用户名: 密码: 验证码:
南海北部陆缘多金属结核地球化学特征及成矿意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以产出于南海北部陆缘西沙海台的多金属结核为主要对象,以太平洋、印度洋等海域的样品为参照,对南海结核进行了矿物学、地球化学及成矿环境等方面深入、系统的探讨。
     在研究中应用了矿相显微镜、高倍电子显微镜、电子探针、X射线粉晶衍射(XRD)、等离子质谱仪(ICP-MS)和等离子光谱仪(ICP-AES)等观察仪器及测试分析设备;利用了钙质超微生物地层学的定年方法。研究内容包括结核的形态、矿物的组成、元素分布及含量、元素间的相关关系、多元图解和配分模式;结核的生长年代、生长速率及结核的赋存环境和成矿意义。主要取得了以下成果:
     1.完成南海北缘西沙海台大型多金属结核基本特征的鉴定,确定南海结核与太平洋、印度洋等大洋结核,波罗的海、南海东北部陆坡等边缘海结核,地球化学特征存在明显差异,是一种边缘海环境条件下赋存的新型多金属结核。
     2.根据南海多金属结核元素和矿物组成特征,确定南海结核样品为水成成因,并据此讨论了区域构造-沉积因素对结核形成和生长过程的控制作用。
     3.根据南海结核化学元素的相关关系:Mn与Mg、Cu、Ni、Al、Ca呈较强的正相关;Fe与Co、Zn、Ti、Pb、Sr、∑REE呈较强的正相关;Mn+Fe与Mg+Al+Si为强负相关;Cu+Ni+Co与Fe+Mn较强负相关。认为Fe、REE等元素主要来源于陆源碎屑沉积物,Mn、Cu、Ni等来自深层海水;结核壳层金属含量的变化,与沉积环境的变化密切相关,陆源物质供应量的增加对Mn、Cu、Ni、Ca等元素的富集产生明显的稀释作用。
     4.首次利用钙质超微化石地层学方法,将结核的初始生长年代限定在1.7Ma左右,据此推断结核的生长速率高达15.38mm/Ma。这一远远高于常速的快速生长的结核类型,可能是边缘海特定环境下物源供应条件充分的结核生长发育的特例。
     5.综合探讨了南海多金属结核形成过程的构造地理环境特征及对其产生强烈制约相应的重大地质事件。认为独特的地理位置和海底地貌、充足的矿物供应、良好的古海洋条件是结核生长、发育的前提;其生长环境受青藏高原的隆升、末次冰期等重大地质事件的制约;其成长发育过程记录了大量古海洋、古气候、古环境的信息,对探讨南海区域环境的演化,乃至全球性环境演变都具有重要意义。
The polymetallic nodules collected from the northern continental margin of the South China Sea are used in this study. Samples of diferent nodules which are from the Pacific and the Indian Ocean are discussed in details with mineralogical and element geochemical method. This study showed great value on the theoretics and the appliance.
     The study used various observations and analytical techniques such as electron microprobe analysis, X- ray difraction ( XRD). Elemental content data of polymetallic nodules are obtained by ICP- AES and ICP-MS techniques. The chronology is mostly based on the calcareous nannofossils from the sample. The studies are including of elemental composition, content and distribution, the ratio among different elements, elemental assemblage, triangular diagram analysis and REE distribution pattern. The minerogenetic environment of the polymetallic nodules are discussed in this article. The following results have already been achieved:
     1. According to internal structure features, the microstructure can be classified into 12 different types in the polymetallic nodules. The XRD, ICP-AES and ICP-MS data show different characteristics from different areas. Sample of the South China Sea is rich in Fe, Si, and∑REE, and is poor in Mn, Cu, Co, Ni and Mn/Fe. Elements correlation of w(Mn)-w(Fe)-the w(Cu+Ni)×10 suggest that the origin of the sample may be of hydrogenic.
     2. The chemical compositions of polymetallic nodules which are collected from the South China Sea, northeastern Pacific Basin, northwestern Pacific Seamount and central Indian Ocean Basin are studied in this article. The sample of the South China Sea has many particular characteristics on main elements, trace elements and rareearth elements (REE), and is easily different from the oceanic nodules and the nodules which are obtained from the Baltic and the Okinawa Trough. The sample has lower rates on Cu, Co, Ni, and Mn/Fe (0.73). The REE expresses very special characteristics of the sample. It has higher content than oceanic nodules (1.8). The heavy REE (HREE) depleted relative to the light REE (LREE) very obviously (19.54), because the HREE have formed more stable complexes in seawater than LREE. The distinct enrichment ofδCe and unusual negative ofδEu indicates strong oxidize oceanic environment of the study areas.
     3. According to the correlated coefficient analysis, there are positive relations among Mn, Mg, Cu, Ni, Al and Ca, also Fe, Co, Zn, Ti, Pb, Sr and∑REE. There are negative relations between Mn+Fe and Mg+Al+Si contents, Cu+Ni+Co and Fe+Mn contents. The content ration of Fe increases from the inner crust to the outer one, with that of Cu and Ni decreasing in different ways. It shows that the growth of the nodules was affected by the environmental fluctuations and changing supply of the terrigenous sediments and Mn, Cu, Ni, and Ca. The nodules are typically hydrogenetic in marginal sea environment.
