用户名: 密码: 验证码:
太平洋富钴结壳矿物地球化学及古海洋与古环境重建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源、资源和环境问题是当今地球科学的三大前缘领域,特别是古海洋环境问题,由于我国海洋地质调查起步较晚,古海洋的研究远远落后于发达国家,在古海洋研究中,最关键的问题之一是如何确定大洋沉积物的时间坐标,并将大洋沉积物的组合特征于全球变化联系起来。富钴结壳记载了晚白垩纪以来的古环境和构造活动信息,具有高密度压缩信息的优点,利用富钴结壳进行古海洋、古环境及全球变化的研究具有重要意义。
     文中结合超低Sr本底流程,实现了单颗有孔虫化石87Sr/86Sr比值高精度测定,对今后有孔虫Sr同位素研究与应用具有重要意义。利用所获得的有孔虫化石87Sr/86Sr比值确定了西太平洋富钴结壳碳酸盐基岩中有孔虫化石的年龄为0.91 +0.33/-0.39Ma,解决了海山富钴结壳碳酸盐基岩中有孔虫化石定年的难题。利用有孔虫化石Mg/Ca值的激光剥蚀等离子质谱测定结果,获得0.91Ma±西太平洋麦哲伦海山区海表温度为24.9+1.1/-1.0℃。
     在矿物学基本特征分析的基础上,对中太平洋WM1和WX海山富钴结壳中的主量元素、微量元素、稀土元素和铂族元素的含量、层间变化及其相关性进行了研究,得出:青藏高原的隆升以及亚洲季风演化可能是造成结壳中的粘土矿物和石英等碎屑矿物从下层到上层增多的重要原因;结壳的氧化性由下层到上层增高,海山的沉降可能是造成结壳生长后期环境氧化性增强的重要原因;磷酸盐化的过程对铁锰结壳吸附Co的能力起到抑制作用;结壳的磷酸盐化过程对Pt和∑REE的富集起到了重要作用。
     结合Co定年、10Be定年和磷酸盐Sr同位素定年等定年方法,对中太平洋富钴结壳WXD27的年代学进行了研究。上部铁锰结壳与上层白色磷酸盐化层接触部位的年龄为14.9Ma,14.9Ma以来,结壳的生长是连续的,沉积间断发生的可能性非常小。白色磷酸盐化层与其上部的富钴结壳之间存在4Ma的沉积间断;19-22.7Ma BP左右,在该区发生过大规模的磷酸盐化作用,磷酸盐化作用可能造成磷酸盐化时期和之后4Ma的铁锰结壳的沉积间断;结壳的初始生长年龄在75Ma左右;老结壳的生长速度远低于新结壳的生长速度,这可能与老结壳形成于相对还原性更强的环境有关。
     通过化学方法提取中太平洋富钴结壳中的粉尘,经微量Nd同位素测试得到,富钴结壳WXD27上部粉尘(0-6.9Ma)的εNd落在中国黄土范围内,中部粉尘(14.9-10.8Ma)的εNd较高。结合Al电子探针的线扫描分析及X射线粉晶衍射分析,可得出上部结壳提取物与中国黄土同源,为亚洲季风作用结果;中部结壳提取物中除亚洲季风携带粉尘贡献外还有火山灰的贡献,说明在8.8Ma BP、10Ma BP尤其是11.8Ma BP中太平洋火山活动强烈。结壳中风成粉尘沉积速率分别在8Ma BP、4-2.5Ma BP、2.5Ma BP三个阶段迅速增加,8Ma BP粉尘沉积速率的高值为青藏高原隆升的环境响应;4-2.5Ma BP的高值代表冬季风的加强(这个时期夏季风也加强),同样为青藏高原迅速隆升的响应;2.5Ma BP以来粉尘增加有利于全球变冷,导致并且不断地发展或加强。
Ferromanganese crusts compress informations of palaeoenvironment and tectonization since cretaceous with high density and are significant to study palaeoceanic, palaeoenvironmental and global changes.
     Analysis of single-grain foraminifera from carbonate basements of ferromanganese crusts was successively conducted by a combination of low Sr procedural blank and high precision determination of 87Sr/86Sr ratio, which can be significant for the study and application of Sr isotopic composition of foraminifera. Based on the obtained value of 87Sr/86Sr ratio, the analyzed foraminifera can be dated at 0.91 +0.33/-0.39Ma, which is significant for very difficult-dating foraminifera in carbonate basements of ferromanganese crusts. The foraminifera were analysed for their Mg/Ca with LA-ICP-MS, and with the data of which, the SST of a Magellan seamount in Westpacific was produced at 24.9+1.1/-1.0℃
     The interelemental correlation in Co-rich crusts from the Mid-Pacific seamounts of WM1 and WX and elemental variation in different layers of the crusts were studied and the study reveals that 1) the amount of hydrosyalites and quartzes increases gradually from lower layers to upper layers,which may be related to evolution of Asian monsoons and the uplift of the Himalaya - Tibetan plateau; 2) the oxidation increase from lower layers to higher layers of crusts, which may be caused by the sink of the seamounts;3) the enrichment of P restrained the adsorption of Co for crusts; 4) phosphatization played an important role in the enrichment of Pt and∑REE in ferromanganese crusts.
