用户名: 密码: 验证码:
烤烟连作障碍效应与微生物菌剂消减技术初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用池栽和盆栽试验,比较研究了连作对烤烟生长发育与品质的影响及连作条件下土壤理化性质的动态变化,探讨了微生物菌剂对连作烤烟的生长发育与品质的影响及其对土壤理化性质的改良效应,旨在综合评价重庆烟区烤烟连作所产生的危害,以及微生物菌剂在修复烤烟连作障碍的作用,为重庆烟草生产和消减连作障碍技术研究提供科学依据,同时为重庆烟区优质烟叶生产的可持续发展提供技术参考。主要研究结果如下:
     1连作对重庆烟区烤烟的影响
     1.1不同连作年限对烤烟生长发育的影响存在差异。连作8年烟株的株高、节距、叶宽、叶长、干重以及植株各器官氮、磷、钾养分的积累量等生长发育指标均显著低于正茬和连作3年,而连作3年的生长发育指标都较正茬的高。同时本研究还发现,连作能显著降低烤烟的经济性状指标和烤后烟叶总糖、还原糖和钾含量,显著增加烟叶烟碱含量。在本研究中,烤烟产量和产值随着连作年限的增加先增加后减小,中上等烟比例和均价则随着连作年限的延长呈下降趋势。
     1.2连作能明显提高土壤的有效氮磷钾含量,并出现了严重的积累。有效磷积累最为严重,其中连作8年有效磷生育期内平均含量分别比正茬、连作3年平均值高79.41%、55.10%,而随着烤烟连作年限的延长,土壤有机质含量呈先增加后降低。土壤中矿质元素含量也出现了积累,连作8年的矿质元素含量都比正茬高出1.1倍以上。本研究还发现,在烤烟生育期内,不同连作年限土壤有机质、有效磷、有效钾含量均呈极强的规律性,即呈“升-降-升-降”的变化规律,且在移栽后65d和113d时分别出现一个峰值。
     1.3土壤细菌和放线菌数量随着连作的年限的增加先增后降,这与土壤脲酶、磷酸酶、蔗糖酶、过氧化氢酶活性的变化趋势一致,而土壤真菌数量随着连作年限的增加逐渐降低。而且随着烤烟的生长发育,各处理烤烟土壤放线菌数量,土壤脲酶、磷酸酶、蔗糖酶和过氧化氢酶活性变化趋势呈“升-降-升-降”的变化趋势。而土壤真菌和放线菌在烤烟生育期内变化规律不明显。
     1.4在烤烟旺长期,不同连作年限对不同部位叶片叶绿素和类胡萝卜素含量影响差异较大。其中正茬的下、中部烟叶叶绿素和类胡萝卜素含量较大(除下部叶叶绿素b外);而上部烟叶,连作8年的叶绿素和类胡萝卜素含量都较小,且均与正茬和连作3年的存在显著性差异。烤烟连作能够引起CAT、NR酶活性逐渐下降,MDA含量逐渐增加。本研究还发现不同叶位烟叶CAT、NR酶活性和MDA含量不同,且它们都以上部叶最大,下部叶最小。
     2微生物菌剂对连作烤烟的影响
     2.1微生物菌剂处理能显著提高连作烤烟农艺性状,其中微生物菌剂处理对株高、有效叶片数和最大叶叶面积的促进作用最为明显,其数值均显著大于CK。微生物菌剂对茎围的影响较小。不同微生物菌剂对连作烤烟农艺性状促进程度不同,其中处理1、处理2、处理3的促进效果较优,处理4效果稍差。同时,本研究还发现,微生物菌剂对不同器官干物质积累的速度、养分积累量、烟叶化学成分和经济性状都显著促进作用,而且能促进烤烟化学成分更加适宜、更加协调。
     2.2微生物菌剂处理能够明显提高连作土壤有机质和氮磷钾有效养分的含量,这可能是由于微生物菌剂提高了土壤微生物数量,从而提高了土壤有机质和养分转化与循环的能力。本研究中,除了处理3的移栽后65d时,处理4的移栽后45d时外,其他处理的土壤有机质含量都明显高于CK,且存在极显著性差异,其中处理1效果最好,这与微生物复合肥含有的大量有益菌加速了土壤有机质的转化和其本身亦含有大量有机质有关;除了处理2和处理4外,其他处理的土壤有效磷都显著高于CK,且存在显著性差异,其中处理3的效果最好;除处理1移栽后75d和113d时外,其他处理的土壤有效钾含量均显著高于CK;各处理的土壤碱解氮含量均显著高于CK,其中处理1效果最为显著。
     2.3在烤烟生育期内,不同微生物菌剂处理根际细菌、真菌数量均呈“升-降-升-降”的变化趋势。微生物菌剂处理对细菌、真菌和放线菌的增殖有促进作用,微生物菌剂处理各时期的细菌数量均显著高于CK,放线菌数量生育期内平均值都较CK高。本研究还发现,微生物菌剂在促进土壤微生物数量的同时,也明显促进了微生物量碳氮含量的增加。在本研究中,4种微生物菌剂处理的微生物量碳、氮含量都显著高于CK,且除处理4微生物量氮外,其他处理均与CK存在显著性差异。
     2.4与CK相比,处理1、处理2、处理3均能不同程度地提高连作土壤中蔗糖酶、脲酶、磷酸酶和过氧化氢酶活性,而处理4只对连作土壤中蔗糖酶、磷酸酶和过氧化氢酶活性有明显的提高作用,其中处理1、处理2改善连作土壤酶活性的效果较好。这说明微生物菌剂处理均能为优质烤烟的生产创造了良好的土壤生物化学环境。
     2.5微生物菌剂能够显著提高烤烟叶片叶绿素和类胡萝卜素的含量,其中处理1对提高连作烤烟下部、上部叶片叶绿素和类胡萝卜素含量的作用最为明显;处理2对提高连作烤烟下部、中部叶片的叶绿素和类胡萝卜素的作用最为明显。烤烟旺长期叶片CAT、NR活性和MDA含量在不同叶位间变化规律相同,它们均以上部叶最大,下部叶最小。微生物菌剂能提高连作烤烟叶片CAT、NR酶活性和降低MDA含量,其中处理2对叶片CAT酶活性和MDA含量影响较大,而处理3对NR酶活性影响较大。
