用户名: 密码: 验证码:
具损伤压电智能层合结构的非线性动力学性能与疲劳寿命研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维增强复合材料层合结构在加工与使用过程中极易产生损伤,损伤的出现及其扩展将劣化结构的力学性能,降低其使用寿命,为保证该类结构安全可靠地工作,必须根据不同的缺陷形式确定相应的损伤本构关系,建立其静、动力学模型,分析损伤对结构力学性能及其使用寿命的影响。本论文以纤维增强复合材料层合结构以及压电智能层合结构为研究对象,综合考虑结构几何非线性和压电效应等因素,研究具基体开裂、脱层、纤维与基体脱胶等不同损伤形式下,层合结构及压电智能层合结构的非线性动力响应与疲劳损伤寿命等问题,揭示其力学行为的本质特征。本论文的研究成果不仅具有较重要的学术价值,也具有较强的工程应用意义。本论文的主要研究工作如下。
     研究具损伤压电粘弹性层合梁的疲劳寿命问题。基于线粘弹性理论和连续介质损伤力学,采用Boltzmann叠加原理和应变能等效原理,建立了具正交各向异性损伤的粘弹性复合材料的本构关系。设每一单层沿厚度方向有相同的损伤程度,考虑几何非线性、横向剪切效应和压电效应,根据复合材料力学和非线性层合板壳理论,建立了具损伤压电粘弹性层合梁的非线性运动控制方程,采用Kachanov型损伤演化模型表征在单次循环载荷作用下的损伤演化,应用Chaboche高周期疲劳损伤模型来描述多次循环载荷作用下的疲劳损伤累积状况,然后,综合运用有限差分法、Newmark法、Newton-Cotes法和迭代法对整个问题进行求解,并利用循环跳跃法来缩减计算量。具体地讨论了载荷参数、结构几何参数、材料参数和压电效应等因素对具损伤压电粘弹性层合梁非线性动力响应和疲劳损伤演化曲线的影响,且与非线性有限元的结果进行了比较。
     研究具基体开裂损伤压电层合板的疲劳寿命问题。基于Talreja张量内变量损伤模型,应用不变量理论和不可逆热力学原理建立了适用于具基体开裂损伤纤维增强复合材料弯曲问题的损伤本构关系。考虑几何非线性和压电效应,根据Von Karman非线性板理论,建立了具基体开裂损伤压电层合板的非线性运动控制方程。采用Kachanov型损伤演化模型表征在单次循环载荷作用下的损伤演化,应用Chaboche高周期疲劳损伤模型描述多次循环载荷作用下的疲劳损伤累积状况,然后,综合运用有限差分法、Newmark法、Newton- Cotes法和迭代法对整个问题进行求解,并利用循环跳跃法来缩减计算量。具体地讨论了载荷参数、结构几何参数、材料参数和压电效应等因素对具基体开裂损伤压电层合板非线性动力响应和疲劳损伤演化的影响,且与已有文献的结果进行了比较。
     研究具非对称脱层压电层合梁板的疲劳脱层扩展问题。基于非线性弹性板壳理论和可动边界变分原理,考虑脱层间的接触效应,建立了具脱层压电层合梁板的非线性运动控制方程及相应的定解条件。应用Griffith准则,建立了脱层前缘的能量释放率表达式,根据Paris的疲劳扩展准则,得到了循环荷载作用下脱层前缘的脱层扩展率,然后,应用循环跳跃法计算出脱层前缘的扩展长度。具体地讨论了电压、脱层的非对称性、脱层长度等因素对具非对称脱层压电层合梁板脱层前缘的能量释放率,以及脱层前缘扩展长度的影响。
     研究具非对称脱层压电层合圆柱壳的疲劳脱层扩展问题。基于可动边界变分原理,建立了考虑脱层间非线性接触效应的具脱层压电层合圆柱壳的力学模型。首先,将脱层的上下部分视为两串连非线性弹簧来计算接触力,然后,对系统的非线性运动控制方程进行修正,从而有效地避免了脱层之间的相互贯穿。应用Griffith准则,导出了压电层合圆柱壳脱层前缘的能量释放率表达式,且根据Paris的疲劳扩展准则,得到循环荷载作用下脱层前缘的扩展长度。具体地讨论了压电效应、接触区刚度、脱层的非对称性、脱层长度等因素对具非对称脱层压电层合圆柱壳脱层前缘的能量释放率,以及脱层前缘扩展长度的影响。
     研究具界面损伤复合材料层合板的非线性动力响应问题。基于Soldatos精确应力分析的广义六自由度板理论,考虑复合材料层合板铺设层间界面处的损伤效应,应用变分原理,建立了具界面损伤复合材料层合板的三维非线性运动控制方程;基于弹性力学空间问题的平衡微分方程,考虑具损伤界面的位移和应力连续条件,确定了非线性运动控制方程中的待定形函数。综合利用有限差分法、Newmark法、Newton-Cotes法和迭代法对具界面损伤简支可动层合板的层间应力以及非线性动力响应进行求解。具体地讨论了界面损伤对界面处应力场和层合板非线性动力响应的影响。
     研究纤维增强复合材料界面的疲劳脱粘扩展问题。基于弹性力学的基本理论,建立了纤维增强复合材料脱粘区和未脱粘区的平稳微分方程及相应的定解条件,导出了纤维与基体中轴向正应力的计算式;应用界面脱粘的能量释放率准则,建立了复合材料脱粘的判据,根据Paris的疲劳裂纹扩展准则,得到循环荷载作用下界面脱粘的扩展率,然后应用循环跳跃法计算出界面脱粘的疲劳扩展长度。算例中,以碳/环氧复合材料为例,讨论了材料参数、几何参数、预应力、外载荷等因素对纤维/基体应力分布、界面脱粘能量释放率、疲劳扩展长度的影响。
The damages will easily emerge in fibre-reinforecd composite structures during the manufacturing and service processes. The emergence of damages and their further growth will drastically reduce the mechanical properties and service life of the structures. For the safe reliability of structures, it is necessary to establish the constitutive relations and mechanical modeling for different kinds of damage and analyze the effect of damage on the mechanical properties and service life of the structure. In this dissertation, considering fibre-reinforced composite laminated structure and piezoelastic laminated structures as the subjects investigated, the nonlinear dynamic response and fatigue damage prediction of piezoelectric laminated structure with different kind of damage, such as matrix crack, delamination and interfacial debonding, are systematically studied, and the essential character of the mechanical property can be illustrated precisely. The research results are significant not only in the academic but also in the practical engineering. The main results contain as follows.
