用户名: 密码: 验证码:
赣南粤北地区风化壳离子吸附型稀土矿床研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:The Study of Ion-Adsorbed Type of Rare Earth Deposits in Weathering Crust from South Jiangxi and North Guangdong Provinces
  • 作者:吴澄宇
  • 论文级别:博士
  • 学科专业名称:矿床学
  • 学位年度:1988
  • 导师:宋叔和 ; 黄典豪
  • 学科代码:070901
  • 学位授予单位:中国地质科学院
  • 论文提交日期:1988-10-20
摘要
60年代末由原江西908地质大队在江西省龙南县首次发现的风化壳离子吸附型稀土矿床是目前我国华南独具特色的稀土矿床类型,它不仅配分种类齐全,而且开采、选冶简易,是我国十分重要的稀土资源。近年来,随着稀土应用领域的不断发展和扩大,特别是在制造高温超导材料方面的优异性能,使其愈益显示出巨大的经济价值。论文的工作区位于江西南部和广东北部,作者在前人工作的基础上,从地壳发展演化的观点出发,深入研究了内生和表生地质作用中REE地球化学特性与成矿的关系。全文分上、下两篇。上篇通过三个矿区的实例详细论述了内生作用中REE分馏机制的多样性,并依据地质构造背景、同位素特征和锆石群型等资料讨论了花岗岩成因系列与REE演化的关系,指出岩浆演化的局部物理化学环境是控制REE分馏作用的关键因素。下篇对风化壳的发育及其物质组成、REE的分布型式和矿化特征以及表生地球化学环境作了深入研究,并通过一系实验证明REE的成矿作用是一种不平衡过程,偿试运用耗散结构理论讨论了REE富集的动力学机制。论文的最后部分对本区风化壳发育的地貌条件进行了分析,运地势起伏度(R)编制了1∶50万地貌分区与风华化(?)稀土矿床(点)分布关系图,为成矿远景评价提供了依据。
First discovered in the late of 1960's in Longnan County, Jiangxi Province, the Zudong ion-adsorbed rare earth deposit is proved to be a new type of rare earth, especially yttrium, resources of China. Later on, this new type of deposits with variety of REE distribution patterns is widely discovered in several provinces of south China and shows significant economic values in industry.
     The investigation area of this paper is focused on the southern part of Jiangxi and the northern part of Guangdong Provinces where, in tectonic sense, overlap both the post-Caledonian uplifts and the Hercynian-Indosinlan depressions. Since the late of tertiary, warm and humid climate and gentle hilly toporgraphy have provided favourable conditions for development of weathering crust of monosiallitization type. The weathering -crust is composed of three zone s from top to bottom: (1) sell zone, 0.5 to 2 m in thickness, consisting of kaolinite-halloysite(7A)- gebbslte-goethlte in assemblage; (2) weathered zone which is about 3 to 20 m in thickness has halloysite(7A) and kaolinite as the main clay minerals;
     (3) sub-weathered zone composed of halloysite(7A), kaolinite, some montmorilonite and significant amount of quartz and feldspar fragments. The abrasion pH values are increased from 4.5 at the top of the profile to 6.3-6.5 at the bottom.
     Rare earth ore bodies, 3 to 10 m in thickness, occur in layer-like form in weathering crust, mainly in weathered zone, of various granitic rocks or intermidiate- basic igneous rocks. The average grades range from 0.08-0.2% RE_2O_3 wiht 0.7% as the highest and 0.04% as the lowest. Most of REE can be extracted by leaching solutions, e.g. NaCI, (NH_4)_2 SO_4, etc. The leaching percentages range from 50 to 90%.
     The REE distribution patterns of ores are inherited from parent rocks, although there occur slight fractlonatlons among individual REE during weathering process. According to∑Ce_2O_3 /∑Y_2O_3 ratio and Y_2O_3 and Eu_2O_3 percentage in total RE_2 O_3 of ores, the deposits can be divided into five categories. The frequency of the size of deposits obeys logarithmic index distribution withλ= 0.54.