     4. According to the chronology correlation of calcareous nannofossils, the growing age of the polymetaic nodule has been identified. The geological age is limited to 1.7Ma, and the growth rate is about 15.38 mm/Ma. The nodule may represents a new type which grows fast in high deposition velocity environment.
     5. Based on the detailed study of the geochenistry and growth rate, the minerogenetic environment is discussed in this paper. The nodule can grow fast because the north of the South China Sea has better conditions on forming mechanism and environments, such as special geography position, ample mineral supply and good paleoceanic conditions. In addition, its growth process can record a lot of palaeoceangraphic, palaeoclimatological and palaeoenvironmental information. This study will achieve in explaining regional environmental changes even global environmental evolution.
引文
白志民,王英滨,姜波,等. 2004. 太平洋富钴结壳中稀土元素的赋存状态. 地学前缘, 2:387-392
    鲍根德,李全兴.1991.南海铁锰结核(壳)的元素地球化学研究.热带海洋,3:44-50
    鲍根德,李全兴.1993.南海铁锰结核/壳的稀土元素地球化学.海洋与湖泊, 3:304-313
    鲍根德.1990.控制铁锰结核地球化学特征的主导因素研究.中国科学 B 辑,8:860-866
    陈木宏,郑范,陆钧,等.2005.南海西南陆坡区沉积物粒级指标的物源特征及古环境意义.科学通报,7:684-690
    陈史坚,陈特固,徐锡桢,等.1985.浩瀚的南海.北京:科学出版社
    陈穗田,Stüben D. 1997. 菲律宾海的锰结壳和锰结核. 海洋学报,4:109-116
    陈毓蔚,桂训堂.1998.南沙群岛海区同位素地球化学研究. 北京:科学出版社, 65-129
    陈忠,古森昌,颜文,等.2002.南沙海槽南部海区表层沉积物的碳酸盐沉积特征.海洋学报,5:141-146
    陈忠,古森昌,颜文,等.2002.南沙海槽南部海区沉积物重金属元素含量及其影响因素.海洋科学,1:50-54
    陈忠,古森昌,颜文,等.2002 南沙海槽南部海区表层沉积物中碎屑矿物特征.热带海洋,2:84-90
    陈忠,夏斌,颜文,等.2005.南海火山玻璃的分布特征、化学成分及源区探讨. 海洋学报, 5:73-81
    陈忠,颜文,古森昌.2003.南沙海槽南部表层重砂矿物及其成矿远景.海洋地质与第四纪地质,1:13-17
    陈忠,杨慧宁,颜文等.2006. 中国海域固体矿产资源分布及其区划—砂矿资源和铁锰(微) 结核—结壳. 海洋地质与第四纪地质,5:101-107
    邓松,钟欢良,王名文,等.1995.琼海沿岸上升流及其与渔场的关系.台湾海,14:51-56
    杜乐天. 1996. 烃碱流体地球化学原理. 北京: 科学出版社
    冯文科,鲍才旺.1982.南海地形地貌特征.海洋地质研究, 4:23-32
    古森昌,陈绍谋,吴必豪,等. 1989. 南沙表层沉积物稀土元素的地球化学. 热带海洋, 2: 93-101
    古森昌,陈忠,颜文,等.2001.南沙海槽区表层沉积物的地球化学特征. 海洋地质与第四纪地质,21:43-47
    郭飞,侍茂崇,夏综万. 1998.琼东沿岸上升流二维数值模型的诊断计算.海洋学报, 5: 109-116
    郭世勤,吴必豪,卢海龙,等. 1994. 多金属结核和沉积物的地球化学研究.北京:地质出版社
    韩建修,李学杰,崔建秋,等.1997.古海洋环境与多金属结核形成的关系.武汉:中国地质大学出版社
    韩杰,叶瑛,张维睿.2006.大洋锰结核(壳) 中南极底流活动的矿物学与地球化学记录. 矿物岩石地球化学通报,7:154-159
    韩舞鹰,王明彪,马克美. 1990.我国夏季最低表层水温海区-琼东沿岸上升流的研究.海洋与湖沼,12:267-275
    韩舞鹰.1998.南海海洋化学. 北京:科学出版社,215-232
    韩喜球,李家彪,王英.2004.东太平洋多金属结核中铁,锰元素的分形演化及其意义.海洋学报,4:65-69
    郝诒纯,茅绍智.1993.微体古生物学教程.武汉:中国地质大学出版社
    何高文,赵祖斌,朱克超,等.2001. 西太平洋富钴结壳资源.北京:地质出版社
    黄维,汪品先.2006.南海沉积物总量的统计:方法与结果. 地球科学进展, 21:465-473
    纪文荣.1981.超微化石.中国石油公司探测中心
    翦知湣.1998. 南海冰期深部水性质的稳定同位素证据.中国科学D辑,3:250 -256
    解习农,李思田,胡祥云.1999.莺歌海盆地底辟带热流体输导系统及其成因机制. 中国科学D辑,3:247-256
    金庆焕.2001.海底矿产.北京:清华大学出版社
    赖来仁.1995.中国南海锰结核的成因探讨.矿产与地质,9:293-298
    蓝先洪. 1994.海洋地球化学的研究现状与展望.韩晓鹏主编,海洋科学中若干前沿领域发展趋势的分析与探讨. 北京: 海洋出版社