     The fatigue damage life of piezoelectric viscoelastic laminated beams is investigated. Based on the viscoelastic theory and the continuum damage mechanics, and according to the Boltzmann superposition principle and strain energy equivalence, a constitutive model is established for viscoelastic composites with orthotropic damage. Supposing the damage variables remain constant throughout the thickness in each layer, considering geometric nonlinearity, transverse shear deformation and piezoelectric effect, the nonlinear governing equations of motion for the piezoelectric viscoelastic laminated beams with damage are derived by using the composite mechanics and nonlinear laminated theory. The Kachanvo damage evolution law under the once time load and the Chaboche fatigue damage development due to long time cyclic loads are employed to fatigue damage growth. Through applying the finite difference method, Newmark method, Newton-Cotes method and iterative procedure, the governing equations are solved. The cyclic skip method is utilized to shorten the calculation interval. The influences of load parameters, geometric and material parameters as well as piezoelectric effect on the nonlinear dynamic responses and fatigue damage evolution for the damaged piezoelectric viscoelastic laminated beams are discussed in detail.
     The fatigue damage life of piezoelectric laminated plate with matrix cracks is investigated. Based on the Talreja’s damage model with tensor valued internal state variables and the invariant theory, using the thermodynamic relations, a constitutive model for fibre-reinforced composite containing matrix cracks is established. Considering geometric nonlinearity and piezoelectric effect, the nonlinear governing equations of motion for the piezoelectric viscoelastic laminated plates with matrix cracks are derived by using the Von Karman’s nonlinear theory. The Kachanvo damage evolution law under the once time load and the Chaboche fatigue damage development due to long time cyclic loads are employed to fatigue damage growth.
     Through applying the finite difference method, Newmark method, Newton-Cotes method and iterative procedure, the governing equations are solved. The cyclic skip method is utilized to shorten the calculation interval. The influences of load parameters, geometric and material parameters as well as piezoelectric effect on the nonlinear dynamic responses and fatigue damage evolution curve for piezoelectric viscoelastic laminated plates with matrix cracks are discussed in detail. The fatigue delamination growth of piezoelectric laminated beam-plates with asymmetric delamination is investigated. Based on the nonlinear elastic plate’s theory and variational principle of moving boundary, the nonlinear governing equations of the piezoelectric laminated beam-plates with delamination are derived, and the corresponding boundary and matching conditions are given. According to the Griffith criterion, the formulas of energy release rate along the delamination front are obtained. Applying the Paris law, the delamination growth rate is arrived and using cyclic skip method, the delamination growth lengths along the delamination fronts under cycle load are finally determined. In the numerical examples, the delamination growth of piezoelectric laminated beam-plates with asymmetric delamination is calculated, and the effects of voltages, asymmetry of delamination and delamination length on energy release rate and delamination growth length are discussed in detail.
     The fatigue delamination growth of piezoelectric laminated cylindrical shell with asymmetric delamination is investigated. Based on the variational principle of moving boundary, an analytic model of delaminated piezoelectric laminated cylindrical shell under the consideration of nonlinear contact effects is derived. Firstly, the contact force is calculated through regarding the two segments beside the delamination as two nonlinear springs connected in series. Then, the governing equation of transverse motion is modified by the nonlinear contact force and thus the penetration between two delaminated layers can be avoided. According to the Griffith criterion, the formulas of energy release rate along the delamination front are obtained. Applying the Paris law, the delamination growth lengths along the delamination fronts under cycle load are finally determined. In numerical examples, the delamination growth length of piezoelectric laminated cylindrical shell with asymmetric delamination is calculated, and the effects of voltages, stiffness factor of contact region, asymmetry of delamination and delamination length on energy release rate and delamination growth length are discussed in detail.
     The nonlinear dynamic response of composite laminated plate is investigated. Based on the general six-degrees-of-freedom plate theory towards the accurate stress analysis, considering the effect of interfacial damage and using the variation principle, the three-dimensional nonlinear dynamic governing equations of the laminated plates with interfacial damage are derived. Then based on the equilibrium differential equation in the elastic mechanics theory, considering the displacement and stress continuity conditions, the undetermined shape functions of governing equations are obtained. The solutions of interlaminar stress and nonlinear dynamic response for a simply supported laminated plate with interfacial damage are derived by applying the finite difference method, Newmark method, Newton-Cotes method and iterative procedure. In numerical calculation, the effects of interfacial damage on the stress in the interface and the nonlinear dynamic response of laminated plates are discussed in detail.
     The fatigue debonding growth of fibre-reinforecd composite with interfacial debonding is investigated. Based on the basic theory of elastic mechanics, the equilibrium differential equations of deboned and fully-bonded regions of composite are derived and the corresponding boundary conditions are given, then the calculating formulas of axial stresses in fiber and matrix are obtained. The criterion of energy release rate for interfacial debonding are obtained. Applying the Paris law, the interfacial debonding rate is arrived and using cyclic skip method, the fatigue interfacial debonding lengths under cycle load are finally determined. In numerical examples, the typical carbon/epoxy composite with interfacial debonding is calculated, and the effects of material constants, geometric constants, initial stress and external load on the distribution of stresses in fiber/matrix and interfacial debonding energy release rate and fatigue growth length are discussed in detail.