     In general, REE contained in rock-forming minerals of parent rocks provide only 5 to 50% contributions to the total amount of REE in whole rocks. Accessory minerals, especially rare earth minerals, play most important roles in determining not only REE fractlonatlons during endogenic process, but also REE remobillzatlon in weathering process during which an empirical sequence for susceptibility of rare earth minerals is as follows: carbonates with fluorites, sillicates, niobates and tantalates, arsenites and phorsphates.
     In endogenic environments, there are mainly five ways for REE fractionations: (1) partial melting; (2) fractional crystallization; (3) thermogravitational diffusion; (4) hydrothermalism and (5) differentiation of metamorphism and migmatism. The (1) and (5) lead to enrichment of LREE and the (2) and (3) are the most important processes for HREE concentration in magma. The
     (4) has both effects according to the features of the involved hydrothermal fluids. To highlight the variety of mechanism for REE fractionations, three examples are discussed in detail. Based on the data of tectonic setting, Pb and Sr isotopic compositions and population types of zircon, the relationship between genesis of granitic rocks and evolution of REE is also discussed. It ks concluded that local phisycochemical environment of magma is a key constraint to REE fractionations.
     Through the lnvestegations of the variations of chemical compositions, mineral components and REE distribution patterns in weathering profiles, combined with REE contents and light stable isotopic compositions of oxygen and hydrogen of spring waters and kaolinite veins, it is proved that REE undergo migration and enrichment from soil zone to weathered zone
     The experiments of repeated extraction and leaching process under different pH conditions suggest that the adsorption of REE in clays has strong dependence on pH values. The measurements of C.E.C. and distribution coefficients of clays reveal that REE mineralization in weathering environment is a disequilbrium process. The dynamics of REE enrichment is disscused tentatively by using dissipative structure thoery.