    李学杰,江茂生.2002.南海西沙海槽末次冰期以来浮游有孔虫与表层水温. 中国科学D辑,5:423 -429
    李延河,宋鹤斌,李金城,等.1997.太平洋中部多金属结核与海底热液活动的关系.科学通报, 19:2084-2086
    梁宏峰,姚德,梁德华,等.1991.南海尖峰海山多金属结壳地球化学.海洋地质与第四纪地质,4:49-58
    林振宏,吕亚男,李学伦,等. 1997.冲绳海槽中部表层沉积物中的热水铁锰氧化物. 海洋与湖沼,28:91-98
    刘方兰,吴庐山. 2006.西沙海槽海域地形地貌特征及成因.海洋地质与第四纪地质,26:7-14
    刘建明.1994.成矿组分沉积同生富集的一种新机制:动态海水团的混合过程.地球科学进展,2:24-28
    刘晓东,吴锡浩,董光荣,等.1995.末次冰期东亚季风气候的数值模拟研究.气象科学, 4:183-196
    刘昭蜀.1995. 南海地质-地球物理调查研究及研究方向.海洋科学, 4:60-63
    刘昭蜀.2000.南海地质构造与油气资源.第四纪研究,20:69-77
    罗尚德,王蕾,黄易普.1989.锰结核与沉积环境德关系.沉积学报,4:77-84
    莫杰. 2000. 中国大洋矿产资源勘查进展概况.海洋地质动态, 16:6-8
    丘学林,周蒂,夏戡原,等. 2000.南海西沙海槽地壳结构的海底地震仪探测与研究. 热带海洋,19:9-18
    邱传珠.1983.南海铁锰沉积物和火山碎屑沉积物特征及其分布规律研究. 热带海洋, 4: 267-277
    邵磊,李献华,韦刚健,等.2001.南海陆坡高速堆积体的物质来源.中国科学, 31: 828- 833
    苏广庆,王天行. 1990.南海的铁锰结核.热带海洋,9:29-36
    苏文庆,王天行.1990. 南海的铁锰结核.热带海洋, 4: 29-36.
    孙志国,蓝先洪,刘宝柱,等.1996.西沙珊瑚礁中青藏高原隆升的锶同位素记录.海洋科学,3:35-41
    孙志国,姚德,许东禹,等.1996. 多金属结核锶铅同位素地球化学特征的初步研究. 海洋通报, 15(6):35-41
    涂霞,郑范,王吉良,等.2001.南海北部末次间冰期早期的突然降温事件.中国科学D辑, 31:823-827
    汪品先,夏伦煜,王律江,等.1991.南海西北陆架的海相更新统下界.地质学报, 2:176-187
    汪品先.1995.大洋钻探与青藏高原.地球科学进展,10:254-257
    汪品先.1995.十五万年来的南海.上海: 同济大学出版社.
    王东晓. 2002.南海上层物理海洋学气候图集,年 12 月第 1 版
    王贤觉,陈毓蔚,吴明清.1984. 铁锰结核的稀土和微量元素地球化学及其成因.海洋与湖泊, 6:501-514.
    王中刚,于学元,赵振华,等.1989.稀土元素地球化学.北京:科学出版社
    韦刚健.1995.海水Sr同位素组成变化的环境意义与Sr同位素地层学.海洋科学, 1:23-25
    吴智勇.1999.化学地层学及其研究进展.地层学杂志,23:234-240
    谢以萱.1988.南海地貌.见:中国科学院南海海洋研究所地质构造研究室.南海地质构造与陆缘扩张.北京:科学出版社,41-47
    许东禹,金庆焕,梁德华,等. 1994. 太平洋中部多金属结核及其形成环境.北京:地质出版社
    许东禹.1994.多金属结核形成的古海洋环境.北京:地质出版社
    颜廷壮.1992.浙江和琼东上升流成因分析. 海洋学报,14:12-18
    杨培基,范德廉.1985.北太平洋几块锰结核的初步研究.岩石学,1:11-12
    杨群慧,林振宏,张富元,等.2002.南海中东部表层沉积物矿物组合分区及其地质意义.海洋与湖沼,33:591-599
    姚伯初,曾维军,Hayes,等.1994.中美合作调研南海地质专报. 武汉:中国地质大学出版社
    姚伯初,曾维军,陈艺中,等.1994.西沙海槽:一条古缝合线. 海洋地质与第四纪地质, 14: 1-10
    姚德,张丽洁.1996.约翰斯顿岛附近海域铁锰结壳矿物学和地球化学研究.海洋地质与第四纪地质,16:33-49
    于津生,陈毓蔚,桂训堂,等.1994.“南永一井”礁相碳酸盐C、O、Sr、Pb同位素组成及其古环境意义探讨.中国科学B辑,7:757-765
    俞旭,江超华.1984.现代海洋沉积物及其X射线衍射特征研究.北京:科学出版社,113-156
    张丽洁,姚德,崔汝勇. 2001. 海底铁锰结核和结壳物质组成特征及其控制因素.海洋地质动态,9:1-4
    张兴茂,翁焕新,2005. 南海东北部陆坡铁锰沉积记录对环境变化的指示意义. 海洋学报, 1:93-100
    张远辉,杜俊民.2005. 南海表层沉积物中主要污染物的环境背景值. 海洋学报, 4:161 -166
    张云,管永诗,田玉珍. 2000. 大洋锰结核资源的研究现状.矿产保护与利用,6:39-42
    章伟艳,张富元,陈荣华,等. 2002. 南海深水区晚更新世以来沉积速率、沉积通量与物质组成. 沉积学报, 20:668-674
    赵宏樵. 2003. 中太平洋富钴结壳稀土元素的地球化学特征.东海海洋,1:19-26
    赵焕庭,沙庆安,朱袁智,等.1992.南沙群岛永暑礁第四纪珊瑚礁地质.北京:海洋出版社
    中国科学院南海海洋研究所,1985.南海海区综合调查研究报告(二).北京:科学出版社
    朱克超,李振韶,何高文,等.2001.东太平洋多金属结核矿产.北京:地质出版社
    Aplin A, Cronan D. 1985. Ferromanganese oxide deposits from the Central Pacific Ocean, I. Encrustations from the Line Islands Archipelago. Geochimica et Cosmochimica Acta, 49: 427-436