     Dating studies on Mid-Pacific ferromanganese crust were conducted by a combination of dating techniques of Co content, Be isotope as well as Sr isotope in phosphate. The age of the bottom of upper ferromanganese part contacting the upper phosphate layer is 14.9Ma and the crust had been grown continually and without sedimental interruption 0~14.9Ma. There is 4Ma sedimental interruption between the upper ferromanganese part and the upper phosphate layer. Great phosphatizations had happened in this area between 19 and 22.7 Ma BP which might cause the sedimental interruption during the phosphatizaions and 4Ma after them. The crust began to grow 75Ma BP. The growth rate of older crust part is much lower than that of the younger crust part, which can be explained that the environment where the order crust partoccurred is more reducing than that where the younger crust part occurred.
     Eolian dust in Mid-Pacific was extracted by chemical processes.εNd values of upper part of crust WXD27 (0-15mm depth; 0-6.9Ma) are in the range of those of Chinese loess, however,εNd values of lower part (25-37mm depth; 10.8-14.9Ma) are lower than those of upper part. By analyses of EPM( linear scan of Al) and XRD results of the samples as well as and theirεNd values, it can deduced that the source of upper dust and that of Chinese loess are same which means the upper dust is the result of Asia monsoon input, and that the lower part dust is the result not only monsoon input but also volcano input, which means the volcano activities were intensive 8.8Ma BP, 10Ma BP and especially 11.8Ma BP. Eedimental rate of eolian dust increased drastically 8Ma BP, 4-2.5Ma BP and 2.5Ma respectively. The increase 8Ma BP is the response to the drastic uplift of the Himalaya and Tibetan plateau. The high value of dust sedimental rate 4-2.5Ma BP represents enhance of winter monsoon and also the response to the drastic uplift of the Himalaya and Tibetan plateau. The increase of dust fluxes since 2.5Ma BP reflect that dust load in atmosphere increased, which maight induce the globe went into a great glacial epoch.
引文
陈福坤, 李秋立, 李潮峰, 等. 2005. 高精度质谱计在同位素地球化学的应用前景. 地球科学-中国地质大学学报, 30(6): 639~645
     丁仲礼, 孙继敏, 朱日祥, 等. 1997. 黄土高原红粘土成因及上新世北方干旱化问题.第四纪研究, (2):147~157
     杜乐天. 1996. 烃碱流体地球化学原理.北京:科学出版社 1~552
     李炳元, 王富葆 张青松, 等. 1983. 西藏第四纪地质. 北京:科学出版社. 110~171
     李秋立, 陈福坤, 王秀丽, 等. 2006. 超低本底化学流程和单颗云母 Rb-Sr 等时线定年. 科学通报, 51: 321~325
     李延河, 李金城, 宋鹤彬.1999. 海底多金属结核和富钴结壳的 He 同位素对比研究. 地球学报 20:378~383
     彭子成, 李平, 梁任又, 等. 1995. 深海岩芯有孔虫壳 ESR 测年的初步研究. 核技术, 18(8): 485~490
     钱方. 1990. 用古地磁方法对西藏阿里地区上新世以来水平运动的初步研究. 见:喜马拉雅岩石圈构造演化. 西藏地球物理图文集. 北京:地质出版社. 198~206
     石学法. 1994. 海洋风尘沉积研究的历史与现状. 海洋地质动态,第 9 期. 6~9
     万事明, 等. 海洋风尘沉积的古气候学研究进展. 地球科学进展, 2004:19(6)955~962
     孙有斌, 安芷生. 2001. 最近 7Ma 黄土高原风尘通量的亚洲内陆干旱化的历史和变率. 中国科学, D 辑, 31(9):769~776
     佟景贵, 王吉中, 李胜荣,等. 2007. 中太平洋WM1和WX海山富钴结壳元素相关性及其层间变化研究. 岩石矿物学杂志, 26(2):155~163
     王世杰, 董丽敏, 林文祝, 等. 1995. 泥河湾组有孔虫化石群的锶同位素研究. 科学通报, 40: 2072~2074
     吴锡浩, 安芷生. 1996. 黄土高原黄土-古土壤序列与青藏高原隆升. 中国科学,D 辑,26(2):103~110
     武光海. 2001.中太平洋海山富钴结壳的特征及其形成环境.杭州:浙江大学 博士论文. 1~113
     姚德, 张丽洁, Wiltshire J, 等. 1996. 约翰斯顿岛附近海域铁锰结壳矿物学和地球化学特征.海洋地质和第四纪地质, 16(1):33~49
     业渝光, 等著. 2003. 地质年代学理论与实践. 北京: 地质出版社. 1~383
     赵宏樵, 姚龙奎. 2003.中太平洋富钴结壳 Co 元素地球化学特征. 东海海洋, 21(4):34~40
     赵宏樵. 2003. 中太平洋富钴结壳稀土元素的地球化学特征. 东海海洋 21(1):19~26
     朱而勤. 1987. 大洋锰结核矿物学.济南:山东大学出版社.