     In the last part of the paper, the topographic conditions for development of weathering crust in this area are investigated and a map of 1:500,000 scale showing the relationship between the distribution of rare earth deposits/occurences of ion-adsorbed type and the topographic divisions is compiled by using the relief amplitude (R). It is suggested that the dissected hilly lands and less dissected highlands with R values ranging from 100 to 200 meters are the most favourable area for the ore-formatlon.
引文
[1] 江西省重工业局九○八地质队,1972,江西省龙南县足洞花岗岩风化壳离子吸附型重稀土矿床(简称七○一矿)地质勘探报告书
    [2] 江西赣南地调队、地科院矿床所、地质力学所,1986,江西足洞花岗岩风化壳富钇重稀土矿床,矿床专著,稀土金属矿产NO·4
    [3] 江西九○九地质队、九○八地质队、地科院地质矿产所,1974,赣南稀土、铌钽矿床地质特征与成矿规律初步研究
    [4] 王贤觉 沈丽璞 宋云华,1980,华南花岗岩稀土风化壳的实验研究,国际交流地质学术论文集(2),为26届国际地质大会撰写,地质出版社,P139—145
    [5] 杨岳清 胡淙声 罗展明,1981,离子吸附型稀土矿床成矿地质特征及找矿方向,中国地质科学院院报,矿床地质研究所分刊,第2卷,第1号,P102—118
    [6] 滕建蕾 游建浩,1983,江西南部某矿区花岗闪长岩风化壳离子吸附型稀土矿床地质特征的研究,第一届中国稀土地质矿山学术议论文集,地质部分
    [7] 齐玲仪,1974,易解石-钇易解石族的新变种——钛钇矿,地质学报,第1期,P91-94
    [8] 陈德潜 李成全,1979,砷钇矿的特征及其成因探讨,地质学报,第2期,P125-136
    [9] 杨主明,1984,江西龙南足洞花岗岩风化壳稀土矿床矿物研究,中国科学院地质研究所硕士论文
    [10] 阮道源 朱余德,1982,南岭稀土花岗岩带某地区的岩浆岩与稀土演化,花岗岩地质和成矿关系,国际学术会议论文集,徐克勤 涂光炽主编,江苏科学技术出版社,1984,南京,P645-657
    [11] 地质矿产部矿床地质研究所三室,1985,南岭花岗岩类岩石稀土元素地球化学研究报告(未刊)
    [12] 徐士进,1986,华南锡、钨(稀土、铌-钽)花岗岩的稀土元素地球化学特征及岩石成因研究,南京大学地质系博士论文
    [13] 宋云华 沈丽璞,1982,江西某酸性火山岩风化壳中粘土矿物及其形成条件的讨论,矿物学报,第3期,P207—212
    [14] 杨主明,1986,江西龙南花岗岩稀土风化壳中牯土矿物的研究,地质科学,第1期,P70—80
    [15] 宋云华 沈丽璞,1986,酸性火山岩类风化壳中稀土元素的地球化学 实验研究,地球化学,第3期,P225-234
    [16] 江西地矿局赣南地调队、实验测试中心,1987,赣南离子吸附型稀土成矿规律研究报告书(上、中、下册) (未刊)
    [17] 黄汲清 任纪舜等,1980,中国大地构造及其演化,科学出版社,北京
    [18] 南京大学地质学系,1981,华南不同时代花岗岩类及其与成矿关系,科学出版社
    [19] 江西省地矿局,1982,江西省区域地质志,地质专报,一、区域地质,第2号,地质出版社
    [20] 江西赣南地调队,1986,江西省寻乌县南桥风化壳稀土矿区初步勘探地质报告
    [21] E·阿列克谢耶夫,1978,稀土元素的原子结构、化学和晶体化学性质的地球化学意义,赵振华译,地质地球化学,第9期,P24-28
    [22] 吴澄宇,1984,河南栾川南泥湖-三道庄钼(钨)矿床、成矿岩体地质特征及成矿地质背景分析,南京大学地质系硕士论文
    [23] 袁忠信,白鸽等,1988,江西灵山花岗岩地质特征及其成岩成矿作用,北京科学技术出版社
    [24] 尹琳,1985,川口和杨林坳两种类型钨矿床的对比及其有关川口花岗岩的特征,南京大学地质系硕士论文
    [25] 胡志宏,1985,河南小秦岭金矿带成矿地质背景、成矿物质来源和金的迁移沉淀机理研究,南京大学地质系硕士论文
    [26] 王联魁等,1983,液态分离——南岭花岗岩分异方式之一,地质论评,第29卷,第2期,P21—30
    [27] 区域地质矿产调查报告(地质部分),1∶20万,寻乌幅,1973