引文
[1] Kachanov L M. Time of the rupture process under creep conditions. TVZ Akad. Nauk. SSR, Otd. Tech. Nauk., 1958, 8: 26-31
    [2] Rabotnov Y N. On the equations of state for creep. In: Progress in Applied Mechanics, The Prager Anniversary Volume. MacMillan, New York, 1963, 307-315
    [3] Lemaitre J. How to use damage mechanics. Nuclear Engineering and Design Journal, 1984, 80: 233-245
    [4] Lemaitre J. A course on damage mechanics. Berlin, Springer-Verlag, 1996
    [5] Lemaitre J, Chaboche J L. Mechanics of solid materials. Cambridge University Press, 1990
    [6] Janson J, Hult J. Fracture mechanics and damage mechanics: a combined approach. Journal de Mécanique Appliquée, 1977, 1(1): 69-84
    [7] Hayhurst D R, Leckie F A. The effect of creep constitutive and damage relationships upon the rupture time of a solid circular torsion bar. Journal of Mechanics and Physics of Solids, 1973, 21: 431-446
    [8] Murakami S. Notion of continuum damage mechanics and its application to anisotropic creep damage theory. Journal of Engineering Material Technology, 1983, 105: 99-105
    [9] Murakami S, Sanomura Y. Analysis of the coupled effect of plastic damage and creep damage in Nimonic 80A at finite deformation. Engineering Fracture Mechancis, 1986, 25(5/6): 693-704
    [10] Murakami, S. Mechanical modeling of material damage. Journal of Applied Mechancis, 1988, 55: 280-286
    [11] Lemaitre J, etc. Damage mechanics. Euromech 147, Cachan, France, 1981
    [12] Kachanov L M. Introduction to continuum damage mechanics. Maritinus Nijhoff Publishers, 1986
    [13] Chow C L, Wang J. An anisotropic theory of elasticity for continuum damage mechanics. International Journal of Fracture, 1987, 33: 3-16
    [14] Valliappan S, Murit V, Zhang W H. Finite element analysis of anisotropic damage mechanics problems. Engineering Fracture Mechanics, 1990, 35(6): 1061-1071
    [15] Reifsnider K L. Some foundamental aspects of the fatigue and fracture response of composite materials. Proceedings 14th Annual Meeting of Society of Engineering Science, Bethlehem: Lehigh Univ., 1977:14~16
    [16] Talreja R. Damage development in composites: Mechanisms and modelling. Journal of Strain Analysis for Engineering Design, 1989, 4(4): 215-222
    [17] Allen D H, Harris C E, Groves S E. A thermomechanical constitutive theory for elastic composites with distributed damage-I. Theoretical development. Int. J. Solids Struct., 1987, 23(9): 1301-1318
    [18] Allen D H, Harris C E, Groves S E. A thermomechanical constitutive theory for elastic composites with distributed damage-II. Application to matrix cracking in laminated composites. Int. J. Solids Struct., 1987, 23(9): 1319-1338
    [19] Ladeveze P, Dantec E L. Damage modelling of the elementary ply for laminated composites. Composites Science and Technology, 1992, 43(2): 257-267
    [20] Valliappan S, Murti V, Zhang Wohua. Finite element analysis of anisotropic damage mechanics problems. Engineering Fracture Mechanics, 1990, 35(6): 1061-1071
    [21] 周履, 王震鸣, 范赋群. 复合材料及其结构的力学进展. 广州:华南理工大学出版社,1991
    [22] Talreja R. Damage mechanics of composite materials. New York: Elsevier, 1994
    [23] 杨光松. 损伤力学与复合材料损伤. 北京:国防工业出版社,1994
    [24] 沈为,乐运国,彭立华. 树脂基复合材料板的粘弹性损伤本构关系. 固体力学学报,1993,14(2):158-162
    [25] 樊建平,沈为. 树脂基复合材料粘弹性损伤本构及试验测定. 应用力学学报,1996,13(1):53-58
    [26] Kumar R S, Talreja R. A continuum damage model for linear viscoelastic composite materials. Mechanics of Materials, 2003, 35: 463-480
    [27] Schapery R A, Sicking D L. On nonlinear constitutive equations for elastic and viscoelastic composites with growing damage. In: Seventh International Conference on Mechanical Behavior of Materials-ICM7. Delft, 1995, 45-76
    [28] Schapery R A. Homogenized constitutive equations for linear viscoelastic unidirectional composites with growing transverse cracks. Mechanics of Time-Dependent material, 2002, 6: 101-131
    [29] Jong G S, Dale G K. Propagation of continuum damage in nonlinear viscoelastic bar by finite difference method, 1990, ASME AMD, 109
    [30] 张 我 华 , 金 荑 , 陈 云 敏 . 损 伤 材 料 的 动 力 响 应 特 性 . 振 动 工 程 学报,2000,13(3):415-425
    [31] Krishnamurthy K S, Mahajan P, Mittal R K. A parametric study of the impact response and damage of laminated cylindrical composite shells. Composites Science and Technology, 2001, 61: 1655-1669
    [32] 傅衣铭,李平恩,郑玉芳. 考虑基体横向损伤的粘弹性复合材料板的蠕变后屈曲分析. 力学学报,2005,37(1):32-39
    [33] Fu Y M, Li P E, Zheng Y F. Analysis of nonlinear dynamic response for viscoelastic composite plate with transverse matrix cracks. ACTA Mechanica Solida Sinica, 2004, 17(3): 230-238
    [34] Zheng Y F,Fu Y M. Effect of damage on nonlinear dynamic properties of viscoelastic rectangular plates. Applied Mathematics and Mechanics, 2005, 26(3): 319-326
    [35] Zheng Y F, Fu Y M. Nonlinear Dynamic analysis of viscoelastic/damage behavior for symmetric cross-ply laminated plates. Advances in Vibration Engineering, 2004, 3(3): 185-197
    [36] Kachanov L M. Separation failure of composite materials. 1976, 12: 812-815