     朱岗菎. 2005. 古地磁学-基础、原理、方法、成果与应用. 北京: 科学出版社, 1~256
     朱克超, 赵祖斌, 李扬. 2001. 麦哲伦海山区 MD、ME、MF 海山富钴结壳特征. 海洋地质与第四纪地质, 21(1):33~38
     An Z S, Kutzbach J E, Prell W L, et al. 2001. Evolution of Asian monsoons and phased uplift of the Himalaya - Tibetan plateau since Late Miocene times. Nature, 411:62~66
     An Z S, W S, Wu X H, et al., Eolian evidence from Chinese Loess Plateau: The onset of Qinghai-Xizang Plateau uplift forcing. Science in China(Series D), 1999, 4(3):258~271
     An Z S, Wang S M, Wu X H, et al. 1999. Eolian evidence from the Chinese Loess Plateau:the onset of the Cenozoic Great Glaciation in the Northern Hemisphere and Qinghai-Xizang Plateau uplift forcing. Science in China(Series D), 42:258~271
     An Z, Wu X, Liu T et al. 1991. Asian moonson: A link between the loss-red clay formation in central China and the uplift of the Tibetan Plateau (abstract). 13th International Congress of International Union of Quatemary Research.
     An Zhisheng, Liu T S, Lu Y C et al. 1990. The long-term paleomonsoon variation recorded by the loess-paleosol sequence in Central China. Quatemary International, 7/8:91~95
     Anderson S P, Drever J I, Frost C D, et al. 2000. Chemical weathering in the foreland of a retreating glacier. Geochim Cosmochim Acta, 64: 1173~1189
     Baker P E, Castillo P R, Condliffe E. 1995. Petrology and geochemistry of igneous rocks from Allison and Resolution guyots,sites 865 and 866, In: Winterer E L, Sager W W,Firth J V and Sinton. Eds. Proceeding of the Ocean Drilling Program, Scientific Results, 143: 245~262
     Banakar V K, Galy A, Sukumaran N P,et al. 2003. Himalayan sedimentary pulses recorded by silicate detritus within a ferromanganese crust from the Central Indian Ocean. Earth and Planetary Science Letters, 205:337~348
     Beck J, Edwards L, Ito E, et al. 1992. Sea-surface temperature from coral skeleton strontium/calcium ratios. Science, 257: 644.
     Blanckenburg F, O’Nions R K, Hein J R. 1996. Distribution and soures of pre-anthropogenic lead isotopes in deep water from Fe-Mn crusts. Geochim. Cosmochim. Acta, 60(24): 4957~4963
     Burton K W, Ling H F, O’Nion P K. 1997. Closure of the Central American Isthmus and its effect on deep-water formation in the North Atlantic. Nature, 386: 382~385
     Charles E J, Alex N, David K R. 1994. Neodymium isotopic variations in North Pacific modern silicate sediment and the insignificance of detrital REE contributions to seawater. Earth Planet. Sci. Lett., 127: 55~66
     Christie D M, Dieu J J, Gee J S. 1995. Petrologic studies of basement lavas from Northwest Pacific guyots. In: Haggerty J A, Premoli Silva I and Rack F et al. eds. Proc. ODP Sci.Rests. 144: 495~512
     Clemens S C, Farrell J W, Gromet L P. 1993. Synchronous changes in seawater strontium isotope composition and global climate. Nature, 363: 607~610
     Craig J D, Andrews J E and. Meylan M A. 1982. Ferromanganese deposits in the Hawaiian Archipelago, Marine Geology, 45:127~157
     Cronan D S and Tooms J S. 1969. The geochemistry of Mn-nodules and associate pelagic deposits from the Pacific and Indian Oceans. Deep sea Resources, 16:335~359
     De Carlo E H, McMurtry G M and Kim K H .1987. Geochemistry of ferromanganese crusts from the Hawaiian Archipelage-I. Northern survey areas, Deep-Sea Research, 34, 441~467
     Eisenhauer A, Gogen K, Pernicka E, et al. 1992. Climate influence on the growth rates of Mn crusts during the late Quaternary. Earth and Planet. Sci. Letts., 109(1/2): 71~75
     Farrell J W, Clemens S C, Gromet L P. Dating marine sediments by strontium isotope stratigraphy. ODP's Greatest Hits. http://www. usssp-iodp.org/PDFs/Greatest_hits/Rhythms/Farrell.pdf, 1997-07
     Farrell J W, Clemens S C, Gromet L P. 1995. Improved chronostratigraphic reference curve of Late Neogene seawater 87Sr/86Sr. Geology, 23: 403~406
     Frank D J et al. 1976. Ferromanganese deposits of the Hawaiian archipelago. Hawaii Instit. Geophys. , 14: 1~69
