用户名: 密码: 验证码:
辽东—吉南硼矿带硼矿成矿作用及成矿远景评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
辽东-吉南地区是我国重要的硼矿产地,硼矿床自西向东沿营口-凤城-宽甸-集安一线呈带状分布,构成世界知名的辽东-吉南硼矿带。
     本次研究发现辽东-吉南地区古元古代并不存在统一大陆裂解形成的辽吉裂谷,而是两个经历了不同地质构造演化历史的陆块被古大洋分隔,本文称之为“辽吉洋”。
     针对前人提出的“辽吉花岗岩”进行研究,发现辽吉花岗岩共有两期,本文对其中的斜长花岗岩进行了SHRIMP锆石U-Pb定年,获得1877±5Ma的年龄,通过岩相学、岩石地球化学和构造环境的研究,确定该花岗岩为碰撞花岗岩,并认为这是辽东-吉南地区古元古代晚期辽吉洋封闭、南北陆块碰撞拼贴的时间。在此基础上,总结了辽东-吉南地区动力学演化过程。
     本次研究获得含硼岩系中电气变粒岩的SHRIMP锆石U-Pb年龄为2179±3Ma,精确厘定了硼矿床的形成时代为古元古代。并根据年龄值判断两期辽吉花岗岩均非含硼岩系的基底,而是侵入到含硼岩系之内。
     通过地质地球化学研究,论证了电英岩为热水沉积岩,辽东-吉南硼矿带内的硼矿床为热水喷流沉积成因。
     总结了成矿规律,建立了成矿模式,开展了成矿远景预测,圈定出6个成矿远景区。
The eastern Liaoning and southern Jilin provinces constitute an important borate resource area, in which borate deposits are distributed in Paleoproterozoic strata as a zone from west Yingkou to east Fengcheng, Kuandian and Jian. Former researchers considered the region to be a Paleoproterozoic rift which was formed by splitting of an Archean Craton, and the borates were deposited in a continental rift. Based on systematic comparison, the author considered that there was no Archean continental craton in the region, instead of two cratons that have different evolution and were separated by an early proterozoic ocean, to which we named as Liao-Ji Ocean.
     Previous studies believed that an line of important evidence of existence of Liao-Ji rift was“the bimodal volcanic rocks”. The bimodal volcanic rocks were composed of basic ones and acidic ones in borate bearing rock series. In this paper, the author has studied the tectonic settings of two types of volcanic rocks, it has been found that the basic volcanic rocks formed in the mid-ocean ridges and oceanic island, while the acidic ones formed in an island arc or a continental margin arc. Therefore they are not the so-called“bimodal volcanic rocks”in the rift setting, which suggested that there was no Paleoproterozoic Liao-Ji rift formed by splitting of an unified continent in eastern Liaoning and southern Jilin provinces.
     As to the so called“Liao-Ji granite”, we have carried out systematic geological and geochemical studies. It has found that there were two phases of“Liao-Ji granite”, namely the streak-like granite with age of nearly 2160Ma, and plagioclase granite, porphyritic granite and amphibolite augite syenite with ages of 1877Ma to 1850Ma. According to analysis of a systematic petrogeochemistry studies on the plagiogranite, it has been proposed that the plagiogranite was a syn-collision orogenic granite.whose ages of the plagiogranite is 1877±5Ma by SHRIMP Zircon U-Pb dating. It is distinguished that the Paleoproterozoic Liao-Ji ocean crust had been being subducted to the Archean continents both north and south towards before that age, the collisional orogenic movement happened in nearly 1877Ma, and then a continent craton formed in eastern Liaoning and southern Jilin provinces. Based on this basis, the author summarized that Eastern Liaoning-Southern Jilin Borate Ore Belt experienced geodynamic evolution of the following four stages: Anshan cycle—the north and south Archean continents formation stage;Liaohe cycle—Liao-Ji ocean evolution and closure stage; Yanliao-Hercynian cycle—plateform stabilization stage; Indosinian-Yanshan cycle—tectonic and magmatic activation stage. It was thought that the eastern Liaoning-southern Jilin Borate deposits formed in Liaohe cycle.