    [28] 林传仙 白正华 张哲儒编著,1985,矿物及有关化合物热力学数据手册,科学出版社
    [29] 莫柱孙 叶伯丹等著,1980,南岭花岗岩地质学,地质出版社
    [30] 贺同兴,1987,混合岩化作用的地质成因分类,中国地质科学院院报,第16号,P95—98
    [31] 王德滋 马瑞士等,1985,断裂区域变质作用与混合化作用、花岗岩化作用研究,南京大学学报,第21卷,第3期,P537—544
    [32] 於崇文 骆庭川等,1987,南岭地区区域地球化学,地质专报,三、岩石 矿物 地球化学,第7号,地质出版社
    [33] 区域地质调查报告(区域地质),1∶20万,连县幅,1973
    [34] 马配学,1988,广东寨背顶稀土成矿花岗岩地球化学特征及岩石成因研 究,中国地破科学院研究生部硕士论文
    [35] 王濮 潘兆鲁等编著,1984,系统矿物学,地质出版社
    [36] 黄典豪 吴澄宇 韩久竹,1988,江西足洞和关西花岗岩的稀土元素地球化学及矿化特征,地质学报,第62卷,第4期,P327—344
    [37] 周小琪,1985,赣南关西-料坑稀土花岗岩岩浆演化及重稀土矿化蚀变,中南矿冶学院硕士论文
    [38] 邓访陵,1983,诸广山南体花岗岩类的同位素地质演化,中国科学院地球化学研究所年报(1982-1983),P229-232
    [39] 张德全 王雪英,1985,关于广西姑婆山-里松岩体定(侵)位和冷凝历史的探讨,地质论评,第31卷,第3期,P232—239
    [40] 戴永善,1985,金鸡岭岩体地质特征及其与铀成矿的关系,南京大学地质系硕士论文
    [41] 郑永飞,1985,6217矿床及有关花岗岩体成因的同位素地质研究,南京大学地质系硕士论文
    [42] 李向东,1987,广西花山花岗岩的地球化学和岩石成因,南京大学地质系硕士论文
    [43] 李双保,1982,江西灵山岩体岩石矿物特征及稀土元素地球化学,中国地质科学院研究生部硕士论文
    [44] 朱小荣,1984,福建魁歧晶洞钾长花岗岩熔融实验及稀土地球化学,中国地质科学院研究生部硕士论文
    [45] 朱金初 贾怀仁等,1984,华南某些含锡花岗岩的稀土配分及其成岩意义,南京大学学报,地质学增刊,总第4期,P81-96
    [46] 张绍立等,1985,用磷灰石中稀土元素判别花岗岩成矿系列,第1期,P45-57
    [47] 广东冶金地质九三五队,1979,广东省新丰县来石(回龙)稀土矿区地质勘探总结报告(1973-1979年)
    [48] 从献东,1985,粤东仁居花岗斑岩及有关岩石的稀土研究,中南矿冶学院硕士论文
    [49] 中国科学院贵阳地球化学研究所著,1979,华南花岗岩类的地球化学,科学出版社
    [50] 邓志成,1988,赣南大田重稀土花岗岩的特征与成因,桂林治金地质学院学报,第8卷,第1期,P39-48
    [51] 江西省地质局九○九大队,1977,江西寻乌县河岭稀土矿地质勘探报告(1972-1977年)
    [52] H·普赫尔特 R·埃默曼,1976,论火成岩和变质岩中磷灰石稀土模 型的意义,雷剑泉译,地质地球化学,1978,第5期,P17-21
    [53] 朱余德,1983,广东新丰稀土花岗岩的岩浆演化规律和稀土元素地球化学,中南矿冶学院硕士论文
    [54] 裘愉卓 包志伟,1987,花山和姑婆山花岗岩的两类稀土矿化,国际花岗岩成岩成矿作用学术讨论会论文摘要,广州,P172-173
    [55] 黄舜华等,1983,稀土氟碳酸盐矿物(RECO_(?)F)系列和稀土磷酸盐(REPO_4)矿物形成条件的实验研究,中国科学院地球化学研究所年报(1982-1983年)P121-123
    [56] 黄舜华 王中刚,1986,氟碳(?)矿形成条件的实验研究,矿物学报,第6卷,第2期P115-160
    [57] 郭承基著,1983,稀土矿物化学,中国工业出版社
    [58] 中国科学院贵阳地球化学研究所,1972,稀有元素矿物鉴定手册,科学出版社
    [59] 地质科学院地质矿产所稀有组编,1973,稀土矿物鉴定手册,地质出版社
    [60] 新矿物及矿物命名委员会,1984,英汉矿物种名称,科学出版社
    [61] H·G·F·温克勒著,1976,变质岩成因,张旗 周云生译,科学出版社,1980
    [62] 邓访陵,1987,诸广山南体和大容山岩带花岗岩类的铅同位素地化学及U—Pb计时研究,国际花岗岩成岩成矿作用学术讨论会论文摘要,广州,P42-44
    [63] 王鸿祯 杨巍然 刘本培主编,1986,华南地区古大陆边缘构造史,武汉地质学院出版社
    [64] 张绍立 王联魁 朱为方,1982,华南花岗岩类两个成岩成矿系列的副矿物组合特征和某些副矿物中的微量元素,花岗岩地质和成矿关系国际学术会议论文集,江苏科学技术出版社,1984,P634-644
    [65] 文启忠 余素华等,1981,黄土中稀土元素的初步探讨,地球化学,第2期,P151-157