    Aplin A, Cronan D. 1985. Ferromanganese oxide deposits from the Central Pacific Ocean, II. Nodules and associated sediments. Geochimica et Cosmochimica Acta, 49:437-451
    Anderson R. 1986. Marine geology- A planet earth perspective. New York: JohnWiley & Sons
    Baturin G, Yemel yanov, Ye M. 1992. Geochemistry of south Atlantic manganese nodlules. Geochem.Int., 29:106-116
    Baturin G. 1987. The Geochemistry of Manganese and Manganese Nodules in the Ocean. Dordrecht: D Reidel Publishing Company, 342
    Berelson W, McManus J,Coale K, et al. 2003. A time series of benthic flux measurements from Monterey Bay, CA. Continental Shelf Research, 23:457-481
    Boye M, Aldrich A, van den Berg, et al. 2003. Horizontal gradient of the chemical speciation of iron in surface waters of the northeast Atlantic Ocean. Marine Chemistry, 3:129-143
    Boyle E, Sclater F, Edmond J. 1977. The distribution of discoved copper in the Pacific. Earth Planet Sci Lett, 37:38-54
    Bramlette M, Riedel W. 1954. Stratigraphic value of discoasters and some other microfossils related to Recent Coccolithophores. J. Paleont., 7:385-403
    Bramley J. 2000. A global review of non - living resources on the extended continental shelf. Brazilian Journal of Geophysics, 18 :288-295
    Broecker W, Andree M, Bonani G, et al. 1988. Preliminary estimates for the radiocarbon age of deep water in the glacial ocean. Paleoceanography, 3: 659-670
    Broecker W, Andree M, Klas M, et al. 1986. New evidence fro the South China Sea for an abrupt termination of the last glacial period about 13,500 years ago. Nature, 333: 156-158
    Brown E, Callonnec L, German C. 2000 .Geochemical cycling of redox2sensitive metals in sediments from LakeMalawi: a diagnostic paleotracer for ep isodic changes in mixing depth. Geochimica et Cosmochimica Acta, 64:3515-3523
    Callender E, Bowser C. 1980. Manganese and copper geochemistry of interstitial fluids from manganese nodule-rich pelagic sediments of the northeastern equatorial Pacific Ocean. American Journal of Science, 280:1063-1096.
    Calvert S. 1976. The Mineralogy and geochemistry of Near-shore Sediment. Chemical Oceanography, 6:260-268
    Channell J, Amigo A, Fronval T, et al. 1999. Magnetic stratigraphy at Site 907 and 985 (Leg 162) in the Norwegian-Greenland Sea, and a revision of the Site 907 composite section. In: Raymo M, Jansen E, Blum P, et al. (Eds.), Proc. ODP, Sci. Results,131-148
    Chase Z, van Geen, Kosro P, et al. 2002. Iron, nutrient, and phytoplankton distributions in Oregon coastal waters. Journal of Geophysical Research, 107:3174-3180
    Clark A. 1993. Marine mineral resources of The South China Sea. Georesources et Geotechnology, 11:108-110.