    [37] Whitcomb J D. Finite element analysis of instability related delamination growth. Journal of Composite Materials, 1981, 15: 403-428
    [38] Chai H, Babcock C D, Knauss W G. One dimensional modeling of failure in laminated plates by delamination buckling. International Journal of Solids and Structures, 1981, 17(11): 1069-1083
    [39] Simitses G J, Sallam S, Yin W L. Effect of delamination of axially loaded homogeneous laminated plates. AIAA Journal, 1985, 23(9): 1437-1444
    [40] Whitcomb J D. Parametric analytical study of instability-related delamination growth. Composite Science and Technology, 1986, 25: 19-48
    [41] Yin W L, Wang J T. The energy-release rate in the growth of a one-dimensional delamination. Journal of Applied Mechanics, 1984, 51(4): 939-941
    [42] Ebans A G, Hutchinson J W. On the mechanics of delamination and spalling in compressed films. International Journal of Solids and Structures, 1984, 20: 455- 466
    [43] Gille G. Strength of thin film and coatings. Current Topics in Material Science. 1985, 12: 421-449
    [44] Sallam S N, Simitses G J. Delamination buckling and growth of flat, cross-ply laminates. Composite Structures, 1985, 4:361-381
    [45] Yin W L, Sallam S N, Simitses G J. Ultimate axial load capacity of adelaminated beam-plate. AIAA Journal, 1986, 24(1): 123-128
    [46] Bottega W J, Maewal A. Delamination buckling and growth in laminates. Journal of Applied Mechanics, 1983, 50(1):184-189
    [47] Gillepsie J W, Carlsson L A. Buckling and growth of delamination in thermoset and thermoplastic composites. Journal of Engng. Mat. Tech., 1991, 113: 91-98
    [48] Hull D, Shi Y B. Damage mechanism characterization in composite damage tolerance investigations. Composite Structures, 1993, 23: 99-120
    [49] Bruno D, Grimaldi A. Delamination failure of layered composite plates loaded in compression. International Journal of Solids and Structures, 1990, 26(3): 313- 330
    [50] Larsson P L. On delamination buckling and growth in circular and annular orthotropic plates. International Journal of Solids and Structures, 1991, 27(1): 15-28
    [51] Vizzini A J, Lagace P A. The buckling of a delaminate sublaminate on an elastic foundation. Composite Materials, 1987, 21: 1106-1117
    [52] Anastasiadis J S, Simitses G J. Spring simulated delamination of axially-loaded flat laminates. Composite Structures, 1991, 17: 67-85
    [53] Wang J T, Huang J T. Strain energy release rate of delaminated composite plates using continuous analysis. Journal of Composite Engng., 1991, 4(7): 731-744
    [54] Yin W L. Energy balance and the speed of crack growth with delamination. International Journal of Solids and Structures, 1993, 30(15): 2041-2055
    [55] 张运良, 傅衣铭. 具脱层的正交各向异性梁-板的屈曲分析. 湖南大学学报,2000,27(1): 17-22
    [56] 傅衣铭, 张运良. 脱层梁-板的后屈曲分析. 固体力学学报,2001,22(1): 99- 103
    [57] Kardomateas G A. End fixity effects on the buckling and postbuckling of delaminated composites. Composite Science and Technology, 1989, 34: 113-128
    [58] Shaw D, Tsai M Y. Analysis of delamination in compressively loaded laminates. Composite Science and Technology, 1989, 34: 1-17
    [59] Troshin V P. Effect of longitudinal delamination in a laminar cylindrical shell on the critical external pressure. Journal of Composite Materials, 1983, 17(5): 563-567
    [60] Bottega W J. On thin film delamination growth in a contracting cylinder. International Journal of Solids and Structures, 1988, 24 (1): 13-26
    [61] Sallam S, Simitses G J. Delamination buckling of laminated cylindrical shellsunder axial compression. Composite Structures, 1987, 7(2): 83-101
    [62] Simitses G J, Chen Z Q. Delamination buckling of pressure-loaded thin cylinders and panels. In: Marshall I H ed. Composite Structures 4. Proceedings of the 4 International Conference on Composite Structures, Scotland, 1987-07- 27-29. London: Elsevier applied science publishers, 1987, 294-306
    [63] Chen Z Q, Simitses G J. On the postbuckling behavior of a delaminated thin cylindrical shell. In: Marshall I H ed. Composite Structures 5. Proceedings of the 5 International Conference on Composite Structures, Scotland, 1989-07- 24-26. London: Elsevier applied science publishers, 1989, 447-465
    [64] Kardomateas G A, Chung C B. Thin film modeling of delamination buckling in pressure loaded laminated cylindrical shell. AIAA Journal, 1992, 30(8): 2119-2123
    [65] 李思简, 万晖. 层合圆柱壳体表层矩形分层屈曲分析. 上海交通大学学报, 1990, 24(5): 164-172
    [66] Chattopadhyay A, Gu H. Modeling of delamination buckling in composite cylindrical shells with a new higher-order theory. Composite Science and Technology, 1995, 54(2): 223-232
    [67] Gu H, Chattopadhyay A. Delamination buckling and postbuckling of composite cylindrical shells. AIAA Journal, 1996, 34(6): 1279-1286
    [68] 朱菊芬, 郑罡, 武金瑛. 层合板壳脱层屈曲的有限元分析. 应用数学和力学, 2000, 21(3): 301-306
    [69] 李道奎. 含内埋脱层结构的屈曲分析与压电壳的三维应力分析: [博士学位论文]. 长沙: 国防科学技术大学, 2001
    [70] Chia C Y. Nonlinear analysis of plates. McGraw-Hill, New York, 1980
    [71] Chai H, Babcock C D. Two-dimensional modeling of compressive failure in delaminated laminates. Journal of Composite Materials, 1985, 19(1): 67-89
