hybrid PDE-ODE struc-ture for motion control in informationally-deprived situations[J], in Proceed-ings of the IEEE Conference on Decision and Control, Tampa, Florida, USA, 1998:2535-2540.
    [81]Baicu C. F., Rahn C. D. and Dawson D. M., Backstepping boundary control of flexible-link electrically driven gantry robots[J], IEEE/ASME Transac-tions on Mechatronics,1998,3(1):60-66.
    [82]Morgiil O., Orientation and stabilization of a flexible beam attached to a rigid body:planar motion[J], IEEE Transactions on Automatic Control, 1991,36(8):953-962.
    [83]Dawson D. M., Carroll J. J. and Schneider M., Integrator backstepping control of a brush DC motor turning a robotic load[J], IEEE Transactions on Control Systems Technology,1994,2(3):233-244.
    [84]Chentouf D. B., A note on stabilization of a hybrid PDE-ODE system[C], in Proceedings of the IEEE Conference on Decision and Control, Orlando, Florida, USA,2001:137-142.
    [85]d'Andrea-Novel B. and Coron J. M., Exponential stabilization of an over-head crane with flexible cable via a back-stepping approach[J], Automatica, 2000,36(4):587-593.
    [86]d'Andrea-Novel B., Boustany F., Conrad F. and Rao B. P., Feedback stabi-lization of a hybrid PDE-ODE systems:application to an overhead crane[J], Mathematics of Control, Signals, and Systems,1994,7(1):1-22.
    [87]d'Andrea-Novel B., Boustany F. and Conrad F., Control of an overhead crane:stabilization of flexibles[M], Lecture Notes in Control and Information Sciences,1992,178:1-26.
    [88]Moghadam A. A., Aksikas I., Dubljevic S. and Forbes J. F., LQ control of coupled hyperbolic PDEs and ODEs:Application to a CSTR-PFR sys-tem[C], in Proceedings of the Ninth International Symposium on Dynamics and Control of Process Systems, Leuven, Belgium,2010:713-718.
    [89]Panjapornpon C., Limpanachaipornkul P. and Charinpanitkul T., Control of coupled PDEs-ODEs using input-output linearization:application to crack-ing furnace[J], Chemical Engineering Science,2012,75(16):144-151.
    [90]Miletic M. and Arnold A., Euler-Bernoulli beam with boundary control:Sta-bility and FEM[C], in Proceedings in Applied Mathematics and Mechanics, 2011,11(1):681-682.
    [91]Krstic M., Kanellakopoulos I. and Kokotovic P., Nonlinear and Adaptive Control Design[M], John Wiely & Sons, Boston,1995.
    [92]Dubljevic S., Farra N. H. E., Mhaskar P. and Christofides P. D., Predictive control of parabolic PDEs with state and control constraints[J], International Journal of Robust and Nonlinear Control,2006,16(16):749-772
    [93]Dubljevic S., Mhaskar P., Farra N. H. E. and Christofides P. D., Predictive control of transport-reaction processes[J], Computers and Chemical Engi-neering,2005,29(11-12):2335-2345.
    [94]Fridman E. and Orlov Y., H∞ boundary control of semilinear heat processes and distributed mechanical oscillators:an LMI approach[C], in Proceedings of the 47th IEEE Conference on Decision and Control, Cancun, Mexico, 2008:853-858.
    [95]Smyshlyaev A., Cerpa E. and Krstic M., Boundary stabilization of an anti-stable wave equation with in-domain anti-damping[C], in Proceedings of the 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, Shanghai, P.R. China,2009:2363-2368.
    [96]Nicaise S. and Pignotti C., Stabilization of the wave equation with variable coefficients and boundary condition of memory type[J], Asymptotic Analy-sis,2006,50(1-2):31-67.
    [97]Krstic M., Guo B. Z., Balogh A. and Smyshlyaev A., Output-feedback sta-bilization of an unstable wave equation[J], Automatica,2008,44(1):63-74.