     In order to determine the formation era of borate deposit, we acquired the age of Tourmaline Leptynite in the borate bearing rock series as 2179±3Ma by the method of SHRIMP Zircon U-Pb dating, so the accurate era that borate deposits formed is Paleo-Proterozoic. At the same time, based on the dating value, it was determined that these two phases of“Liao-Ji granite”were not the basement of the borate bearing rock series, but rock bodies which penetrated into the borate bearing rock series.
     Through discussing the 4 typical Borate deposits of Houxianyu, Wengquangou, Yangmugan and Gaotaigou, it was found that borate deposits in the region belong to the same genesis of sedimentary exhalative, and they underwent regional metamorphism and thermal fluid alteration.
     Tourmalite are wall rocks which were closer to ore bodies in the borate bearing rock series. After studying of mineralogy, petrology and geochemistry, it was considered that the tourmalite have clear striped-banded structure after alteration of metamorphism, so their original rocks should be sedimentary rocks. The north American shale-normalized REE patterns of tourmalite are clearly both left inclination and represent to a typical exhalite.
     The borate deposits are closely relate to the tourmalite, according to borate isotopic characters, it was concluded that the borate deposits and tourmalite are both formed during sedimentary exhalative mineralizations, and the deposits in the region are typical sedimentary exhalative deposits.
     After studying the Fluid inclusions of tourmalite at Houxianyu borate deposit and quartz veins at Wengquangou borate deposit, it was found that there are only gas-liquid inclusions captured during sedimentary exhalative mineralization. But the fluid inclusions captured by hydrothermal fluid have two types, one was gas-liquid two-phase, the other was gas-liquid with CO2 three-phase. The homogenization temperature of fluid inclusions captured during sedimentary exhalative mineralization is 146~249℃, the salinity is 15.9~18.4%NaCl, and density is 0.96~1.04g/cm3; while the homogenization temperature of fluid inclusions of hydrothermal fluid is 142~377℃, the salinity is 12.7~14.5%NaCl, and density is 0.96~1.01g/cm3. The fluid components during sedimentary exhalative involves mainly H2O and CH4, which represent a reductive environment, but the hydrothermal stage of fluid components are mainly made of H2O and CO2.which represents oxidizing environment. Based on salinities and homogenization temperatures of fluid inclusions, we obtained pressures of sedimentary exhalative fluid are 20.11~30.99Mpa,and depths of the sedimentary exhalative deposition was 2.49km. While hydrothermal reformed pressures was 18.33~27.15Mpa,average pressure 21.92Mpa,and the quartz veins formed at the depth of 2.19km.
     In order to discuss the origin of the ore minerals and the fluids, the author studied the B, C, O, S isotopic data of the borate ores and ore-hosting rocks. In borate ores theδ11B value is -3.8‰~+17.4‰, which is closing to those of the Middle Ocean Ridge, so we inferred that borate must be from the Middle Ocean Ridge. The Carbon isotopic characteristics of the borate bearing serpentine marble showed that it is marine sedimentary rock. According to diagram ofδ18O-δ13C data, it was concluded that CO2 value of the serpentine marble origin from deeper magma and marine carbonate dissolution. Theδ13C value of borate ore is -2.6‰~-10.4‰,which is close to those of volcanic rocks and volcanic gases, so the carbon of borate ores has closely relationship with volcannic eruption. Theδ18O value of Borate ore is distinctly smaller than those of wall rock, so it means that the origin of the oxygen of borate ore and wall rock are different, Theδ34S value of borate ore are distinctly distributed in two ranges. Theδ34S value of pyrite is +9.80‰consistent with those of wall rock, which means that the origin of the sulfur comes from the old ocean. Theδ34S value of pyrrhotite is +1.58 to +4.16‰similar to sulfur of meteorite, which proves that the sulfur comes from volcanic eruption. This characteristic of sulfur isotope is typical characteristic of sedimentary exhalative deposits.
     Based on systematic studying of the dynamic evolution, typical borate deposits, exhalite, geochemistry and metallogenesis of borate deposits, we built up a metallogenic pattern of borate deposits in East Liaoning and South Jilin provinces, and summarized the metallogenic laws. Then ore prospectings were done by the author and delineated 6 prospecting areas, which may establish a stable basement for the regional mineral resource prospecting and exploration.
引文
[1] Adachi M, Yamamoto K, Suigisk R. Hydrothermal chert and associated siliceous rocks from the Northern Pacific: their geological significance as indication of ocean ridge activing[J]. Sedimentary Geology, 1986, 47(1/2): 125-148.