    [72] Shivarumar K N, Whitcomb J D. Buckling of a sublaminate in a quasi-isotropic composite laminated plate. Journal of Composite Materials, 1985, 19(1): 3-18
    [73] 费志中和 Yin W. 轴对称压-弯曲-下圆板中圆脱层的后屈曲扩展. 固体力学学报, 1990, 11(4):298-304
    [74] Kassapoglou C. Buckling, post-buckling and failure of elliptical delaminations in laminates under compression. Composite Stuctures, 1988, (9): 139-159
    [75] 温玄玲, 陈浩然, 成万植等. 复杂载荷下复合材料对称层合板的椭圆形分层屈曲. 计算结构力学及其应用, 1995, 12(2): 143-150
    [76] Yin W L, Jane K C. Refined bucklling and postbuckling analysis of two-dimensional delaminations—I analysis and validation. International Journal of Solids and Structures, 1992, 29 (5): 591-610
    [77] Yin W L, Jane K C. Refined bucklling and postbuckling analysis of two- dimensional delaminations—II results for anisotropic laminates and conclusion. International Journal of Solids and Structures, 1992, 29 (5): 611-639
    [78] 息志臣, 陈浩然. 复合材料层合板表面椭圆形脱层. 大连理工大学学报, 1993, 33(1): 15-21
    [79] 邹振民, 樊蔚勋. 层板脱层的能量释放率分析. 固体力学学报, 1993, 14(2): 148-157
    [80] 张铱纷. 复合材料层合板的分层屈曲. 太原理工大学学报, 1998, 29(1): 44-47
    [81] 李向阳, 蒋莉, 张志民. 湿热环境对损伤分层复合材料夹层板屈曲性能的影响. 复合材料学报, 2000, 17(4): 110-113
    [82] 徐永锋, 张志民, 王俊奎. 复合材料夹层板面芯二维分层屈曲研究. 复合材料学报, 1997, 14(4): 101-107
    [83] Whtcomb J D. Comparison of full 3-D, thin-film 3-D, and thin-film plate analysis of a postbuckled embedded delamination. Journal of Composite Technology and Research, 1989, 11(4): 154-157
    [84] Whtcomb J D. Predicted and observed effects of stacking sequence and delamination size on instability related delamination growth. Journal of Composite Technology and Research, 1989, 11(3): 94-98
    [85] Whtcomb J D. Three-dimensional analysis of a postbuckled embedded delamination. Journal of Composite Materials, 1989, 23(9): 862-889
    [86] Whtcomb J D. Instability-related delamination growth of embedded and edge delaminations. Journal of Composite Technology and Research, 1991, 13(3): 175-178
    [87] Whtcomb J D. Analysis of a laminate with a postbuckled embedded delamination, including contact effects. Journal of Composite Materials, 1992, 26(10): 1523-1535
    [88] Zheng S, Sun C T. Delamination interaction in laminated structures. Engineering Fracture Mechanics, 1998, 59(2): 225-240
    [89] Kim K S, Hong C S. Delamination growth in angle-ply laminated composite. Journal of Composite Materials, 1986, 20(9): 423-438
    [90] 杨刚, 张凤鹏, 黄宝宗. 曾分寸屈曲后屈曲问题中的 Mindlin 模型. 沈阳建筑工程学院学报, 1998, 14(4): 327-331
    [91] 郭兆璞, 陈浩然. 含分层损伤复合材料层合板的屈曲特性研究. 玻璃钢/复合材料, 1999, (2): 3-5
    [92] 李跃宇. 受压-弯载荷作用下的脱层层板屈曲问题的有限元分析. 玻璃钢/复合材料, 2000, (4): 3-8
    [93] 李道奎, 周建平, 雷勇军. 含内埋矩形脱层板屈曲分析的传递函数方法. 工程力学, 2004, (2): 120-124
    [94] Storakers B, Andersson B. Nonlinear plate theory applied to delamination in composites. Journal of Mechanics and Physics of Solids, 1988, 36: 689-719
    [95] Nilson K F, Thesken J C, Sindelar P etal. Theoretical and experimental investigation of buckling induced delamination growth. Journal of Mechanics and Physics Solids, 1993, 41(4): 749-782
    [96] Cochelin B, Potier F M. A numerical model of buckling and growth of delaminations in composite laminates. Computational Methods in Applied Mechanics and Engineering, 1991, 89: 361-380
    [97] Pavier M J, Clarke M P. A specialized composite plate element for problems of delamination buckling and growth. Composite Structures, 1996, 34(1):43-53
    [98] Pavier M J, Clarke M P. Finite element prediction of the post-impact compressive strength of fiber composite. Composite Structures, 1996, 43-53
    [99] Paolo G. On delamination buckling of composite laminates under compressive loading. Composite Structures, 1997, 39(1-2):21-30
    [100] Rinderknecht S, Kr?plin B. A finite element model for the delamination in composite plates. Mechanics of Composite Material Structures, 1995, 2(1): 19-47
    [101] Klug J, Wu X X, Sun C T. Efficient modeling of postbuckling delamination growth in composite laminates using plate elements. AIAA Journal, 1996, 34(1): 178-184
    [102] 邹振民, 樊蔚勋. 含脱层层板的能量释放率各型分量分析. 固体力学学报, 1995, 16(2): 124-131
    [103] 孙先念, 陈浩然, 陈邵杰. 含分层损伤复合材料层合板前后屈曲行为研究. 航空学报, 1999, 20(3): 224-229
    [104] 孙先念, 陈浩然, 苏长健等. 含分层损伤复合材料层合板分层扩展研究. 力学学报, 2000, 32(32): 223-232
    [105] 胡宁, 胡彬, 姚振汉等. 带脱层的复合材料层板屈曲分析中的接触问题. 力学学报, 1998, 30(6): 700-710
    [106] 胡彬, 胡宁, 姚振汉等. 含脱层的复合材料层合板的屈曲分析. 复合材料学报, 1999, 16(1): 149-158
    [107] Sekine H, Hu N, Kouchakzadeh M A. Buckling analysis of elliptically delaminated composite laminates with consideration of partial closure of delamination. Journal of Composite Materials, 2000, 34(7): 551-574
    [108] Kouchakzadeh M A, Sekine H. Compressive buckling analysis of rectangular composite laminates containing multiple delaminations. Composites Structures, 2000, 50(3): 249-255
    [109] Kyoung W M, Kim C G, Hong C S etal. Modeling of composite laminates with multiple delaminations under compressive loading. Journal of Composite Materials, 1998, 32(10): 951-969
    [110] Goodman JR, Popov EP. Layered beam systems with interlayer slip. ASCE Journal of structure Division, 1968, 94(11): 2535-47.