    [98]Guo B. Z. and Guo wei, The strong stabilization of a one-dimensional wave equation by non-collocated dynamic boundary feedback control[J],2009, Au-tomatica,45(3):790-797.
    [99]Nowakowski A., Sufficient optimality conditions for Dirichlet boundary con-trol of wave equations, SIAM Journal on Control and Optimization[J],2008, 47(1):92-110.
    [100]Sano H., Output tracking control of a parallel-flow heat exchange process[J], Systems & Control Letters,2011,60(11):917-921.
    [101]Meurer T. and Kugi A., Tracking control design for a wave equation with dynamic boundary conditions modeling a piezoelectric stack actuator[J], In-ternational Journal of Robust and Nonlinear Control,2011,21(5):542-562.
    [102]Guo B. Z., Xu C. Z. and Hammouri H., Output feedback stabilization of a one-dimensional wave equation with an arbitrary time delay in boundary observation[J], ESAIM:Control, Optimisation and Calculus of Variations, 2012,18(1):22-3.5
    [103]Krstic M., Adaptive control of an anti-stable wave PDE[C], in Proceedings of American Control Conference, St. Louis, MO, USA,2009,1505-1510.
    [104]Guo W. and Guo B. Z. and Shao Z. C., Parameter estimation and stabi-lization for a wave equation with boundary output harmonic disturbance and non-collocated control[J], International Journal of Robust and Nonlin-ear Control,2010,21(11):1297-1321.
    [105]Smyshlyaev A., Guo B. Z. and Krstic M., Arbitrary decay rate for Euler-Bernoulli beam by backstepping boundary feedback[J], IEEE Transaction on Automatic Control,2009,54(5):1134-1140.
    [106]Guo B. Z. and Jin F. F., Backstepping approach to the arbitrary decay rate for Euler-Bernoulli beam under boundary feedback[J],2010,83(10): 2098-2106.
    [107]Guo B. Z. and Yang K. Y., Dynamic stabilization of an Euler-Bernoulli beam equation with time delay in boundary observation[J], Automatica, 2009,45(6):1468-1475.
    [108]Ge S. S., Zhang S. and He W., Vibration control of an Euler-Bernoulli beam under unknown spatiotemporally varying disturbance[J], International Journal of Control,2011,84(5):947-960.
    [109]Guo B. Z. and Guo W., Stabilization and parameter estimation for an Eu-ler-Bernoulli beam equation with uncertain harmonic disturbance under boundary output feedback control[J], Nonlinear Analysis,2005,61():671-693.
    [110]Ge S. S., Zhang S. and He W., Vibration control of a flexible Timoshenko beam under unknown external disturbances[C], in Proceedings of the 30th Chinese Control Conference, Yantai, China,2011:1031-1036.
    [111]Krstic M., Guo B. Z., Balogh A. and Smyshlyaev A., Control of a tip-force destabilized Shear beam by observer-based boundary feedback[J], SIAM Journal on Control and Optimization,2008,47(2):553-574.
    [112]Wang J. M., Guo B. Z. and Chentouf B., Boundary feedback stabilization of a three-layer sandwich beam:Riesz basis approach[J], ESAIM:Control, Optimisation and Calculus of Variations,2006,12(1):12-34.
    [113]Krstic M., Magnis L. and Vazquez R., Nonlinear stabilization of shock-Like unstable equilibria in the viscous burgers PDE[J], IEEE Transactions on Automatic Control,2008,53(7):1678-1683.
    [114]King B. B. and Krueger D. A., Burger's equation:Galerkin least-squares approximations and feedback control[J], Mathematical and Computer Mod-elling,2003,38(10):1075-1085.
    [115]Park H. M. and Jang Y. D., Control of Burgers equation by means of mode reduction[J], International Journal of Engineering Science,2000,38(7):785-805.
    [116]He W., Ge S. S., How B. V. E., Choo Y. S. and Hong K. S., Robust adaptive boundary control of a flexible marine riser with vessel dynamics[J], Auto-matica,2011,47(4):722-732.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700