     Frank M, O’Nions R K, Hein J R, et al. 1999. 60 Myr records of major elements and Pb-Nd isotopes from hydrogenous ferromanganese crusts: Reconstruction of seawater paleochemistry. Geochimica et Costmochimica Acta, 63:1689~1708
     Glasby G P and Andrews J E. 1977. Manganese crusts and nodules from the Hawaiian Ridge, Pacific Science, 31, 363~379
     Gramm-Osipov L M , Hein J R and Chichkin R. V.. 1994. Manganese geochemistry in the Karin Ridge region: Preliminary physiochemical description, In Data and results from R.V. Aleksandr Vinogradov cruises 91-AV-19/1, north Pacific hydrochemistry transect; 91-AV-19/2, north equatorial Pacific Karin Ridge Fe-Mn crust studies; and 91-AV-19/4, northwest Pacific and Bering Sea sediment geochemistry and paleoceanographic studies, J.R. Hein, A.S. Bychkov A.E. and Gibbs (eds.), U.S. Geological Survey Open File Report , 94~230, 99~102
     Guilderson T P, Fairbanks R G and Rubenstone J L. 1994.Tropical temperature variations since 20,000 years ago: Modulating interhemispheric chlimate change . Science, 263: 663~665
     Haggerty J A, and Silva I P. 1995. Composition of the origin and evolution of northwestern Pacific guyots drilled during Leg 144. In: Haggerty J A, Premoli Silva I and Rack F et al edts. Proc ODP Sci Rests 144: 935~950
     Halbach P and Puteanus D. 1984. The influence of the carbonate dissolution rate on the growth and composition of Co-rich ferromanganese crusts from the Central Pacific seamount areas. Earth Planet Science Letters, 68(1):73~87
     Halbach P, Segl M, Puteanus D, et al. 1983. Relationship between Co-fluxes and growth rates in ferromanganese deposits from Central Pacific seamount areas. Nature, 1304: 716~719
     Halbach P. 1985. Cobalt-rich and platinum-bearing manganese crusts-nature,occurrence and formation. Workshop on Marine Minerals of the Pacific. Honolulu: East-West Center
     Halbach P. and Puteanus D. 1984. The influence of the carbonate dissolution rate on the growth and composition of Co-rich ferromanganese crusts from Central Pacific seamount areas. Earth Planet. Sci. Lett. , 68: 73~87
     Harrison T M, Copeland P, Martiod W S E et al. 1992. Raising Tibet. Science, 255:1663~1670
     Hart S R. 1984. A Large-scale isotope anomaly in the Southern Hemisphere mantle. Nature, 309:753~757
     Hastings D W, Emerson S, Erez J, et al.1996. Vanadium in foraminiferal calcite: Evaluation of a method to determine paleoseawater vanadium conecentrations. Geochim. Cosmochim. Acta, 60:3701~3715
     Hastings D W, Russell A D and Emerson S R. 1998. Foraminiferal magnesium in Globeriginoides sacculifer as a paleotemperature proxy. Paleoceanography, 13(2):161~169
     Hein J R et al. 1985. Geologic and geochemical data for seamounts and associated ferromanganese crusts in and near the Hawaiian, Johnston Island, and Palmyra Island Exclusive Economic Zones, U.S. Geological Survey Open File Report, 85~292
     Hein J R et al. 1997. Iron and manganese oxide mineralisation in the Pacific, In Manganese Mineralization: Geochemistry and Mineralogy of Terrestrial and Marine Deposits, K. Nicholson et al. (eds.), Geological Society Special Publication 119, London, 123~138
     Hein J R et al.1985. Ferromanganese crusts from Necker Ridge, Horizon Guyot, and S.P. Lee Guyot: Geological considerations, Marine Geology, 69: 25~54
     Hein J R, Bohrson W A, Schulz M S, et al. 1992. Variations in the fine-scale composition of a central Pacific ferromanganese crust: Paleoceanographic implications. Paleooceanography, 7:63~77
     Hein J R, Schulz M S and Gein L M. 1992. Central Pacific Cobalt-rich ferromanganese crusts: Historical Perspective and Regional Variability, In Geology and Offshore Mineral Resources of the Central Pacific Basin, B.H. Keating. and B.R. Bolton (eds.), Circum-Pacific Council for Energy and Mineral Resources, Earth Sciences Series, 14, New York, Springer-Verlag, 261~283
     Hein J R, Schwab W C and Davis A S. 1988. Cobalt-and-Platinum-rich ferromanganese crusts and associated substrate rocks from the Marshall Islands. Marine Geology. 78: 255~283