    [2] Bostroem K. Genesis of ferromanganese deposits diagnostic criteria from recent and old deposits [A] . In : Rona P A, et al. eds. Hydrothermal processes at seafloor spreading centers [C]. New York: Plenum Press, 1983. 473-483.
    [3] Coveney R M, Kelly W C. Dawsonite as a daughter mineral in hydrothermal fluid inclusions [J]. Contr. Min. and Petrol., 1971, 32(4): 334-342.
    [4] Eugster H P, Jones B F. Gels composed of sodium aluminum silicate, Lake Magadi , Kenya[J]. Science, 1968, 16: 160-163
    [5] Fleet A J . Hydrothermal and hydrogeneous ferromanganes deposits[A]. In : Rona P A , et al. eds. Hydrothermal processes at seafloor spreading centers [C]. New York : Plenum Press, 1983. 537-570.
    [6] Jiang S Y, Palmer M R, Peng Q M, Yang J H. Chemical and stable isotopic compositions of Proterozoic metamorphosed evaporites and associated tourmalines from the Houxianyu borate deposit, eastern Liaoning , China[J]. Chemical Geology, 1997, 135: 189-211.
    [7] Klinkhammer G, et al . Rare earth elements in seawater near hydrothermal vents [J]. Nature, 1983, 305: 185-188.
    [8] Lijima A, Hein J R, et al. Siliceous deposits in Pacific region, Developments in sedimentology 36[C]. Elsevier, Amsterdam, 1983.
    [9] Liu D Y, Nutman A P, Compston W, et al. Remnants of≥3800Ma crust in the Chinese part of the Sino-Korean Craton[J]. Geology, 1992, (20): 339-342.
    [10] M. R. Palmer and Helvaci C. The boron isotope geochemistry of the Kirka borate deposits, western Turkey [J]. Geochimica et Cosmochimica Acta, 1995, 59(17):3599-3605.
    [11] Marchard A, et al. Rare earth elements and uranium in high-temperature solutions from East pacific Rise hydrothermal vent field ( 13N)[J]. Nature, 1983, 303 : 795-797.
    [12] Palmer M P, Slack J F. Boron isotopic composition of tourmaline from massive sulfide deposits: textural, chemical, and isotopic relationships[J]. Economic Geology, 1989,49: 1703-1726.
    [13] Palmer M P, Slack J F. Boron isotopic composition of tourmaline from massive sulfide deposits and tourmalinites[J]. Contrib Mineral Petrol. 1989,103: 434-451.
    [14] Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4) : 956-983.
    [15] Pirajno F, Smithies R H. The FeO/ ( FeO + MgO) ratio of tourmaline : a useful indicator of spatial variations in granite-related hydrothermal mineral deposits[J]. Journal of Geochemical Exploration, 1992, 42 : 371-381.
    [16] Plimer I R. Tourmalinites associated with Australia proterozoic submarine exhalative ores[A]. In : Friedrich C H, Herzig P M, eds. Basse Sulfide Deposits in Sedimentary and Volcanic Environments [C]. Berline: Springer-Verlary, 1988. 155-283.
    [17] Plimer I R. Tourmalinites associated with Australian Proterozoic submarine exhalative ores[J]. Can. J . Earth Sci.,1988,24 :826-829.
    [18] Plimer I R. Less T.C. Tourmaline-rich Rocks Associated with the Submarine Hydrothermal RoseberyZn-Pb-Cu-Ag-Au Deposit and Granites in Western Tasmania, Australia[J]. Mineralogy and Petrology, 1988,38:81-103.
    [19] Plimer I R.澳大利亚与元古代海底喷气矿床伴生的电气石岩[J].国外地质,1988,225-281.
    [20] Qi Liang, Hu Jing, Gregoire D C. Determination of trace elements in granites by inductively coupled plasma mass spectrometry[J]. Talanta, 2000, 51: 507-513.
    [21] Rona P A. Hydrothermal mineralization deposits in ocean crust [J]. Econ Geol, 1978,73 (2):135-160.
    [22] Slack J F, Herriman N, Barnes R, et al. Stratiform tourmalinites in metamorphic teranes and their geological significance [J]. Geology, 1984,12:713-716.
    [23] Slack J F. Origin and significance of Tourmaline-rich rocks in the Broken Hill destrict, Australia [J]. Econ Geol, 1993, 88, (3): 525-541.