Pool-culture and pot experiments were used to study the effect of continuous cropping on the growth, development and quality of flue-cured tobacco, and the physics and chemistry character of soil planting tobacco. And the improvement effect of microbial agents on the tobacco growth, development and quality of continuous cropping flue-cured tobacco, and the physics and chemistry character of continuous cropping soil were investigated. The experiment was designed to evaluate the harm on growth, quality and the physics and the soil chemistry character of continuous cropping caused by continuous cropping in Chongqing tobacco areas, and the role of microbial agents in continuous cropping soil repair. So it will offer some effective technologies for the abatement technology of continuous cropping of flue-cured tobacco, while the sustainable development of the tobacco produces in Chongqing tobacco areas. The main results are as follows:
     1 Effect of continuous cropping on tobacco in Chongqing tobacco areas
     1.1 The effects of different years of continuous cropping on growth and development were different. The plant height, pitch, leaf width, leaf length, dry weight, and the N, P, K nutrients accumulation, the contents of total sugar, reducing sugar and K of different organs of 8 years cropping were significantly lower than what of normal cropping and 3 years cropping, and the content of nicotine was significantly higher than what of normal cropping and 3 years cropping. And in this study, the trends of the yield and value of flue-cured tobacco were first increased and then decreased, along with the continuous cropping years increasing, and the ratio of mid-high grade leaves and average price of tobacco, all their trends were downward trend, along with continuous cropping years increasing.
     1.2 Tobacco cropping could increase the soil available N, P, K content, even appeared serious accumulation. Their content increased with cropping years’increasing, the accumulation of available P was most serious. And the available P average content of cropping 8 years in the tobacco growing season were higher than normal and 3 years cropping, increasing by 79.41%, 55.10%. And the soil organic matter content was first increased and then decreased with the extension of tobacco continuous cropping year. different elements content also increased with cropping years’increasing, the contents of cropping 8 years were more than CK's, by 1.2 times Same time, the study also found that the organic matter, available N, available P, available K content of cropping tobacco soil showed a strong regularity with the advanced of tobacco growing period, and the trends were "up-down-up-down". And there had two peak values at 65d and 98d after transplanting.