     Hein J R, Yeh H W, Gunn S H, et al. 1993. Two major Cenozoic episodes of phosphogenesis recorded in equatorial Pacific seamount deposits. Paleooceanography, 8(2): 293~311
     Hem J D. 1978. Redox processes at surfaces of manganese oxide and their effects on aqueous metal ions. Chemical Geology, 21: 199~218
     Hodkinson R A and Cronan D S. 1991. Regional and depth variability in the composition of cobalt-rich ferromanganese crusts from the SOPAC area and adjacent parts of the central equatorial Pacific, Marine Geology, 98: 437~447
     Ingram B L, Hein J R. and Farmer G L. 1990. Age determinations and growth rates of Pacific ferromanganese deposits using strontium isotopes, Geochimica et Cosmochimica Acta, 54:1709~1721
     Janin M C. 1985. Biostratigraphie de concrétions polymétalliques de l'Archipel des Tuamotu, fondée sur les nannofossiles calcaires, Bull. Soc. Géol. France, 8:79~87
     Keller G, Barron J A. 1987. Paleodepth distribution of Neogene deep-see hiatuses. Paleoceaography, 2:697~713
     Koeppenkastrop D. and De Carlo E.H.. 1992. Sorption of rare-earth elements from seawater onto synthetic mineral particles: An experimental approach, Chemical Geology, 95:251~263
     Kolla V K, Biscaye P E. 1977. Distribution and origin of quartz in the sediments of the Indian Ocean. Journal of SedimentaryPet rology, 47 (2) : 642~649
     Koschinsky A. and Halbach P.. 1995, Sequential leaching of ferromanganese precipitates: Genetic implications, Geochimica et Cosmochimica Acta, 59: 5113~5132
     Kraemer T. and Schornick J C. 1974. Comparison of elemental accumulation rates between ferromanganese deposits and sediments in the South Pacific Ocean, Chemical Geology, 13: 187~196
     Kroon D, Steen T N E Troelstra S R. 1991. Onset of monsoonal related upwelling in the western Abrabian Sea. Proc. ODP Sci. Res., 117:257~263
     Kurnosov V,Zplotarev B, Eroshchev-Shak, et al. 1995. Alteration of basalts from the west Pacific guyits, Legs 143 and 144. In: Haggerty J A, Premoli Silva I, Rack F, et al. eds,Proceedings of the Ocean Drilling Program, Scientific Results, 144: 475~494
     Larson R L. 1991. Geologyical consequences of superplumess. Geology, 19: 963~966
     Larson R L. Latest pulse of Earth: Evidence for a mid-Cretaceous superplume. Geology, 1991,19: 547~550
     Le Suave R. et al. 1989. Geological and mineralogical study of Co-rich ferromanganese crusts from a submerged atoll in the Tuamotu Archipelago (French Polynesia), Marine Geology, 87: 227~247
     Leinen M. 1985. Quartz content of Northwest Pacific hole 576A and implications for Cenozoic eolian transport. Initial Reports of the Deep Sea Drilli ng Project, 86 : 581~587
     Levin L A. and Thomas C L. 1989. The influence of hydrodynamic regime on infaunal assemblages inhabiting carbonate sediments on central Pacific seamounts, Deep-Sea Research, 36, 1897~1915
     Ling H F et al. 1997. Evolution of Nd and Pb isotopes in central Pacific seawater from ferromanganese crusts, Earth and Planetary Science Letters, ,146: 1~12
     Lyle M, Dymond J. and Heath G R. 1977.Copper-nickel-enriched ferromanganese nodules and associated crusts from the Bauer Basin, northwest Nazca Plate, Earth and Planetary Science Letters, 35, 55~64
     Mandermack K W, Fogel M L, Tebo B M, et al. 1995. Oxygen isotopes analyses of chemically and microbially produced manganese oxides and manganates. Geochim. Cosmochim. Acta, 59(21): 4409~4425
     Manheim F T. 1986. Marine cobalt resources. Science, 232: 600~608
     Manheim. F T and Lane-Bostwick C M.. 1988. Cobalt in ferromanganese crusts as a monitor of hydrothermal discharge on the Pacific sea floor. Nature, 335: 59~62
     McArthur J M, Howarth R J, Bailey T R. 2001. Strontium Isotope Stratigraphy: LOWESS Version 3: best fit to the marine Sr-isotope curve for 0-509 Ma and accompanying look-up table for deriving numerical age. J Geol, 109: 155~170
     McIntyre A, Ruddiman W F, Karlin K, et al. 1989. Surface water response of the equatorial Atlantic Ocean to orbital of forcing . Paleoceanography, 4:19~55