    [66] 戴凤岩,1984,武汉地质学院北京研究生部硕士论文
    [67] 李石 吴国谋等,1981,一种新的重稀土矿化类型,地质地球化学,第12期,P47-48
    [68] 毛景文,1987,桂北BT锡矿稀土元素特征及其与成矿的关系,河北地质学院学报,第10卷,第3期,P273-288
    [69] 苏贤泽 潘晶铭,1975,锆英石类矿物的标型特征,全国稀有元素地质会议论文集,第一集,科学出版社,P254-263
    [70] 章邦桐 王学成 饶冰,1988,用锆石的群型特征区分不同成因花岗岩的实例,地质与勘探,第6期,P27-32
    [71] 洪大卫 郭文岐等著,1978,福建沿海晶洞花岗岩带的岩石学和成因演化,北京科学技术出版社
    [72] 江博明,1987,中国东南部花岗岩类同位素组成:岩石成因和构造含义,国际花岗岩成矿作用学术讨论会论文摘要,广州,P84-85
    [73] 王德滋 陈克荣等,1984,江西德兴银山火山机构特征及矿床成因研究,南京大学学报 地质学增刊,总第4期,P1-8
    [74] 叶瑛,1985,论华南钨矿化花岗岩及有关黑钨矿石英脉塑和矽卡岩型钨矿床的形成机制,南京大学地质系博士论文
    [75] 李亿斗 盛继福等,1986,西华山花岗岩下陆壳起源的证据,地质学报,第60卷,第3期,P256-272
    [76] 张理刚,1987,中国东部中生代花岗岩类岩石Pb、Sr、O同位素组成及其地质意义,国际花岗岩成矿作用学术讨论会论文摘要,广州,P314-315
    [77] 黄典豪 吴澄宇等,江西足洞、关西花岗岩体的铀-铅、(?)-锶体系同位素特征及其地质意义,岩石学报,出版中
    [78] 涂光炽等主编,1984,地球化学,上海科学技术出版社
    [79] 於崇文,1987,成矿作用与耗散结构,地质学报,第61卷,第4期,P335-349
    [80] 沈小峰 胡岗 姜璐编著,1987,耗敌结构论,上海人民出版社
    [81] 黄培华,1963,中国第四纪时期气候演变的初步探讨,科学通报,第1期,P34-39
    [82] 成都地质学院陕北队编,1978,沉积岩(物)粒度分析及其应用,地质出版社
    [83] 三枝 田琦,1978,火山灰中由斜长石风化所产生的埃洛石的微观形态学研究,黄文盛译,粘土和粘土矿物译文选辑,第二辑,浙江地质科学研究所,1984
    [84] 韩秀伶 陈开惠,1982,高岭石-多水高岭石演化系列的红外吸收光谱研究,地质科学,第1期,71-79
    [85] 须藤俊男著,粘土矿钧学,严寿鹤等译,地质出版社,1981
    [86] 卢海龙,1988,广东乳源寨背顶风化壳离子吸附塑稀土矿床地球化学,中国地质科学院研究生部硕士论文
    [87] 乔斯盖·米尔特洛,1978,粘土成因,徐步台译,粘土和粘土矿物译文选辑,浙江地质科学研究所,1981
    [88] 石凤 朱天培 倪嘉(?),1985,稀土生物无机化学(Ⅰ),稀土,第3期,P56-64
    [89] 邓衍蕃,1985,用土壤pH值寻找花岗岩风化壳隐伏淋滤吸附型稀土矿的偿试,地质地球化学,第2期,P72-76
    [90] 地质矿产部科学技术司,1984,膨润土矿物化性能测试暂行绕-方法,湖北科学技术出版社
    [91] 秦启宗 毛家骏等,1984,化学分离法,原子能出版社
    [92] 李有谟 徐文,1982,稀土洗出次序的研究(Ⅱ);稀土在丙酸铵溶液-阳离子交换树脂体系中分配系数的测定,稀土化学论文集,科学出版社,P57-62
    [93] 尹国康,1986,地貌发育的趋向与变异,地理学报,第41卷,第3期,P241-253
    [94] 朱炳泉 范嗣昆,1979,根据同位素年龄与封闭温度研究地质体的热历史与磁历史,地质地球化学,第6期,P35-37
    [95] 黄玉昆,1982,我国南海沿岸新构造运动的基本特征,第三届全国第四纪学术会议论文集,科学出版社,P195-201
    [96] 刘尚仁,1986,粤北地貌的形成发育和生产利用,中山大学学报自然科学版,第1期,P57-64
    [97] 陈祥高 张忠奎 (?)文秀,1986,北京房山花岗闪长岩中锆石的裂变径迹年龄测定和热历史研究,岩石学报,第2卷,第1期,P40-44
    [98] 张忠奎 陈祥高 (?)文秀,1986,西藏康马多得乡花岗岩的裂变径迹年龄和上升速度研究,岩石学报,第2卷,第1期,P45-49
    [99] P·K·Zeitler等,1982,利用裂变径迹退火年龄探讨巴基斯坦喜马拉雅山区一个缝合带的去顶历史,张忠奎译,地质地球化学,1985,第6期,P56-61
    [100] 杨怀仁,1985,中国造貌运动与地貌学基本理论问题,第四纪冰川与第四纪地质论文集,第二集,地质出版社
    [101] 邓起东,1982,中国的活动断裂,中国活动断裂,科学出版社,P19-27
    [102] 刘昌森,1982,华南地区新华夏系构造挽近活动及其与地震的关系,中国活动断裂,科学出版社,P181-189