    Cowen J. 1993. Calcareous nannofossil biostratigraphic dating of a ferromanganese crust from Schumann Seamount. Marine Geology, 115: 289-306
    Dean W, Gardner J, Piter D. 1997. Inorganic geochem ical indicato rs of glacial-interglacial changes in productivity and anoxia on the California continentalmargin. Geochimica et Cosmochimica Acta,61: 4507-4518
    Dehairs F, Baeyens W, van Gansbeke D. 1989. Tight coupling between enrichment of iron and manganese in North Sea suspended matter and sedimentary redox processes: evidence for seasonal variability. Estuarine, Coastal and Shelf Science, 29:457-471
    Duce R, Tindale W. 1991. Atmospheric transport of iron and its deposition in the ocean. Limnol. Oceanogr,36:1715-1726
    Eisenhauer A, Gogen K, Pernicka E, et al. 1992. Climate influence on the growth rates of Mn crusts during the late Quaternary. Earth and Planetary Science Letters, 109: 71-75
    Elderfield H. 1986. Strontium isotope stratigraphy. Palaeogeography Palaeoclimatology Polaeoecology, 57:71-90
    Elrod V, Berelson W, Coale K, et al. 2004. The flux of iron from continental shelf sediments: a missing source for global budgets. Geophysical Research Letters, 31:1-4
    Florence Nédélec, Peter J, Matt M. 2007. Processes influencing dissolved iron distributions below the surface at the Atlantic Ocean–Celtic Sea shelf edge. Marine Chemistry,104:156–170
    Frank M, O’Nions R, Hein J, et al. 1999. 60 Myr records of major elernents and Pb-Nd isotopes from hydrogenous ferromanganese crusts: Reconstruction of seawater Paleochemistry . Geochim et Cosmochim Acta, 63: 1689-1708
    Gingele F, Leipe T. 1998. Distribution and enrichment of redox-sensitive metals in Baltic Sea sediments. Oceanographic Literature Review,45: 15-28
    Glasby G, Emelyanov E, Zhamoida V, et al.1997. Environment of formation of ferromanganese concretions in the Baltic Sea: a critical review. In Manganese Mineralization: Geochemistry and Mineralogy of Terrestrial and Marine Deposits 119:213–237
    Glasby G, Schulz H. 1999. Eh, pH diagrams forMn, Fe, Co, Ni, Cu and asunder seawater conditions: application of two new types of Eh, pH diagrams to the study of specific problems in marine geochemistry. Aquatic Geochemistry,5: 227-248
    Glasby G. 2000. Lessons Learned from Deep - Sea Mining. Science, 579: 551-553
    Grazzini C.1975. δ18 Ochange in foraminifera carbonates during the last 105 years in Mediterranean sea.Science, 190:273-274
    Ha1bach P, Friedrich G, Von Stackelberg V. 1988.The Manganese Nodule Belt of the Pacific Ocean: Geological Environment, Nodule Formation and Mining Aspects. Stuttgard: Ferdinand Enke Verlag, 254
    Halbach P , Segl M , Puteanus D, et al. 1983. Co-fluxes and growth rates in ferromanganese deposits from central Pacific Seamounts areas. Nature, 304 :716-719
    Halbach P, Hebisch U, Scherhag C. 1981.Geochemical variation of ferromanganese nodules and crusts from different provinces of the Pacific Ocean and their genetic control. Chem Geol, 26: 3-17
    Harada K, Nishida S,1976.Biostratigraphy of some manganese nodules. Nature, 260 : 770-771
    Hein J, Kachinsky A, Halbach P, et al., 1997. Iron and Manganese Oxide Minerallization in the Pacific. Manganese Mineralization: Geochemistry and Mineralogy of Terrestrial and Marine Deposits.Geol. Soc London Spec. Publ., 123-138
    Hein J, Ross C, Alexander E.1979.Mineralogy and diagenesis of sediments from DOMES areasA, B and C. In: Bischoff J L et al. (Eds.). Marine Science 9: Marine Geology and Oceanography of the Pacific Manganese Province. 365-396
    Hein J, Schwab W, Dives A. 1988. Cobalt – and Platinum – rich ferromanganese crusts and associated substrate rocks from Marshall Islands. Marine Geology, 78: 225-283
    Hein J. 1990. Cobalt - rich ferromanganese crusts: global distribution, composition, origin and research activities. Polymetallic massive sulphides and cobalt - rich ferromanganese crusts : status and prospects. ISA Technical study,2:43-49
    Hein J. 1997. Iron and manganese oxide mineralisation in the Pacific. Nicholson K(eds), In: Manganese Mineralization: Geochemistry and Mineralogy of Terrestrial and Marine Deposits. London: Geological Society Special Publication, 123-138
    Hein J. 2002. Cobalt-rich Ferromanganese Crusts: Global distribution, composition, origin and research activities. In: International Seabed Authority , ed. Polymetallic massive sulphides and cobalt-rich ferromanganese crusts: status and prospects. Kingston. 36-89
    Hess J, Bender L, Schilling J. 1988. Evolution of the ratio of strontium-87 to strontium-86 in seawater from Cretaceous to present. Science, 231:979-984
    Heye D. Marchig V. 1977. Relationship between the growth rate of manganese nodules from the Central Pacific and their chemical constitution. Mar Geol , 23:19-25
    Hlawatsch S, Garbe-Schonberg C, Lechtenberg F, et al. 2002b. Trace metal fluxes to ferromanganese nodules from the western Baltic Sea as a record for long-term environmental changes. Chem. Geol., 182: 697 -709
    Hlawatsch S, Neumann T, van denBerg C, et al.2002a.Fast-growing, shallow-water ferro-manganese nodules from the western Baltic Sea: origin and modes of trace element incorporation. Marine Geol., 182:373–387
    Hlawatsch, S., 1999. Mn-Fe-Akkumulate als Indikator fur Schad- und Nahrstoffusse in der westlichen Ostsee. Geomar Report 85, Geomar Research Center, Kiel (with English abstract).