     McMurtry G M, VonderHaar D L, Eisenhauer A, et al. 1994.Cenozoic accumulation history of aPacific ferromanganese crust. Erath and Planetary Science Letters, 125: 105~118
     McNutt M K, Winterer E L, Sager W W, et al. 1990. The Darwin rise: A cretaceous superswell. Geophysical Research Letters, 17(8): 1101~1104
     Mero J L. 1965. The mineral resources of the sea, Elsevier, Amsterdam, 312
     Moffett J W. 1990. Microbially mediated cerium oxidation in seawater, Nature, 345:421~423
     Molnar I, England P, Martiod J. 1993. Mantle dynamics, uplift of the Tibetan Plateau and the Indian monsoon development. Rev. Geophys. 34:357~396
     Moore J., Normark W.R. and Holcomb R.T. 1994. Giant Hawaiian underwater landslides, Science, 264: 46~47
     Morgenstein M. 1972. Manganese accretion at the sediment-water interface at 400-2400 meters depth, Hawaiian Archipelago, In Ferromanganese Deposits on the Ocean Floor, D.R. Horn (ed.), ArdenHouse, Harriman, New York, 131~138
     Moritani T. and Nakao S. (eds.). 1981. Deep sea mineral resources investigation in the western part of the central Pacific basin (GH78-1 cruise), Geological Survey of Japan Cruise Report, 17:281
     Mullineaux L S. 1987. Organisms living on manganese nodules and crusts: distribution and abundance at three North Pacific sites, Deep-Sea Research, 34: 165~184
     Neumann T, Steuben D. 1991. Detailed geochemicial study and a growth history of some ferromanganese crusts from the Tuanmotu Archipelago. Marine Min., 10: 29~48
     NOAA/National Weather Service. Annual Mean Sea Surface Temperature: 1971–2000. http://www.cpc.noaa.gov/products/precip/realtime/clim/annual/monthly/annual.sst.html. 2002-10
     Noble M, Cacchione D A and Schwab W C. 1988, Observations of strong mid-Pacific internal tides above Horizon Guyot, Journal of Physical Oceanography, 18: 1300~1306
     Nürnberg D, Bijma J and Hemleben C. 1996. Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperatures . Geochim. Cosmochim. Acta, 60: 803~814
     Nürnberg D, Bijma J and Hemleben C. 1996. Erratum: Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperatures . Geochim. Cosmochim. Acta, 60:2483~2484
     Oslick J S, Miller K G, Feigenson M D, et al. 1994. Oligocene-Miocene strontium isotopes: stratigraphic revsions and correlations to an inferred glacioeustatic record. Paleoceanography, 9: 427~443
     Otto J, Hermelin R. 1995. Impact of productivity events on the benthic foraminiferal fauna in the Abrabian Sea over the last 150,000 years. Paleoceanograpy, 10(1):85~116
     Palmer M R, Edmond J M. 1989. The strontium isotope budget of the modern ocean. Earth Planet Sci Lett, 92: 11~26
     Paz J D S, Rossetti D F, Macambira M J B. 2005. An Upper Aptian saline pan/lake system from the Brazilian equatorial margin: integration of facies and isotopes. Sediment, 52: 1303~1321
     Pettke T, Halliday A N, Hall C M, et al. 2000. Dust production and deposition in Asia and the north Pacific Ocean over the past 12 Myr . Earth Planet. Sci. Lett.,178: 397~413
     Pettke T, Halliday A N, Rea D K. 2002. Cenozoic evolution of Asian climate and sources of Pacific seawater Pb and Nd derived from eolian dust of sediment core LL44-GPC3. Paleoceanography, 17(3):1~13
     Peucker-Ehrenbrink A, Ravizza G. and Hofmann A W. 1995. The marine 187Os/186Os record of the past 80 million years, Earth and Planetary Science Letters, 130: 155~167
     Pichocki C. and Hoffert M. 1987. Characteristics of Co-rich ferromanganese nodules and crusts sampled in French Polynesia, Marine Geology, 77, 109~119
     Prell W L, Kutzbach J E. 1992. Sensitivity of the Indian monsoon to forcing parameters and implications for its evolution Nature, 360:647~653
     Prell W L, Kutzbach J E. 1997. The impact of Tibet-Himalayan elevation on the sensitivity of the monsoon climate system to changes in solar radiation. In: Ruddiman W F, ed. Tectonic Uplift and Climate Change. New York: Plenum Press, 171~201