    [103] 熊广政 冯敏,1965,花岗岩红色风化壳的特征:以赣南东部为例,中国第四纪研究,第4卷,第2期,P55-67
    [104] 中国科学院南海海洋研究所,1978,华南沿海第四纪地质,科学出版社
    [105] 区域地质矿产调查报告书,1∶20万,龙南幅
    [106] J·德梅克主编,1972,详细地貌制图手册,陈志明 尹泽生译,科学出版社,1984
    [107] Roaldset, E., 1973, Rare earth elements in Quaternary clays of Numedal area. South Norway, LITHOS, Vol.6, No.4, pp.349-372.
    [108] Piper, D.Z., 1974, Rare earth elements in the sedimentary cycle: a summary, Chem. Geol. Vol.14,pp.285 -301.
    [109] Nance, W.B. and Taylor, S.R., 1976, Rare earth element patterns and crustal evolution - I: Australian post-Archean sedimentary rocks, Geoch. Cosmoch. Acta.Vol.40, No.12, pp.1539-1550.
    [110] Henderson, P., ed., 1984, Rare earth elements geochemistry: Developments in geochemistry 2, Elsevier.
    [111] Nesbitt, H.W.. 1979, Mobility and fractionation of rare eath elements during weathering of a granodiorite, Nature, Vol.279, pp.206-210.
    [112] Duddy, L.R., 1980, Redistribution and fractionation of rare-earth and other elements in a weathering profile, Chem. Geol., Vol.30. No.4. pp.363-381.
    [113] Emraermann. R. et al.,1975, Petrologic significance of rare earth distribution in granite, Contri. Mineral. Petrol.. Vol.52, No.4, pp.267-284.
    [114] Herrmann, A.G.. 1978, Yttrium and Lanthanides, Handbook of geochemistry, Vol.II-5, Springer-Verlag. Berlin , pp.57-71-A to 57-71-0.
    [115] Haskin. L.A., 1979, Geochemistry and mineralogy of the rare earths, Chapter 21, Handbook on the physics and chemistry of rare earths, vol.3, North-Holland Publishing Company, pp.1-80.
    [116] Allegre, C.J. and Minster. J.F.. 1978. Quatitative models of trace elements behavior in magmatic processes , Earth Planet. Sci. Lett., Vol.38, pp.1-25.
    [117] Hanson, G.N.. 1978, The application of trace elements to petrogenesis of igneous rocks of granitic composition, Earth Planet. Sci. Lett.. Vol.38, pp.26-43.
    [118] Hanson, G.N., 1980, Rare earth elements in petrogene-tic studies of igneous systems, Ann. Rev. Earth Plant. Sci.. Vol.8. pp.371-406.
    [119] Arth, J.G., 1976, Behavior of trace elements during magmatic processes - a summmary of theoritical models and their applications, J. Res. U.S. Geol. Surv., Vol.4, pp.41-47.