     1.3 Number of soil bacteria and actinomycetes were first increased and then decreased with the continuous cropping years increasing. But the number of soil fungi decreased with continuous cropping years increasing. Therefore, the trend of actinomycetes number, and the unease, phosphatase, invertase and catalase activities of each treatment was "up-down-up-down", along with the flue-cured tobacco growing, and it was the same as the trends of soil enzyme activities. But, the trends of soil fungi and actinomycetes were not obvious, along with the variation of flue-cured tobacco growth period.
     1.4 The difference of different years of continuous on the chlorophyll and carotenoids of different leaf parts were different in growth peak period. the content of and quite different. The chlorophyll and carotenoids of middle and lower leaves of normal cropping were the larger (except for the chlorophyll b of the lower leaves). While, all these of cropping 8 years were the minimum, and there were significant difference of chlorophyll and carotenoids among different treatments. Tobacco cropping could cause the activities of CAT and NR decreased, and MDA content increased. And the CAT, NR activities and MDA content of different leaf positions were different, but all of them of upper leaves were maximum, while the lower leaves were minimum. 2 The effect of microbial agents on continuous cropping of tobacco
     2.1 Microbial agents could significantly increase the agronomic traits of tobacco cropping, and microbial agents had he most obvious role in the plant height, leaf number and maximum leaf area , and its values were higher than CK, and their were significant differences with CK(except for treatment 4). But Microbial agents had little effect on the stem circumference. The differences of deferent microbial agents on the agronomic traits were different. And the promotion effect of treatment 1, treatment 2 and treatment 3 were optimal, but the promotion effect of treatment 4 was less. Meanwhile, the study also found that microbial agents were significantly promoted on the dry matter accumulation, nutrient accumulation rate, chemical composition and economic traits of tobacco, and also promote the chemical composition of flue-cured tobacco more suitable and coordination.
     2.2 Microbial agents could be significantly improved the contents of soil organic matter and available NPK in continuous cropping soil. Which may be due to microbial agents improved the number of the soil, so improved the abilities of transformation and cycling of soil organic matter and nutrient. In this study, except for the 65d after transplanting of treatment 3, 45d after transplanting of treatment 4, the soil organic matter content of the other were significantly higher than that of CK, and there are significant differences among the treatments. and the effect of treatment 1 were the best, This depend on microbe-manure had a large number of beneficial bacteria what accelerate the transformation of soil organic matter and also contains large amounts of organic matter; Except for treatment 2 and treatment 4, the soil available P contents of the other treatments were significantly higher than CK, and there were significant differences among the treatments. and the effect of treatment 3 was the best; Except for 75 and 113ds of treatment 1, the soil available K content of other treatments all higher than CK; The soil nitrogen content of each treatment was higher than CK, and there were significant differences among the treatments, and the effect of treatment 1 was the most significant.
     2.3 In the flue-cured tobacco growth period, the change trends of the quantity of bacteria and fungi were same as the change trends of the soil enzyme activities, and showed that "up-down-up-down" trend. Microbial agents could promote the quantity of bacteria, fungi and actinomycetes. The quantity of bacteria of each period were significantly higher than CK, microbial agents on the number of bacteria, and the number of actinomycetes during the growing season averages were higher than CK. The study also found that the number of microbial agents in the promotion of soil, and significantly contributed to the increase of microbial biomass carbon and nitrogen. In this study, four kinds of microbial agents on microbial biomass carbon and nitrogen were significantly higher than CK, and except for treatment 4, the other treatments were significantly different with CK.
     2.5 treatment 1, treatment 2 and treatment 4 treatments improved the activities of these four soil enzymes. However, treatment 3 treatment only improved the activities of urease, phosphatase and catalase. Based on the improvement effects, treatment 1 and 2 were the most efficient, and that of treatment 3 and 4 were the second. This showed that microbial agents could to create a good soil biochemical environment for the production of quality tobacco.