    [111] Needleman A. A continuum model for void nucleation by inclusion debonding. Journal of Applied Mechanics, 1987, 54(3):525-31
    [112] Needleman A. An analysis of decohersion along an imperfect interface. Interational Journal of Fracture 1990, 42(1):21-40
    [113] Toledano A, Murakami H. Shear-deformable two-layer plate theory with interlayer slip. ASCE Journal of Engineering Mechanics Division. 1988, 144(4):604-23
    [114] Barbero EJ, Reddy JN. Modeling of delamination in composite laminates using a layer-wise plate theory. International Journal of Solids and Structures. 1991, 28(3):373-88
    [115] Point N, Sacco E. Delamination of deams: an application of the DCB specimen. International Journal of Fracture, 1996, 79:225-47
    [116] Point N, Sacco E. A delamination for laminated composites. International Journal of Solids and Structures, 1996, 33(4):483-509
    [117] George A, Kardomateas, Valeria La Saponara. Crack branch in cross-ply composites: an experimental study. Composites Structures, 2001,53:333—344
    [118] Soldatos KP, Watson P. A general four-degrees-of-freedom theory suitable for the accurate stress analysis of homogeneous and laminated composite beams. International Journal of Solids and Structures, 1997, 34(22):2857-85
    [119] Soldatos KP, Watson P. A method for improving the stress analysis performance of one- and two-dimensional theories for laminated composites. Acta Mechanica, 1997,123(3):163-86
    [120] Cheng Z-Q,Kitipornchai S. Nonlinear theory for composite laminated shellswith interfacial damage.Journal of Applied Mechanics, 1998, 65:711-718
    [121] Shu X, Soldatos KP. Cylindrical bending of angle-ply laminates subject to different sets of edge boundary conditions. International Journal of Solids and Structure, 2000,37:4289-307
    [122] Shu X. Modelling of cross-ply piezoelectric composite laminates in cylindrical bending with interfacial shear slip. Mechanical Sciences, 2005, 41:1673-1692
    [123] Seeley CE, Chattopadhyay A. Experimental investigation of composite beams with piezoelectric actuation and debonding. Smart Materials Structures, 1998;7:502-11
    [124] Sun D, Tong L, Atluri SN. Effect of piezoelectric sensor/actuator debonding on vibration control of smart beams. International Journal of Solid and Structures. 2001;38:9033-9051
    [125] Gem W K, Kang Y L. Influence of weak interfaces on buckling of orthotropic piezoelectric rectangular laminates. Composite Structures. 2008.82:290-294
    [126] Cox H L. The elasticity and strength of paper and other fibrous material systems. Journal of Applied Physics, 1952, 3: 72-79
    [127] Fukuda H, Chou T W. An advanced shear-lag model applicable to discontinuous fiber composites. J Comp Mater, 1981, 15: 79-91
    [128] Chon C T, Sun C T. Stress distributions along a short fiber in fibre-reinforced plastics. J Material Sci, 1980, 15: 931-938
    [129] Piggolt M R. Load Bearing Fibre Composites. Oxford. NY Pergamon Press, 1980
    [130] Stang H, Shah S P. Failure of fibre-reinforced composites by pull-out fracture. Joural of Engineering Mechanics, 1986, 21: 953-957
    [131] Stang H, Li Z, Shah S P. Pullout Problem: Stress Versus Fracture Mechanical Approach. Journal of Engineering Mechanics, 1990, 116 (10): 2136-2150
    [132] Leung C K, Li V C. New strength-based model for the debonding of discontinuous fibre in an elastic matrix. Journal of Materials Science, 1991, 26: 5996-6010
    [133] Kim J K, Baillie C, Mai Y W. Interfacial debonding and fibre pull-out stresses, Part I: Critical comparison of existing theories with experiments. Journal of Materials Science, 1991, 27:3143-3154
    [134] Yue C Y, Cheung W L. Interfacial properties of fibrous composites, Part I: Model for the debonding and pull-out processes. Journal of Materials Science, 1992 27: 3173-3180
    [135] Quek M Y, Yue C Y. An improved analysis for axismmetric stress distributions in the single fibre pull-out test. Journal of Materials Science, 1997, 32: 5457- 5465
    [136] Shih G C, Ebert L J. The effect of fiber/matrix interface on the flexural fatigue performance of unidirectional fiber glass composites. Composite Science Technology, 1987, 28:137-161
    [137] Garner S D, Pittman C U, Hackett R M. A model representation of polymeric composite materials incorporating an elastomeric interphase, Proceeding of ICCI-IV, 1992, 41
    [138] King T R, Blackketter D M, Walrath D E, Adams D F. Micromechanics prediction of the shear strength of carbon fiber/epoxy matrix composites, In Controlled Interphase in Composites, Proceeding of ICCI-III, ed. H. Ishida, 1990, 521
    [139] Daadbin A, Gamble A J, Sumner N D. The effect of interphase and material properties on load transfer in fiber composites, Composites, 1992, 23: 210-221
    [140] 杨晓华,姚卫星,段成美. 确定性疲劳累积损伤理论进展[J]. 中国工程科学, 2003.4, 5(4):82-87
    [141] Miner M A. Cumulative damage in fatigue [J]. J Appl Mech, 1945, 12(3):159- 164
    [142] Grover H J. An observation concerning the cycle ratio in cumulative damage [A]. In Symposium on Fatigue of Aircraft Structures [C]. ASTM STP 274, Philadelphia, 1960:120-124
    [143] Manson S S, Freche J C, Engsign S R. Application of a double linear damage rule to cumulative fatigue [A]. In Fatigue Crack Propagation [C]. ASTM STP 415, Philadelphia, 1967:384-412
    [144] Marco S M, Starkey W L. A concept of fatigue damage [J]. Transaction of the ASME, 1954, 76:627-632