    Hodell D, Ciesielski P. 1991. Stable isotopic and carbonate stratigraphy of the Late Pliocene and Pleistocene of hole 704A: Eastern Subantarctic South Atlantic. In: Von Herzen R, Robinson P, et al. (Eds.), Proc. ODP, Sci. Results, 409-435
    Hong Y, Potts R, Yan B, et al. 2000. Mid-Pleistocene Acheulean-like stone technology of the Bose Basin, South China. Science, 287:1622-1626
    Huh C, Willard S, David C.1989. Oceanic 232Th: A reconnaissance and implications of global distribution from manganese nodules. Geochim. Cosmochim. Acta 53:1357-1366
    Inoue T, Tanaka S,1979. 10Be in marine sediments , Earth’s environment and cosmic rays. Nature, 277:209-210
    Jauhari P, Pattan J. 2000. Ferromanganese nodules from the Central Indian Ocean Basin. Marine Mineral Deposits. Cronan D (eds:), CRC Press,171-195
    Johnson K, Gordon R, Coale K. 1997. What controls dissolved iron concentrations in the world ocean? Marine Chemistry,57:137-161
    Johnson W, Miller L, Sutherland N, et al. 2005. Iron transport by mesoscale Haida eddies in the Gulf of Alaska. Deep-Sea Research II, 52:933-953
    Kadko D, Burckle L, 1980 . Manganese nodules growth rates determined by fossiil diatom dating. Nature,287:725-726
    Keigwin L. 1986. Pliocene stable isotope recordof Deep Sea Drilling Project Site 606: Sequential event of 18O enrichment beginning at 3.1 Ma. In: Kidd R, Ruddiman W,Thomas E. (Eds.), Init. Rep. Deep Sea Drilling Program, 911-920
    Kleiven H, Jansen E, Fronval T, et al. 2002. Intensification of Northern Hemisphere glaciations in the circum Atlantic region (3.5-2.4 Ma) -ice-rafted detritus evidence.Palaeogeography, Palaeoclimatology, Palaeoecology, 184:213-223
    Klemm V, Levasseur S, Frank M, et al. 2005. Osmium isotope stratigraphy of a marine ferromanganese crust. Earth and Planetary Science Letters, 238: 42-48
    Koschinsky A, Hein J. 2003. Uptake of elements from seawater by ferromanganese crusts: solid-phase associations and seawater speciation. Marine Geology, 198: 331-351
    Landing W, Bruland K. 1980. Manganese in the north Pacific. Earth and Planetary Science Letters, 49:45-56
    Lei G, Bostrom K. 1995. Mieralogical Control on transition metals distributions in marine manganese nodules. Mar. Geol, 123:253-261
    Lin Z H , Li X L , Cronan D, et al. 1991. Compositional variations in manganese nodules collected from the North Penrhyn Basin. Chin. J . Oceanal. Limnol., 9: 347-357
    Liu Z, Trentesaux A, Clemens S, et al. 2003. Clay mineral assemblages in the northern South China Sea: implications for East Asian monsoon evolution over the past 2 million years. Mar. Geol., 201:133–146
    Lunemann C, Martial T, Perret D, et al. 1997. Association of cobalt and manganese in aquatic systems: chemical and microscope evidence. Geochimica et Cosmochimica Acta, 7:1437-1446
    Lyle M, 1982. Estimating growth rates of ferromanganese nodules from chemical compositions : implications for nodule formation processes. Geochim Cosmochim Atca ,46: 301-306
    Manheim F, Lane-Bostwick C,1988. Cobalt in ferromanganese crusts as a monitor of hydrothermal discharge on the Pacific sea floor. Nature, 335:59-62
    Manheim F. 1986. Marine Cobalt Resources. Science, 4750: 600-603
    Martin J, Fitzwater S.1988. Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature,331:177-196
    Maslin M, Li X S, Loutre M, et al. 1998. The contribution of orbital forcing to the progressive intensi¢cation of Northern Hemisphere Glaciation. Quat. Sci. Rev. 17:411-426
    Maslin M. 1995. Northwest Pacific Site 882: The initiation of Northern Hemisphere glaciation. In: Rea D, Basov I, Scholl D, Allan J. (Eds.), Proc. ODP, Sci. Results, 315-329
    Matthew A, Alain M, Michael K. 2004. Mn, Fe, Zn and As speciation in a fast-growing ferromanganese marine nodule. Geochimica et Cosmochimica Acta, 68:3125-3136
    Matthews, R.K. and R.Z. Poore (1980) Tertiary 18O records and glacio-eustatic sealevel fluctuations, Geology 8:501-504.