     2.6 Microbial agents could significantly improve the chlorophyll and carotenoid contents of tobacco leaves, and the effect of treatment 1 on the chlorophyll and carotenoid contents of the lower and upper leaves were most obvious, the effect of treatment 2 on the chlorophyll and carotenoid contents of the lower and middle leaves were most obvious. The change trends of CAT and NR activities and MDA content between the different variations of the same leaf were same, and the upper leaves were the largest, the lower leaves were minimal. Microbial agents could improve CAT and NR activities and decrease MDA content of cropping tobacco leaf, and the effect of treatment 2 on CAT activity and MDA content were greater, while the effect of treatment 3 on NR activity was with greater.
引文
[1] Einhelling FA Mechanism of action of allelochemicals in allelophthy [J]. Allelopathy,1995, l: 97-115.
    [2] FEHRMANN. Replant disease and its importance for fruit production [M]. Acta orticulturuae, 1988(233): 17-19.
    [3]胡江春,王书锦.大豆连作障碍研究I.大豆连作紫青霉菌的毒素作用研究应用生态学报[J], 1996,7(4): 396-400.
    [4]闫飞,杨振明,邹永久.大豆连作障碍中的生化互作效应[J].大豆科学,1998,17(2): 147-152.
    [5]韩丽梅,邹永久.大豆连作微量元素营养研究1连作对锌营养的影响[J].大豆科学, 1998, 17(1):65-71.
    [6]韩丽梅,鞠台艳,邹永久,等.大豆连作微量元素营养研究2连作对钼营养的影响[J].大豆科学, 1998, 17(2):135-140.
    [7]韩丽梅,鞠台艳等.大豆连作微量元索营养研究3连作对锰营养的影响[J].大豆科学, 1998, 8(3):207-2l2.
    [8]韩晓增,许艳丽.重迎茬大豆植株氨磷钾含量与积累特征的研究大豆重迎茬研究[J].哈尔滨工程大学出版, 1997, 18(6): 314-317.
    [9]梁银丽,陈志杰.设施蔬菜土壤连作障碍原因和预防措施[J].西北园艺:蔬菜, 2004, (4): 4-5.
    [10]梁银丽,陈志杰,徐福利,等.黄土高原设施农业中的土壤连作障碍[J].水土保持学报, 2004, 18(4):134-136.
    [11]李阜棣.土壤微生物学[M].1995.
    [12]许艳丽.重迎茬大豆土壤微生物生态分布特征研究[A].见:许艳丽.韩晓增主编.大豆重迎茬研究[C].哈尔滨:哈尔滨工程大学出版社,1995.
    [13]吴凤芝,王伟.大棚番茄土壤微生物区系研究[J].北方园艺,1 999(3):1-2.
    [14]徐瑞富,王小龙.花生连作田土壤微生物群落动态与土壤养分关系研究[J].花生学报, 2003, 32(3):19-24.
    [15]陈晓红,邹志荣.温室蔬菜栽培连作障碍研究现状及防治措施[J].陕西农业科, 2002, 12: 16-17,20.
    [16]泷岛.防治连作障碍的措施[J].日本土壤肥料科学杂志, 1983, (2): 170 - 178.
    [17]薛泉宏,同延安.土壤生物退化及其修复技术研究进展[J].中国农业科技导报, 2008, 10(4): 28-35.
    [18] Yu J Q. Autotoxic potential in vegetables crops[J]. In Ailelopathy Update-basic and Applied spects. Ed, S. & Narwad, 1999, 149-162.
    [19]张晓玲,潘振刚,周晓锋.自毒作用与连作障碍[J].土壤通报, 2007, 38 (4):781-784.
    [20] Yu J Q, Matsui Y.Phytotoxic Substances in root exudates of cucumber[J]. J Chem Ecol,1994, 20(1):21-31.
    [21]马瑞霞,刘秀芬,袁光林.化感物质对根际土壤细菌、真菌及其生物活性的研究[J].生态学报, 1997, 17(4): 449~451.
    [22]吴风芝,赵凤艳.根系分泌物与连作障碍[J].东北农业大学学报, 2003, 34(1): 114-118.
    [23]杜英君,靳月华.连作大豆植株化感作用的模型研究[J].应用生态学报, 1999, l0(2): 209-212.