    [145] Manson S S, Halford G R. Practical implementation of the double linear damage rule and damage curve approach for treating cumulative fatigue damage [J]. Int. J. Fract, 1981, 17(2):169-192
    [146] Kommers J B. The effect of overstressing and understressing in fatigue [J]. Proceeding, America Society Testing and Materials, 1938, 38(2):249-268
    [147] Henry D L. A theory of fatigue damage accumulation in steel [J]. Transaction of the ASME, 1955,77:913-918
    [148] Cheng G X, Plumtree A. A fatigue damage accumulation model based oncontinuum damage mechanic sand ductility exhaustion [J]. Int. J. Fatigue, 1998, 20(7):495-501
    [149] 叶笃毅,王德俊,童小燕等. 一种基于材料韧性耗散分析的疲劳损伤定量新方法[J]. 实验力学, 1999, 14(1):80-88
    [150] Bui-Quoc T. Cumulative damage with interaction effect due to fatigue under Torsion loading [J]. Expermental Mechanics, 1982, 22:180-187
    [151] 徐灏, 疲劳强度[M]. 北京,高等教育出版社, 1998:2-9
    [152] Freudenthal A M, Heller R A. On stress interaction in fatigue and cumulative damage rule [J]. Journal of the Aerospace Science, 1959.2, 6(7):431-442
    [153] Spiture R, Cortern H T. Effects of loading sequence on cumulative fatigue damage of 7071-T6 aluminum alloy [J]. Proceedings, American Society for Testing and Materials, 1961, 61:719-731
    [154] Manson S S, Nachigall A J. A propose new relation for cumulative damage in bending [J]. Proceedings, American Society for Testing and Materials, 1961, 61:679-703
    [155] Bui-Quoc T. An interaction effect consideration in cumulative damage on a mild steel under torsion loading [A]. Proceeding of the 5th International Conference on Fracture [C]. Pergamon Press, 1981:2625-2633
    [156] Bui-Quoc T. A simplified model for cumulative fatigue damage with interaction effects [A]. In Proceeding of the 1982 Joint Conference on Experimental Mechanics [C], 1982:144-149
    [157] Inglis N P. Hysteresis and fatigue Wohler rotating cantilevers specimen [A]. The Metallurgist [M]. 1927:23-27
    [158] Halford G R. The energy required for fatigue [J]. Journal of Materials, 1966,1 (1):3-18
    [159] Niu X, Li G X. Hardening law and fatigue damage of a cyclic hardening metal [J]. Engineering Fracture Mechanics, 1987, 26(2):163-170
    [160] Chaboche J L, Lesne P M. A nonlinear continuous fatigue damage model [J]. Fatigue and Fracture of Engineering Materials and Structures, 1988, 11(1):1-7
    [161] 孙慷,张福学. 压电学(上下册). 北京:国防工业出版社, 1984
    [162] Crawley E F, Deluis J. Use of piezoelectric actuators as elements of intelligent structures. AIAA Journal, 1987, 25: 1373-1385
    [163] Wang B T, Rogers C A. Laminate plate theory for spatially distributed induced strain actuators. Journal of Composite Material, 1991, 25: 433-452
    [164] Mitchell J A, Reddy J N. A refined hybrid plate theory for composite laminateswith piezoelectric lamina. International Journal of Solids and Structures, 1995, 32: 2345-2367
    [165] Ha S K, Chang F K. Finite element analysis of composite structures containing distributed piezoelectric sensors and actuators. AIAA Journal, 1992, 30(3): 772-780
    [166] Ray M C, Samanta B. Exact solution for static analysis of intelligent structures. AIAA Journal, 1993, 31: 1684-1691
    [167] Ray M C, Rao K M. Exact solution for static analysis of an intelligent structure under cylindrical bending. Computer and Structure, 1993, 47: 1031-1042
    [168] Sosa H A, Castro M A. Electroelastic analysis of piezoelectric laminated structures. Applied Mechanics Review, 1993, 46: 21-28
    [169] Zhou X, Chattopadhyay A, Gu H Z. Dynamic response of smart composites using a coupled thermo-piezoelectric mechanical mode. AIAA Journal, 2000, 38(10): 1939- 1948
    [170] Pagano N J. Exact solution for rectangular bi-directional composites and sandwich plates. Journal of Composite Materials, 1970, 4: 20-34
    [171] Heyliger P, Brooks S. Exact solutions for laminated piezoelectric plates in cylindrical bending. Journal of Applied Mechanics, 1996, 63: 903-907
    [172] Heyliger P. Exact solutions for simply supported laminated piezoelectric plates. Journal of Applied Mechanics, 1997, 64: 299-306
    [173] Bisegna P, Maceri F. An exact three-dimensional solution for simply supported rectangular piezoelectric plates. Journal of Applied Mechanics, 1996, 63: 628-637
    [174] Vel S S, Batra R C. Three-dimensional analytical solution for hybrid multilayered piezoelectric plates. Journal of Applied Mechanics, 2000, 67: 558-567
    [175] Heyliger P, Brooks S. Free vibration of piezoelectric laminates in cylindrical bending. International Journal of Solids and Structures, 1995, 32: 2945-2960
    [176] Brata R C, Liang X Q. The vibration of a rectangular laminated elastic plate with embedded piezoelectric sensors and actuators. Computer and Structure, 1997, 63: 203-216
    [177] 高坚新,沈亚鹏,王子昆. 有限长压电层合简支板自由振动的三维精确解. 力学学报, 1998, 30(2): 168-177
    [178] Benjeddou A, Deu J F, Letombe S. Free vibrations of simply-supported piezoelectric adaptive plates: an exact sandwich formulation. Thin-walled Structures 2002, 40: 573-593
    [179] 章建国,刘正兴,林启荣. 压电弹性层合板静力机电耦合特性的解析解. 力学学报, 2000, 32(3): 326-332
    [180] Xu K M, Noor A K, Tang Y Y. Three-dimensional solutions for free vibration of initially stressed thermoelectroelastic multilayered plates. Computer Methods in Applied Mechanics and Engineering, 1997, 141(1-2): 125-139