    [24] Slack J F. Tourmaline in Appalachian-Caledonian massive sulfide deposits and its exploration significance. Trans. lnst. Min.Metall., 1982, 91: 81-89.
    [25] Spivack A J, Edmond JM. Boron isotope exchange between seawater and the oceanic crust. Geochimica et Cosmochimica Acta.1987,51:1033-1043.
    [26] Sun M, Armstrong R L, Lambert R, et al. Petro-chemistry and Sr, Pb, and Nd isotopic geochemistry of early Proterozoic Kuandian Complex, eastern Liaoning Province, China[J]. Precambrian Research, 1993, 63:171-190.
    [27] Swihart G H., Moore P B.电气石硼同位素成分的初步研究.国外花岗岩类地质与矿产, 1991, 29- 33.
    [28] Taylor B E, Slack J F. Tourmaline from Appalachian-Caledonian massive sulfide deposits : textural, chemical and isotopic relationships[J]. Econ Geol, 1984, 79: 1703-1726.
    [29] Willner A P. Torumalinites from the stratiform peraluminous metamorphic suite of the Central Namaqua Mobile Belt (South Africa) [J]. Mineralium Deposita, 1992, 27 : 304-313.
    [30] Xuehui Xia, Fei Yan, Yuhai Zhao, Wenzong Chang. Geologic features and mineralization of the uranium-bearing Vonsenite deposit in the LiaoDong rift[A]. in: Mao J W and Frank P B, ed. The 8th Biennial SGA Meeting,2005[M]. Springer Berlin Heidelberg printed in Germany.
    [31] Yusheng Wan, Biao Song, Dunyi Liu, et al. SHRIMP U-Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the North China Cratn: Evidence for a major Late Palaeoproterozoic tectonothermal event[J]. Precambrian Research 2006, 149:249-271.
    [32] Zhao G C, Wilde S A, Cawood P A,et al. Thermal evolution of Archean basement rocks from the eastern part of the North China Craton and its bearing on tectonic setting. Inter Geol Rev,1998,40:706-721.
    [33] Zhao G C, Wilde S A, Cawood P A et al. Tectonothermal history of the basement rocks in the wesrernzone of the North China Craton and its tectonic implications. Tectonophysics,1999,310:37-53.
    [34] Zhao G C. Paleoproterozoic assembly of the North China Craton. Geol Mag, 2001, 138 :87-91.
    [35]白瑾,戴凤岩.中国早前寒武纪的地壳演化[J].地球学报,1994,3-4:73-87.
    [36]白瑾,黄学光,戴凤岩,等.中国前寒武纪地壳演化[M].北京:地质出版社,1994:1-229.
    [37]白瑾.华北陆台北缘前寒武纪地质及铅锌成矿作用[M].北京:地质出版社,1993:1-123.
    [38]白瑾.华北原地台古元古代热力活动遗迹及其构造边界[J].岩石学报,2000,16(1):39-48.
    [39]邴志波.辽东古元古代岩石圈结构与演化-来自构造岩浆热事件的动力学信息[D].博士学位论文,吉林大学,2006:1-123.
    [40]蔡克勤,陈从喜.辽东古元古代镁质非金属矿床成矿系统研究.地球科学,2000,25(4):346-351.
    [41]陈从喜,蔡克勤.辽东镁质碳酸盐岩建造沉积变质镁质非金属矿床及成矿作用研究[J].矿床地质,1998(增刊): 465-468.
    [42]陈荣度,李显东,张福生.对辽东古元古代地质若干问题的讨论[J].中国地质,2003,30(2):208-213.
    [43]陈荣度,王有爵.辽东-吉南地区早元古代裂谷演化与成矿[A].见:张贻侠,刘连登,主编.中国前寒武纪矿床和构造[C].北京:地震出版社,1994: 186-200.
    [44]陈荣度.辽东裂谷的地质构造演化[J].中国区域地质,1990(4):306-315.
    [45]陈荣度.一个早元古代裂谷盆地-辽东裂谷[J].辽宁地质,1984,(2): 125-133.
    [46]陈树良,郇彦清,邴志波.辽东地区古元古代侵入岩特征及构造岩浆大陆动力学演化[J].辽宁地质,2001,18(1):43-50.