    [24]吕卫光,张春兰,袁飞.化感物质抑制连作黄瓜生长的作用机理[J].中国农业科学, 2002, 35(1): 106~109.
    [25] GATTAS HALLAK A M, DAVIDE L C, SOUZA L F. Effects of sorghunl(Sorghub bicolor L)root exudates on the cell cycle of the bean plant(Phaselus vulgaris.)root[J].Genetics and Molecular Biology,1999,22(1):95-99.
    [26]林文雄,熊君,周军建,等.化感植物根际生物学特性研究现状与展望[J].中国生态农业学报, 2007, 15(4):1-8.
    [27] Wang T S C,Kao M M,Li S W.The exploration and improvement of the yield deline of mono- culture sugarcane in Taiwan, In:Chou, C, H, (ed). Tropical plant[J]. Inst of Bot, Acadsinica, Monogr, No,5 Taibei, Taiwan, 1984, 1-9.
    [28] Yu J. Q. , Ye S. F. , Zhang M. F. , et a1. Effects of root exudawsand aqueous root extracts of cucumber(Cucumis sativus)and allelochemicals on photosynthesis and antioxidant enzymes incucumber[J]. Biochem.Syst. Ecol., 2003,3l(1):129-139.
    [29] Pramanik M. H. R. , Nagai M. , Asao T. , et a1. Effects of temperature and hotoperiod on the phytotoxic root exudates of cucumber(Cucumis sativus)in hydroponic culture[J]. Chem. Ecol., 2000,28(8):1953-1967.
    [30]陈冬梅,林文雄,柯文辉,等.烟草连作障碍的分子机理研究[C].中国作物学会学术年会论文摘要集, 2008.
    [31]于广武,许艳响,刘晓冰,等.大豆连作障碍机制研究初报[J].大豆科学,1993,12(3):237- 243.
    [32]晋艳,杨字虹,段玉琪,等.烤烟连作对烟叶产量和质量的影响研究初[J].烟草科技,2002, 174(1): 41-45.
    [33]晋艳,扬宇虹,段玉琪,等.烤烟轮作、连作对烟叶产量质量的影响[J].西南农业学报, 2004,17(z1): 267-271.
    [34]赵凯,娄翼来,王玲莉等.烤烟连作对烟叶产量和质量的影响[J].现代农业科技, 2008, (8): 118-119.
    [35]刘秀芬.根际他感化学物质的分离鉴定与生物活性的研究[J].生态学报, 1996, 16(1):1-10.
    [36]耿坤,罗文富,杨艳丽.烟草黑胫病菌的田间群体分布规律[J].云南农业大学学报, 2002, 4(17): 389-392.
    [37]李天福,王彪,王树会.云南烤烟轮作的现状分析与保障措施[J].中国烟草科学2006, 27(2):48-51.
    [38]中国农科院烟草研究所.近年烟尊瘸虫害发生趋势及今后防治建议[Z].全国特色优质烟叶开发工作座谈会交流材料.2008.
    [39]王连君,谷思玉.烤烟连作对土壤养分的影响[J].烟草科技, 2004,(9):40-42.
    [40]刘方,卜通达,何腾兵.连作烤烟土壤养分变化分析[J].贵州农学院学报,1997, 16(2):1-41.
    [41]刘方,何腾兵,刘元生,等.长期连作黄壤烟地养分变化及其施肥效应分析[J].烟草科技, 2002, (6) :30-331.
    [42]王茂盛,姜超英,潘文杰,等.不同连作年限的植烟土壤理化性质与微生物群落动态研究[J].安徽农业学报, 2008,36(12): 5033-5034,5062.
    [43]陈懿,薛小平,王茂胜,等.连作对植烟土壤及烟株中微量元素含量的影响[J].江西农业学报, 2009, 21(9)13-15.
    [44]李阜棣.土壤微生物学[M].北京:中国农业出版社,1995.
    [45] Moony J H, Cushman E, Medina OE,et al. Functional Role of Biodiversity[J]. John Wiley & Sons, Lid, 1996.
    [46]盘莫谊,张杨珠,肖嫩群,等.烟草连作对旱地土壤微生物及酶活性的影响[J].世界科技研究与发展, 2008, 30(3):295-297.