     Puteanus A et al. 1989. Distribution, internal structure, and composition of manganese crusts from seamounts of the Teahitia-Mehetia hot spot, southwest Pacific, Marine Mining, 8:245~266
     Puteanus D and Halbach P 1988. Correlation of Co concentration and growth rate: A method for age determination of ferromanganese crusts, Chemical Geology, 69: 73~85
     Raymo M E, Ruddiman W F, Froelich P N. 1998. Influence of late Cenozoic mountain building on ocean geochemical cycles. Geology, 16: 649~653
     Rea D K, and Dixon J M. 1983. Late Cretaceous and Paleogene tectonic evolution. of the North Pacific Ocean. Earth and Planetary Science Letters, 64: 67~73
     Rea D K, Snoeckx H, Joseph L H. 1998. Late Cenozoic eolian deposition in the North Pacific: Asian drying, Tibetan uplife and cooling of the Northern Hemisphere. Paleoceanography, 13:215~224
     Richter F M, Rowley D B, DePaolo D J. 1992. Sr isotope evolution of seawater: the role of tectonics. Earth Planet Sci Lett, 109: 11~23
     Rind D and Peteet D. 1985. Terrestial conditions at the last glacial maximum and WLIMAP sea-surface temperature estimates: are they consistent? Quat. Res., 24:1~22
     Roden G I, 1994. Effects of the Fieberling seamount group upon flow and thermohaline structure in the spring of 1991, Journal of Geophysical Research, 99: 9941~9961
     Sager W W, Winterer E L, Firth J V, et al. 1993. Proceeding of the Ocean Drilling Program, Initial Reports. 143:17~23
     Saito T, Thompson R P, and Breger D. 1981.Systematic Index of Recent and Pleistocene Planktonic Foraminifera. Tokyo: Univer Tokyo Press, 1~190
     Scott R W. 1995.Global environment contral on Cretaceous reefal ecosystems. Palaeogeography, Palaeoclimatology, Palaeoecology, 119: 187~199
     Segl M. et al. 1984. 10Be dating of the inner structure of Mn-encrustations applying the Z¨1rich tandem accelerator, Nuclear Instruments and Methods in Physics Research, B5, 359~364
     Shackleton N J, Crowhurst S, Hagelberg T, et al. 1995. A new late Neogene time scale: application to Leg 138 sites. In: Pisias N G, Mayer L A, Janecek T R, et al., eds. Proceedings of ODP, Scientific Results, Vol 138. College Station, TX, 73~101
     Shi N C, Ma Z S and He W Z. 1995. Nano-solids in manganese nodules from northern part of Pacific Ocean floor. Science in China(series B), 38(12): 1493~1500
     Skornyakova N S. 1960. Manganese concretions in sediments of the north-eastern part of the Pacific Ocean, Doklady Akademii Nauk, SSSR, 130: 653~656, in Russian. P.L. Bezrukov (ed.), Zhelezomargantsevye konkretsii Tikhogo okeans (Ferromanganese nodules in the Pacific Ocean), Trudy Institituta Okeanologii, Akademii Nauk, SSSR, Moscow, 1976, 301
     Smith W H F, Staudigel H, Watts A, et al. 1989. The Megellan seamounts: Early Cretaceous record of the South Pacific Isotopic and Thermal Anomaly. Journal of Geophysical Research, 94(B8): 10501~10523
     Stashchuk M.F. et al. .1994. Adsorption properties of ferromanganese crusts and nodules, In Data and results from R.V. Aleksandr Vinogradov cruises 91-AV-19/1, north Pacific hydrochemistry transect; 91-AV-19/2, north equatorial Pacific Karin Ridge Fe-Mn crust studies; and 91-AV-19/4, northwest Pacific and Bering Sea sediment geochemistry and paleoceanographic studies, J.R. Hein, A.S. Bychkov and A.E. Gibbs (eds.), U.S. Geological Survey Open File Report, 94~230, 93~98
     Stott L D and Tang C M. 1996. Reassessment of foraminferal-based tropical sea surface 18δpaleotemperatures. Paleoceanography, 11:37~56
     Sun D H, Liu T S. Cheng M Y, et al. 1997. Magnetostratigraphy and paleoclimate of Red Clay sequences from the Chinese Loess Plateau. Science in China, Ser D, 40:337~343
     Sun D H, Shaw J, An Z S, et al. 1998. Magnetostratigrapy an paleoclimatic interpretation of a continuous 7.2 Ma Late Cenozoic eolian sediments from the Chinese Loess Plateau. Geophysical Research Letters, 25(1):85~88
     Takematsu N., Sato Y. and Okabe S. 1989. Factors controlling the chemical composition of marine manganese nodules and crusts: A review and synthesis, Marine Chemistry, 26: 41~56