    Maynard J. 1983. Geochemistry of sedimentary ore deposits. New York, Heidelberg, Berlin: Spring-Verlag
    McManus J, Berelson W, Klinkhammer G, et al. 1998.Geochem istry of barium in marine sediments: Implications for its use as a paleoproxy. Geochim ca et Cosmochimica Acta, 62 : 3453-3473
    Miller S, Cronan D. 1994. Element supply to surface sediments and interrelationships with nodules along the Aitutaki-Jarvis Transect, South Pacific. Journal of the Geological Society, 151:403-412
    Milliman J, Syvitski J. 1992. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. Journal of Geology, 100: 525-544
    Millward G, Morris A, Tappin A. 1998. Trace metals at two sites in the southern North Sea: results from a sediment resuspension study. Continental Shelf Research, 18:1381-1400
    Mukhopadhyay R, Iyer S, Ghosh A. 2002.The Indian Ocean Nodule Field: petrotectonic evolution and ferromanganese deposits. Earth-Science Reviews, 60: 67-130
    Mutterlose J, Kessels K. 2000. Early Cretaceous calcareous nannofossils from high latitudes: Implications for palaeobiogeography and palaeoclimate. Palaeogeogr. Palaeoclimat. Palaeoecol., 160: 347-372
    Mutterlose J. 1996.Calcareous nannofossil palaeoceanography of the Early Cretaceous of NW Europe. Mitt. Geol. Staatsinst. Hambg., 77:291-313
    Norman M, Deckker P. 1990.Trace metals in lacustrine and marine sediments: A case study from the Gulf of Carpentarra, northern Australia. Chemical Geology, 82: 299-318
    Oppo D. 1995. A δ13C record of Upper North Atlantic Deep Water during the past 2.6 million years. Paleoceanography,10:373-394
    Palmer M R , 1989. The strontium isotope budget of the modern ocean. Earth Plant Sci Lett, 92 :11-28
    Parida K, Samal A, Das N. 1998. Studies on Indian Ocean Manganese Nodules. Journal of Colloid and Interface Science, 197: 236-241
    Patrick J,Verloo M. 1998. Distribution of soluble heavymetals between ionic and comp lexed forms in a saturated sediment as affected by pH and redox conditions. Water Science and Technology,37:165-171
    Perch-Nielsen. 1979. Calcareous nannofossils from the Cretaceous between the North Sea and the Mediterranean. In : Wiedmann, J. (ed.), Aspekte der Kreide. IUGS A6, 223-272
    Perch-Nielsen. 1985. Mesozoic calcareous nannofossils. In: Bolli, H.M., Saunders, J.B., Perch-Nielsen, K. (Eds.), Plankton Stratigraphy. Cambridge Univ. Press, Cambridge, 329-427
    Perron L. 1996. Cobalt. Canadian Minerals Yearbook. Natural Resources Canada. 3-47 Peter A, Knoop R. 1998. Regional Variability in Ferromanganese Composition Nodule: Northeastern Tropical Pacific Ocean. Marine Geology, 147:1-12
    Philomene A, David S, Charles L. 2004. A comparative analysis of compositional variations in and between marine ferromanganese nodules and crusts in the South
    Pacific and their environmental controls. Earth and Planetary Science Letters, 220:277-286
    Piper D, Basler J, Bischoff J. 1984. Oxidation states of marine manganese nodules. Geocrum. Cosmochim. Acta, 48: 2347-2355
    Piper D, Williamson M. 1977. Regional and depth variations in the elemental and mineralogical composition of ferromanganese nodules from the pelagic environment of the Pacific Ocean. Mar Geol , , 23:285-303
    Piper D. 1988. The metal oxide f raction of pelagic sediment in the equatorial Nort h Pacific Ocean : A source of metals in ferro-manganese nodules. Geochimica et Cosmo2Chimica Acta, 52 :2127-2145
    Prueher L, Rea D.1998. Rapidonset of glacial conditions in the subarctic North Pacific region at 2.67 Ma: Clues to causality. Geology, 26:1027-1030
    Puteanus D , Halbach P,1988.Correlation of Co concentration and growth rate method for age determination of ferromanganese crusts. Chem Geol , 69 : 73-85
    Raymo M, Hodell D, Jansen E. 1992. Response of deep ocean circulation to initiation of Northern Hemisphere glaciation(3-2 Ma). Paleoceanography, 7:645-672
    Raymo M, Ruddiman W. 1992. Tectonic forcing of late Cenozoic climate. Nature, 359:117-122
    Rehm E, Puteanus G.1988. Nuclei. In Halbech,P(Eds.):The Manganese Nodule Belt of the Pacfic Ocean. Ferdinand Enke Verlag Stuttgart, 61-69
    Reyss J, Marchig V, Ku T. 1982. Rapid growth of a deep-sea manganese nodules : Effect of diagentic source of Mn. Nature, 295:401-403
    Rona P. 2003. Resources of the Sea Floor. Science, 299 : 673-674
    Roth P, Berger W. Distribution and dissolution of coccoliths in the South and central Pacific. Spec. Publ. Cushman Found. Foraminif. Res. ,1975. 87-113
    Ruddiman W, Kutzbach J. 1990. Late Cenozoic plateau uplift andclimate change. Edinburgh Earth Sci., 81:301-314
    Saager P, Baar D, Burkill H, et al. 1989. Manganese and Iron in the Indian Ocean waters. Geochimica et Cosmochimica Acta, 53:2259-2267
    Schulz H. 2000. Quantification of Early Diagenesis: Dissolved Constituents in Pore Water and Signals in the Solid Marine Geochemistry. Springer,73-124
    Segl M , Mangini A , Bonani G, et al. ,1984. 10Be2dating of a manganese crust from central North Pacific and implications for ocean paleocirculation. Nature , 309: 540-543
    Shackleton N, Cita M.1979. Oxygen and carbon isotopic change stratigraphy of benthic foraminifera at site 397: Detailed history of climatic changeduring the late Neogene. Initial Reports of the DSDP, 47:433-445
    Shackleton N, Kennett J.1975.Late Cenozoic Oxygen and carbon isotopic change at DSDP site 284: Implication for glacial history of the Northern Hemisphere and Antarctica.Initial Reports of the DSDP, 29:801-807
    Skornyakova N, Murdmaa O. 1992. Local variations in distribution and composition of ferromanganese nodules in the clarion-clipperton Nodule Province. Marine Geology,103: 381-405
    Sorem R, Fewkes R.1977. Internal characteristics of manganese nodules. In Glasby, G P(Eds.): Marine deposits Elsevier oceanography,15:147-183
    Sorem R, Fewkes R.1979. Manganese nodules: Research data and methods of investigation. N Y Plenum, 723
    Talor S, McLennan S. 1985.The Continental Crust: Its Compo sition and Evo lution . Melbourne: Blackwell, 28-29
    Tappin A, Millward G, Statham P, et al. 1995. Trace metals in the central and southern North Sea. Estuarine.Coastal and Shelf Science ,41:275-323
    U. S. Congress, Office of Technology Assessment. 1987. Marine Minerals: Exploring Our New Ocean Frontier, U. S. Government Printing Office, Washington.