    [47]关松荫.土壤酶及其研究方法[M].北京:农业出版社.1986.
    [48]彭有才,刘挺,赵俊杰,等.连作对土壤性状影响的研究进展[J].江西农业学报, 2009, 21(9): 100-103.
    [49]娄翼来,关连珠,王玲莉,等.不同植烟年限土壤pH和酶活性的变化[J].植物营养与肥料学报, 2007,13(3): 531-534.
    [50]于宁,娄翼来,严丽,等.施石灰对北方连作烟田土壤酸度调节及酶活性恢复研究[J].土壤通报, 2008, 39(4):849-851.
    [51]陈明霞,查轩,丁光敏.翻耕对花岗岩坡地水分转化及产流产沙特征影响研究[J].水土保持通报, 2005, 25(3): 6-9.
    [52]董全中.大豆菌核病的发生规律及综合防治[J].大豆通报, 2003, (3): 13.
    [53]罗奥,崔红秋,杨富江,等.不同耕法的土壤理化及农艺学效应研究进展[J].黑龙江八一农垦大学学报, 2008, 20(3): 34-36.
    [54]李明德,刘琼峰,吴海勇,等.不同耕作方式对红壤旱地土壤理化性状及玉米产量的影响[J].生态环境学报, 2009, 18(4): 1522-1526.
    [55]李旭,闫洪奎,曹敏建,等.不同耕作方式对土壤水分及玉米生长发育的影响[J].玉米科学, 2009, 17(6): 76-78,81.
    [56]吕卫光,杨广超,沈其荣,等.有机肥对连作西瓜生长和土壤微生物区系的影响[J].上海农业学报, 2006, 22(4):96-98.
    [57]李晓磊,李井会,宋述尧,等.秸秆有机肥改善设施黄瓜连作土壤微生物区系[J].长春大学学报(自然科学版), 2006, 16(6): 119-122.
    [58]田秀平,李玉梅,韩晓日.大豆长期连作及施肥对白浆土pH和铁、锌、铜、锰形态的影响[J].植物营养与肥料报, 2003, 9(2):253- 255.
    [59]刘建国,卞新民,李彦斌,等.长期连作和秸秆还田对棉花土壤微生物活性的影响[J]. 2008, 19 (5): 1027-1032.
    [60]马承铸,顾真荣,钱振官,等.种植制度对大豆孢囊线虫群体密度和真菌区系的影响[J].上海农业学报, 1994, 10(2):62-66.
    [61]何念杰,唐祥宁,游春平.烟稻轮作与烟草病害关系的研究[J].江西农业大学学报, 1995, 17(3): 294-299.
    [62]樊军,郝明德.长期轮作与施肥对土壤主要微生物类群的影响[J].水土保持究, 2003, 10(1): 88-114.
    [63] Alvey. S. Yang. C. H.Buerkert. A. et a1. Cereal legume rotation effects on rhizosphere bact- erial community structure in west African soils [J]. Biology and Feaility of Soils. 2003, 37: 73-82.
    [64]张凤丽,周宝利,王茹华,等.嫁接茄子根系分泌物的化感效应[J].应用生态学报, 2005, 16(4): 750- 753.
    [65]刘金波,许艳丽.我国连作大豆土壤微生物研究现状[J].中国油料作物学报, 2008, 30(1):132-136.
    [66]吴凤芝,王伟,栾非时,等.土壤灭菌对大棚连作黄瓜生长发育影响[J].北方园艺, 1999(5): 128,49.
    [67]庄岩,吴凤芝.不同农艺措施对土壤微生物的影响研究进展[J].东北农业大学学报, 39(6):136-140.
    [68]朱林,张春兰,沈其荣.施用稻草等有机物料对黄瓜连作土壤pH、EC值和微生物的影响[J].安徽农业大学学报, 2001, 28(4):350-353.
    [69]吴凤芝,赵凤艳,谷思玉.保护地黄瓜连作对土壤生物化学性质的影响[J].农业系统科学与综合研究, 2002,18(1):20-22.
    [70]金扬秀,谢关林,孙祥良,等.大蒜轮作与瓜类枯萎病发病的关系[J].上海交通大学学报(农业科学版), 2003, 21(1):9-12.