     Tarduno J A and Sager W W. 1995. Polar standstill of the Mid-Cretaceous Pacific Plate and its Geodynamic implications. Science, 269: 956~959
     Tarduno J A, Gee J. 1995. Large-scale montion between Pacific and Altantic hotspots. Nature, 378:477~480
     Thunell R, Anderson D, Cellar D, et al. 1994. Sea-surface temperature estimates for the tropical western Pacific during the last glaciation and their implications for the Pacific warm pool. Quat. Res., 41: 255~264
     Tong J G, Li S R, Li X H, et al. 2006. Determination on 87Sr/86Sr ratio and stratigraphic dating of single-grain foraminifera. Chinese Science Bulletin, 51(17):2141~2145
     Usui A. and Someya M.. 1997. Distribution and composition of marine hydrogenetic and hydrothermal manganese deposits in the northwest Pacific, In Manganese Mineralization: Geochemistry and Mineralogy of Terrestrial and Marine Deposits, K. Nicholson et al. (eds.), Geological Society Special Publication 119, London, 177~198
     Usui A., Nishimura A. andIizasa K. 1993. Submersible observations of manganese nodule and crust deposits on the Tenpo Seamount, north Pacific, Marine Georesources and Geotechnology, 11: 263~291
     Vance D, Burton K W. 1999. Neodymium isotopes in planktonic foraminifera: a record of the response of continental weathering and ocean circulation rates to climate change. Earth Planet Sci Lett, 173: 365~379
     Varentsov I.M. et al. 1991. Mn-Fe oxyhydroxide crusts from Krylov Seamount (eastern Atlantic): Mineralogy, geochemistry and genesis, Marine Geology, 96: 53~70.
     Vonderhaar D L, Mahoney J J, Mcmurtry G M. 1995. An evaluation of strontium isotopic dating of ferromanganese oxides in a marine hydrogenous ferromanganese crust. Geochim Cosmochim Acta, 59(20): 4267~4277
     Wallace S B and Elizabeth C 2001. Glacial-to-Holocene redistribution of carbonate ion in the deep sea. Science, 294: 2152~2155
     Wen X, De Carlo E H and Li Y H. 1997. Interelement relationships in ferromanganese crusts form the central Pacific ocean: Their implication for crust genesis. Marine Geology, 136:277~297
     Wen X, De Carlo E H, Li Y H. 1997. Interelement relationships in ferromanganese crusts from the central Pacific ocean: Their implications for crust genesis. Marine Geol., 136: 277~297
     Wilson P A, Jenkyns H C, Larson R L, et al. 1998. The paradox of drowned carbonate platforms and the origin of Cretaceous Pacific guyots. Nature, 392: 889~894
     Winter E L, Sager W W. 1995. Synthesis of drilling results from the Mid-Pacific mountains: regional context and implications. In: Winterer E L, Sager W W,Firth J V and Sinton J M, eds. Proceeding of the Ocean Drilling Program, Scientific Results, 143: 497~535
     Winterer E L, Metzler C V. 1984. Origen and subsidence of guyots in Mid-Pacific mountains. Journal of Geophysical Research, 89(B12):9969~9979
     Wishner K. et al. 1990. Involvement of the oxygen minimum in benthic zonation on a deep seamount, Nature, 346: 57~59
     WLIMAP Project members. 1981. Seasonal reconstructions of the Earth’s surface at the last glacial maximum. Geol. Soc. Am. Map Chart Ser., MC-36
     Yamazaki T., Igarashi Y. and Maeda K. 1993. Buried cobalt rich manganese deposits on seamounts, Resource Geology Special Issue, 17:76~82
     Yang W, Mazzullo S J, Teal C S. 2002. Lateral and vertical variations in sedimentation rates of Holocene subtidal platform carbonate sediments, Belize. In: GSA Annual Meeting’ 2002. Abstracts with Programs – GSA, Vol 34(6). Boulder, CO: PU GSA, 14
     Zachos J C, Opdyke B N, Quinn T M, et al. 1999. Early Cenozoic glaciation, antarctic weathering, and seawater 87Sr/86Sr: Is there a link? Chem Geol, 161: 165~180
     Zachos J, Pagani M, Sloan L, et al. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292:686~693
     Г. Н. Батурин. 1994. The average chemical composition of oceanic floor ferromanganese nodules and crusts. Geology-Geochemistry, 1:41~44

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700