    Wan Xiaoqiao, Jansa L, Sarti M, et al. 1993.A preliminary correlation between the Cretaceous calcareous nannofloras and foraminifera of southern Tibet. Rev. Esp. de Micropaleont. 1: 41-56
    Wang C H, Chen M P, Lo C S, et al. 1986. Stable isotope records of late Pleistocene sediments from the South China Sea. Bulletin of the Institute of Earth Sciences. Acad. Sin., 6:185-195
    Wang C H, Chen M P. 1990. Upper Pleistocene oxygen and carbon changes of core SCS-15B at the South China Sea. Southeast Asia Earth Sci., 4:243-246
    Wang J, Zhao Q, Cheng X, et al. 2000. Age estimation of the mid-Pleistocene microtektite event in the South China Sea: a case showing the complexity of the sea-land correlation. Chin. Sci. Bull., 45:2277–2280
    Wang L, Sarnthein M, Erlenkeuser H, et al. 1999a. East Asian monsoon climate during the late Pleistocene: high-resolution sediment records from the South China Sea. Mar. Geol., 156:245-284
    Wang L, Sarnthein M, Grootes P, et al. 1999c. Millennial reoccurrence of century-scale abrupt events of east Asian monsoon: a possible heat conveyor for the global deglaciation. Paleoceanography, 14:725-731
    Wang L, SarntheinM, Erlenkeuser H, et al.1999b. Holocene variations in asian monsoon moisture: a bidecadal sediment record from the South China Sea. Geophys. Res. Lett., 26:2889-2892
    Wang L, Wang P. 1990. Late Quatemary paleoceanography of the South China Sea: Glacial-interglacial contrasts in an enclosed basin. Paleoceanography, 5:77-90
    Wang L. 2000. Isotopic signals in two morphotypes of Globigerinoides ruber (white) from the South China Sea: implications for monsoon climate change during the last glacial cycle. Palaeogeogr., Palaeoclimatol., Palaeoecol., 161:381-394
    Wang P X, Sun X J. 1994. Last glacial maximum in China: comparison between land and sea. Catena, 23: 341-353
    Wang P, Prell W, Blum P, et al. 2000. Leg 184 Summary: Exploring The Asian Monsoon Through Drilling In The South China Sea. Proceedings of the Ocean Drilling Program, Initial Reports Volume 184. 1-10
    Wang P, Wang L, Bian Y, et al. 1995. Late Quaternary paleoceanography of the South China Sea: Surface circulation and carbonate cycles. Mar. Geol.,127: 145-165
    Wang Pinxian, Jian Zhimin, Liu Zhifei.1992. Late Quatemary sedimentation rate in the South China Sea. In: Ye and P. Wang (Editors), Contributions to Late Quaternary Paleoceanography of the South China Sea.Qingdao Ocean Univ. Press, Qingdao
    Wang Pinxian, Wang Luejiang , Bian Yunhua.1992. The last deglaciation in the South China Sea. 4th Int. Conf. Paleoceanography, 21-25
    Wang Pinxian, Wang Luejiang, Bian Yunhua, et al. 1995. Late Quaternary paleoceanography of the South China Sea: surface circulation and carbonate cycles, Marine Geology, 127:145-165
    Wang Y, Cheng H, Edwards R, et al. 2001. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science, 294:2345-2348
    Wei W. 1993. Calibration of upper Pliocene–lower Pleistocene nannofossil events with oxygen isotope stratigraphy. Paleoceanography, 8:85-99
    Weinstein S, Moran S. 2004. Distribution of size-fractionated particulate trace metals collected by bottles and in-situ pumps in the Gulf of Maine–Scotian shelf and Labrador Sea. Marine Chemistry, 87:121-135
    Wolfgang B. 1982. On the distribution of iron and manganese at the sediment -water interface: thermodynamic versus kinetic control. Geochimica et Cosmochimica Acta, 46: 1153-1161
    Wolfram O, Krupp R. 1996 .Hydrothermal solubility if rhodochrosite, Mn(II) speciation, and equilibrium constants. Geochimica et Cosmochimica Acta, 60: 3983-3994
    Wu J, Boyle E, Sunda W, et al. 2001. Soluble and colloidal iron in the oligotrophic North Atlantic and North Pacific.Science 293:847-849
    Zhao Q, Jian Z, Li B, et al.1999. Middle Pleistocene microtektites in deep-sea sediments of the South China Sea. Sci. China, Ser. D: Earth Sci., 42:531-535
    Zwolsman J, van ECK, Gijsbertus T. 1999. Geochemistry ofmajor elements and tracemetals in suspendedmatter of the Scheldt estuary,southwest Netherlands. Marine Chemistry, 66: 91-111

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700