    [71]张春兰,吕卫光,袁飞.生物有机肥减轻设施栽培黄瓜连作障碍的效果[J].中国农学通报, 1999, 15(6):67-69.
    [72]吕卫光,张春兰,彭宇.外源苯丙烯酸抑制连作黄瓜生长的机制初探[J].中国蔬菜, 2001, (3):10-12.
    [73] Blum U, Sharer SR. Microbial population and phenolic acids in soils [J]. Soil Biol Biochem, 1988, 20(6):793~800.
    [74]封海胜.解除花生连作障碍的对策研究发[J].花生科学, 1996, 3: 13-16.
    [75] Richard P Phillips, Timothy J Fahey. Tree species and mycorrhizal associations influence the magnitude of rhizosphere effects [J]. Ecology, 2006, 87(5): 1302.
    [76]周晓芬,杨军芳.不同施肥措施及EM菌剂对大棚黄瓜连作障碍的防治效果[J].河北农业科学, 2004, 8(4):89- 92.
    [77]凌宁,王秋君,杨兴明,等.根际施用微生物有机肥防治连作西瓜枯萎病研究[J].植物营养与肥料学, 2009, 15(5): 186-189.
    [78]张翼,张长华,王振民,等.连作对烤烟生长和烟地土壤酶活性的影响[J].中国农学通报, 2007, 23(12): 211-215.
    [79]张长华,王智明,陈叶君,等.连作对烤烟生长及土壤氮磷钾养分的影响[J].贵州农业科学, 2007, 35(4):62-65.
    [80]关国经,张长华,冯光群,等.发病史、品种和轮作组合预防烤烟青枯病试验[J].贵州农业科学, 2006, 34(B07): 41-42.
    [81]阮维斌,王敬国,张福锁.连作障碍因素对大豆养分吸收和固氮作用的影响[J].生态学报, 2003, 23(1):22-29.
    [82]傅慧兰,杨振明,邹永久,等.大豆连作对土壤酶活性的影响[J].植物营养与肥料学报, 1996, 2(1): 374-377.
    [83]丁海兵,郭亚利,黄建国,等.连作烤烟不同粒级土壤酶活性研究[J].耕作与栽培, 2005(5): 13-15.
    [84]蔡燕飞,廖宗文,章家恩,等.生态有机肥对番茄青枯病及土壤微生物多样性的影响[J].应用生态学报, 2003, 14(3):349-353.
    [85]吕卫光,杨新民,沈其荣,等.生物有机肥对连作西瓜土壤酶活性和呼吸强度的影响[J].上海农业学报, 2006, 22(3):39-42.
    [86]鲁如坤.土壤农业化学分析法[M].中国农业科技出版社, 1998.
    [87]邹琦.植物生理学实验指导[M].北京:中国农业出版社, 2000.
    [88] Arnon D I.Copper E Enzymes in Isolated Chloroplasts Phenoloxidases in Beta Vulgaris [J]. Plant Physiol.,1949, 24:1-15.
    [89]王岩,沈其荣,史瑞和.有机无机肥料施用后土壤生物量C、N、P的变化及N素转化[J].土壤学报, 1998, 35(2): 227-233.
    [90]中国土壤学会.土壤农业化学分析方法[M].北京:中国农业科技出版社, 2000.
    [91]侯永侠,周宝利,吴晓玲.不同连作土壤对辣椒生长发育的影响研究[J].北方园艺, 2009(8): 9-11.
    [92]孙瑞莲,赵秉强,朱鲁生,等.长期定位施肥田土壤酶活性的动态变化特征[J].生态环境, 2008, 17(5):2059-2063.
    [93]马淑时,王伟.大豆品种资源的抗盐碱性研究[J].吉林农业科学. 1994,4:69-71.
    [94]王峰吉,陈朝阳,江豪,等.烤烟品种云烟85烟叶的成熟度与保护酶活性及膜脂氧化作用的关系[J].福建农林科技大学(自然科学版), 2003, (6):162-166
    [95]程昌新,王金平,卢秀萍,等.云南省不同地区烤烟化学成分的多变量分析[J].郑州轻工业学院学报:自然科学版, 2007, 22(1): 31.