    [120] Watson. E.B. and Harrison, T.M.. 1984, Accessry minerals and the geochemical evolution of crustal magmatic systems: a summary and prospectus of experimental approches, Phys. Earth. Planet. Inter., Vol.35, pp.19-30.
    [121] Miller, C.F. and Mitt1efehdlt. D.W.. 1982, Depletion of light rare-earth elements in felsic magmas, Geology, Vol.10, pp.129-133.
    [122] Hildreth, W., 1979, The Bisop tuff: evidence for the origin of compositional zonation in silicic magma chambers, in Ash Fllow Tuffs, Goel. Soc. Am., Spec. Paper, Vol.180, pp.43-75.
    [123] Ludington, S.,1981, The Redskin granite: evidence for thermogravitational diffusion in a Precambrian granite batholith, Jour. Geophys. Res., Vol.86, No.B11. pp.10423-10430.
    [124] Flynn. R.T. and Burnham, C.W., 1978, An experimental determination of rare earth partition coefficients between a chloride containing phase and silicate melts, Geoch. Cosmoch. Acta, Vol.42, pp.685-701.
    [125] Bilal, B.A. et al.. 1979, Complex formation of trace elements in geochemical systems I: Potentionmetric study of fluoro complexes of rare earth elements in fluorite-bearing model systems, Jour. Inorg. Nuclear Chem., Vol.41, pp.347-350.
    [126] Wendlandt, R.F. and Harrison. W.J.. 1979, Rare earth partioning between immiscible carbonate and silicate liquids and CO vapor: results and implications for the formation of light rare aarth-enriched rocks, Contr Mineral. Petrol.. Vol.69, pp.409-419.
    [127] Taylor, R.P. and Fryer, B.J.. 1982. Rare earth elements geochemistry as an aid to interpreting hydro-thermal ore deposits, in Metallization Associated with Acid Magmatism, John Wiley & Sons Ltd.
    [128] Green, T.H. et al., 1969, Rare earth element distribution in anothosites and associated high grade metamor-phic rocks, Lofoten-Vesteraalen, Norway, Earth Planet. Sci. Lett.. Vol.7, No.2, pp.93-98.
    [129] Herrmann, A.G. et al.,1974, Geochemistry of the rare earth elements in spilites from the oceanic and continental crust, Contr. Mineral. Petrol. Vol.44, No.1. pp.1-16.
    [130] Shaw, D.M., 1978, Trace element behaviour during anatexis in the presence of a fluid phase, Geoch. Cosmoch. Acta. Vol.42, pp.933-943.
    [131] Watson, E.B., 1976, Two-liquid partition coefficients: experimental data and geochemical implications, Contr. Mineral. Petrol.. Vol.56, pp.119-134.
    [132] Langmuir, C.H. et al., 1978. A general mixing equation with application to Icelandic basalts, Earth Planet. Sci. Lett., Vol. p.380
    [133] Wones D.R. and Eugster, H.P., 1965, Stability of biotite : experiment, theory and application, Am. Mineral.. Vol.50, pp.1228-1272.
    [134] Pearce, J.A. et al., 1984, Trace element discrimination diagrams for the tectonic interpretation of granitic rocks, Jour. Petrol.. Vol.25, No.4, pp.956-983.
    [135] Watson, E.B., 1979, Zircon saturation in felsic liquid: experimental results and application to trace element geoccemistry, Contr. Mineral. Petrol., Vol.70, pp.407-419.
    [136] Taylor, Jr. H.P., 1980, The effects of assimilation of country rocks by magmas on O/O and Sr/ Srsystematics in igneous rocks. Earth Planet. Sci. Lett. Vol.47, pp.243-254.
    [137] DePaolo, D.J., 1981, Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization, Earth Planet. Sic. Lett., Vol.53, PP.189-202.
    [138] Gromet, L.P. and Silver, L.T., 1983, Rare earth element ditribution among minerals in a granodiorite and their petrogenetic implications, Geoch. Cosmoch. Acta, Vol.47, pp.925-939.