    [181] Mitchell J A, Reddy J N. A refined hybrid plate theory for composite laminates with piezoelectric laminate. International Journal of Solid and Structures, 1996, 32(16): 2345-2367
    [182] Tauchert T.R. Piezothermoelastic behavior of a laminated plate. J. Thermal Stress, 1992, 15(1): 25-37
    [183] Baumhauer J C, Tiersten H F. Nonlinear electroelastic equations for small fields superposed on a bias. Journal of Acoustic Society of America, 1973, 54(4): 1017-1033
    [184] Pai P F, Nafeh A H, Mook D T. A refined nonlinear model of piezoelectric plate with integrated piezoelectric actuators and sensors. International Journal of Solids and Structures, 1993, 30(11): 1603-1630
    [185] Lee C K. Theory of laminated piezoelectric plates for the design of distributed sensors/actuators. Part I: governing equations and reciprocal relationships. Journal of Acoustic Soc Am, 1990, 87(3): 1144-1158
    [186] Yu Y Y. Some recent advances in linear and nonlinear dynamical modeling of elastic and piezoelectric plates. Adaptive Structures and Material System, 1993, 35: 185-195
    [187] Tzou H S, Gradre M. Theoretical analysis of a multi-layered thin shell couple with piezoelectric shell actuators for distributed vibration controls. Journal of Sound and Vibration, 1989, 132(3): 433-450
    [188] Tzou H S. Piezoelectric shells (Distributed sensing and control of continua). Kluwer Academic Publishers, 1993
    [189] Tzou H S, Bao Y. Nonlinear piezothermoelasticity and multifield actuations, part I: Nonlinear anisotropic piezothermoelastic shell laminates. Journal of Vibration and Acoustics, 1997, 119 (3): 374-381
    [190] Tzou H S, Zhou Y H. Dynamics and control of nonlinear circular plates with piezoelectric actuators. Journal of Sound and Vibration, 1995, 188(2): 189-207
    [191] Li H Y, Lin Q L, Liu Z X, et al. Free vibration of piezoelastic laminated cylindrical shells under hydrostatic pressure. International Journal of Solids andStructures, 2001, 38: 7571-7585
    [192] 李红云,林启荣,刘正兴,等. 静力压力下压电弹性圆柱振动的主动控制. 应用数学和力学,2003, 24(2): 163-174
    [193] 李红云,刘正兴. 考虑静力压力的压电弹性层合圆柱壳动力响应的控制模型. 复合材料学报, 2002, 19(6): 13-19
    [194] Varelis D, Saravanos D A. Mechanics and finite element for nonlinear response of active laminated piezoelectric plates. AIAA Journal, 2004, 42(6): 1227-1235
    [195] Zhou Y H, Tzou H S. Active control of nonlinear piezoelectric circular shallow spherical shells. International Journal of Solids and Structures, 2000, 37: 1663-1677
    [196] Li Y Y, Cheng L, Yam L H, et al. Numerical modeling of a damaged plate with piezoelectric actuation. Smart Materials and Structures, 2003, 12: 524-532
    [197] Ray M C, Reddy J N. Effect of delamination on active constrained layer damping of smart composite beams. AIAA Journal, 2004, 42(6): 1219-1226
    [198] Yan Y J, Yam L H. Online detection of crack damage in composite plates using embedded piezoelectric actuators/sensors and wavelet analysis. Composite Structures, 2002, 58: 29-38
    [199] Wei Z, Yam L H, Cheng L. Detection of internal delamination in multi-layer composite using wavelet packets combined with modal parameter analysis. Composite Structures, 2004, 64: 377-387
    [200] Sun Y X, Zheng S Y. Chaotic dynamic analysis of viscoelastic plates. International Journal of Mechanical Science, 2001, 43:1195-1208
    [201] 傅衣铭,王永. 基于内变量损伤模型的复合材料板的非线性动力响应. 湖南大学学报,2004,31(6):70-74
    [202] N.Blanco, E.K.Gamstedt, L.E.Asp, J.Costa. Mixed-mode delamination growth in carbon-fibre composite laminates under cycle loading, International Journal of Solids and Structures,2004, 41:4219-4235
    [203] Gao, Y. C., Mai, Y. W., Cottrell, B. Fracture of fibre-reinforced materials. ZAMP, 1988, 39, 550-572
    [204] Dollar, A. and Steif, P. S., Load transfer in composites with a coulomb friction interface. Int. J. Solids and Structures, 1988, 24, 789-803
    [205] Leung C K, Li V C. New strength-based model for the debonding of discontinuous fibre in an elastic matrix, Journal of Materials Science, 1991, 26: 5996-6010
    [206] Kim J K, Baillie C, Mai Y W. Interfacial debonding and fibre pull-out stresses,Part I: Critical comparison of existing theories with experiments. Journal of Materials Science, 1991, 27:3143-3154
    [207] Yue C Y, Cheung W L. Interfacial properties of fibrous composites, Part I: Model for the debonding and pull-out processes. Journal of Materials Science, 1992 27: 3173-3180
    [208] Quek M Y, Yue C Y. An improved analysis for axismmetric stress distributions in the single fibre pull-out test. Journal of Materials Science, 1997, 32: 5457- 5465
    [209] Zhang X., Liu, H.Y., Mai, Y.W. On steady-state fibre pull-out I The stress field, Composite Science and Techology, 1999, 59: 2179-2189
    [210] Liu, H.Y., Zhang X., Mai, Y.W., Diao, X.X. On steady-state fibre pull-out II Computer simulation, Composite Science and Techology, 1999, 59: 2191-2199
    [211] Liu, H.Y., Qin Q.H., Mai, Y.W. Theoretical model of piezoelectric fibre pull-out, International Journal of Solids and Structures, 2003, 40: 5511-5519
    [212] Povirk G. L, Needleman A. Finite element simulations of fibre pull-out. Journal of Engineering Materials and Technology, 1993, 115:286-291
    [213] Kessler H, Schuller T, Beckert W, Lauke B. A fracture-mechanics model of the microbond test with interface friction, Composite Science and Technology, 1999, 59: 2231-2242

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700