    [96]王瑞新.烟草化学[M].北京:中国农业出版社, 2003: 170,174.
    [97]左天觉.烟草的生产、生理和生物化学[M].上海:上海远东出版社. 1993: 450-451.
    [98]金闻博,戴亚.烟草化学[M].北京:清华大学出版社, 1994: 53, 64.
    [99]林彩丽,杨铁钊,杨述元,等.不同基因型烟草生长过程中主要化学成分的变化[J].烟草科技, 2003(1): 30-34.
    [100]闫克玉,赵献章.烟叶分级[M].北京:中国农业出版社, 2003: 24.
    [101]刘新虎,赵小亮,万传星,等.棉花根系分泌物对棉苗生长及生理活性的影响[J].棉花学报, 2009, 21(4):335-封三.
    [102]张翔,范艺宽,毛家伟,等.不同种植制度和施肥措施对烟田土壤养分及微生物的影响[J].华北农学报, 2008, 23(4): 208-212.
    [103]王才斌,吴正锋,成波,等.连作对花生光合特性和活性氧代谢的影响[J].作物学报, 2007, 33(8): 1304-1309.
    [104]李亮亮,李天来,张恩平,等.自毒物质对番茄幼苗光合作用及保护酶活性的影响及碳化玉米芯的缓解作用[J].华北农学报, 2010, 25(1): 141-146.
    [105]杜长玉,李东明,庞全国.大豆连作对植株营养水平、叶绿素含量、光合速率及其产量影响的研究[J].大豆科学, 2003, 22(2): 146-150.
    [106]王茂盛,陈懿,薛小平,等.长期连作对烤烟产量和质量的影响[J].耕作与栽培, 2010(1): 8-9,43.
    [107]薛庆喜,宦立海,张玉春,等.不同作物茬口对重茬和连作大豆产量及农艺性状的影响[J].黑龙江农业科学, 2006, (6): 20-22.
    [108]魏改堂,汪洪钢. AM真菌对药用植物曼陀罗(Datura stramonium L.)生长、营养吸收及有效成分的影响[J].中国农业科学, 1989, 22(5): 56-61.
    [109]刘江,黄学跃,李天飞. AM真菌与根瘤菌和溶菌酶双接种对烤烟幼苗生长的影响[J].烟草科技, 2000, 2: 43-44.
    [110]赵方贵,陈丽平,贺学礼. AM真菌与施磷量对烤烟晶质的影响的初步试验[J].土壤肥料, 2004(3): 43-45.
    [111]李勇.试论土壤酶的活性与土壤肥力[J].土壤通报, 1989, (4): 190-193.
    [112] Shiomi Y,Nishiyama M,Onizuka T. Comparison 0f bacterial community structures in the rhizoplane of tomato plants grown in soils suppressive and conducive towards baclerial wilt [J]. Applied and Environmenal Micmbiology, 1999, 65(9): 3996-4001.
    [113] SMITH S E, READ D J. Mycorrhizal symbiosis [M]. California: Academic Press, 1997.
    [114]胡元森,刘亚峰,吴坤,等.黄瓜连作土壤微生物区系变化研究[J].土壤通报, 2006, 37(1): 126-129.
    [115]蔡晓布,冯固,钱成,等.从枝根菌对西藏高原草地植物和土壤环境的影响[J].土壤学报, 2007, 44(1): 63-71.
    [116] Hartmann A,Schmid M,Wenzel W, Hinsinger Ph. Rhizosphere 2004-Perspectives and Challenges A Tribute to Lorenz Hiltner [D]. Munich, Germany: GSF-Nafional Research Center for Environment and Health, 2005.
    [117]赵天义.淹水处理对连作番茄土壤特性及下茬番茄生长的影响.[D].广西南宁市大学东路100号,广西大学, 2009.
    [118]顾美英,徐万里,茆军,等.连作对新疆绿州棉田土壤微生物数量及酶活性的影响[J].干旱地区农业研究, 2009, 27(1): 1-5,11.
    [119]郭利,王学龙,陈永德,等.烟草连作对烟田土壤微生物的影响[J].湖北农业科学, 2009, 48(10): 2443-2445.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700