    [139] Mysen, B.O. et al., 1981, The strctural role of phosphorus in silicate melts, Am. mineral., Vol.66, PP.106-117.
    [140] Chappel, B.W. and White, A.J.R., 1974, Two contrasting granite types, Pacific Geology, Vol.8, pp.173-174.
    [141] Ishihara, S., 1977, The magnetite-series and the ilmenite-series granitic rocks, Mining Geology, Vol.27, PP.293-305.
    [142] Pupin, J.P., 1980, Zircon and granite petrology, Contr. Mineral. Petrol., Vol.73, pp.207-219.
    [143] Pitcher, W.S., 1983, Granite type and tectonic environment : in Mountain building processes, ed. Kenneth J. Hus, Academic Pr., London.
    [144] Loisell, M.C. and Wones, D.R., 1979, Characteristics and origin of anorogenic granites, Geol. Soc. Am. Abstr. with Progr., Vol.11, p.468.
    [145] Balashov, Yu. A. and Tugarinov, A.I., 1976, Abundance of rare-earth elements in the earth's crust: evidence for origin of granites and recent sedimentary rocks, Geochem. Jour.. Vol.10, pp.103-106.
    [146a] Holdren, G.R.Jr. and Berner, R.A., 1979, Mechanism of feldspar weathering I: experimental studies, Geoch. Cosmoch. Acta, Vol.43, pp.1161-1171.
    [146b] Berer, R.A. and Holdren, G.R. Jr., 1979, Mechanism of feldspar weathering II: observations of feldspars from soils, Geoch. Cosmoch. Acta, Vol.43, pp.1173-1186.
    [147] Eswaran, H. and Bin, W.C., 1978, A study of a deep weatering profile on granite in Peninsular Malaysia, J. Soil Sci. Soc. Am., Vol.42, pp.144-158.
    [148] Grim, R.E., 1968. Clay Mineralogy, 2nd ed. McGraw-Hill, New York.
    [149] Siefferman, G. and Millot, G., 1969, Equatorial and tropical weathering of recent basalts from Cameron: allophanes, halloysite, metahalloysite, kaolinite and gibbsite, Proceedings of the International Clay Conference , Tokyo, Japan, 5-19 Sep. Vol.1, pp.417-430.
    [150] Samama, J.C,1986, Ore fields and continental weathering, Van Nostrand Reinhold Company, New York.
    [151] Yariv, S. and Cross, H., 1979, Geochemistry of colloid systems for earth scientists, Berlin, Springer-Verlag.
    [152] Brookins, D.G., 1983, Eh-pH diagrams for the rare earth elements at 25 C and one bar pressure, Geochem. Jour., Vol.17, pp.223-229.
    [153] Drever, J.I., 1982, The geochemistry of natural waters, Englenwood Cliffs, Prentice-Hall.
    [154] Anderson, M. and Rubin, A. eds., 1981, Adsorption of inorganics at the solid-liquid interface, Ann Arbor Science Publishers, Ann Arbor, Mich.
    [155] Smith, B. H. and Emerson, W. W., 1976, Exchangeable aluminium on kaolinite, Aust. J. Soil Res., Vol. 14, pp. 43-53.
    [156] Tokarz, M. and Shabtai, J., 1985, Cross-linked smectites Ⅳ: preparation and properties of hydroxyaluminum-pillared Ce- and La- montmorillonites and fluorinated NH -montmorillonites, Clay and Clay minerals, Vol. 33, No. 2, pp. 89-98.
    [157] Beall, G. W. et al., 1979, Sorption behaviour of trivalent actinides and rare earths on clay minerals, in Radioactive waste in geologic storage, ACS Symposium Series 100, Washington D. C., pp. 201-214.
    [158] Watson, E. B. and Capobianco, C. J., 1981, Phosphorous and the rare earth elements in felsic magmas: an assessment of the role of apatite. Geoch. Cosmoch. Acts, Vol. 45, pp. 2349-2398.
    [159] 1964, № 10, c. 995-1013.
    [160] 1976,
    [161] 1985,
    [162] 1977,

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700