    [47]陈先沛,高计元,陈多福等.热水沉积作用的概念和几个岩石学标志[J].沉积学报, 1992, 10 (3) :124-132.
    [48]程裕淇.中国区域地质概论[M].北京:地质出版社,1994:1-517.
    [49]邓晋福,吴宗絮,赵国春,等.华北地台前寒武纪花岗岩类、陆壳演化与克拉通形成[J].岩石学报,1999,15(2):190-198.
    [50]董耀松,杨言辰.裂谷演化对铅锌成矿作用的影响[J].地质找矿论丛,2006,21(1):19-27.
    [51]冯本智等.克拉通内裂谷海槽中以沉积为容矿岩石的硼矿床模式.见:裴荣富主编.中国矿床模式[M].北京:地质出版社,1995:83-85.
    [52]冯本智,邹日,等.辽吉早元古宙裂谷带内含硼热水沉积建造与硼矿床[A].见:中国地质学会矿床地质专业委员会编.第五届全国矿床会议论文集[C].北京:地质出版社,1993,512-515.
    [53]冯本智,邹日.辽宁营口后仙峪硼矿床特征及成因[J].地学前缘,1994(1):235-237.
    [54]冯本智.辽东前震旦纪变质岩中硼矿床成因探讨[J].化工地质, 1985, (1) : 9-17.
    [55]冯本智.中国辽吉地区早元古代大型-超大型硼矿床的形成条件[J].长春地质学院学报, 1998,28(1):1-15.
    [56]韩发, R W哈钦林.大厂锡多金属矿床热液喷气沉积的证据—含矿建造及热液沉积岩[J].矿床地质,1989,8 (2) : 25-37.
    [57]韩发,赵汝松,沈建忠,等.大厂锡多金属矿床地质及成因[M].北京:地质出版社,1997.33-65.
    [58]韩发,孙海田. Sedex型矿床成矿系统[J].地学前缘,1999,6 (1) :139-162.
    [59]郝德峰,李三忠,赵国春,等.辽吉地区古元古代花岗岩成因及对构造演化的制约[J].岩石学报,2004,20(6):1409-1416.
    [60]贺高品,叶慧文.辽东-吉南地区早元古代变质地体的组成及主要特征[J].长春科技大学学报, 1998,28(2):121-134.
    [61]胡墨田,王培君.辽东-吉南地区硼矿床地质特征及成矿规律[J].化工地质,1993,15(3):161-168.
    [62]黄作良,莫珉,祖恩东.辽东砖庙矿区硼矿床硬石膏的发现及成因讨论[J].现代地质, 1996,10(3):350-355.
    [63]黄作良,王濮.一种新的硼酸盐矿物——袁复礼石.岩石矿物学杂志[J]., 1994, (4) : 328-334.
    [64]黄作良,王璞,冯本智.辽吉硼矿床矿物学[M].北京:地质出版社,1999: 1-150.
    [65]黄作良.辽东硼矿床中电气石的矿物学特征及成因意义[J ].岩石矿物学杂志, 1996, 15 (4) : 365-378.
    [66]黄作良.与遂安石共生的电气石特征及成因意义[J].现代地质, 1993, (2) : 192-199.
    [67]季克俭等.热液矿床的矿源水源及热源以及矿床分布规律[M].北京:科学出版社,1992.
    [68]姜春潮,郑绵平,等.中国硼矿床.见:宋叔和,主编.中国矿床(下册)[M].北京:地质出版社,1994,89-93.
    [69]姜春潮.辽吉东部前寒武纪地质[M].沈阳:辽宁科学技术出版社,1987: 1-300.
    [70]蒋少涌.硼同位素及其地质应用研究[J].高校地质学报,2000,6(1) : 12-16.
    [71]李昌年编著.火成岩微量元素岩石学[M].北京:中国地质大学出版社,1992: 1-195.
    [72]李基宏.辽宁青城子铅锌银金矿集区成矿条件与成矿预测[D].博士学位论文,吉林大学,2005:63-91.
    [73]李俊建,沈保丰,李双保,等.辽北-吉南地区太古宙花岗岩-绿岩带地质地球化学[J].地球化学,1996,25(5)458-466.
    [74]李俊建,沈保丰,李双保,等.辽北-吉南早前寒武纪大陆壳的地质特征和演化[J].中国区域地质,1998,17(1):30-38.
    [75]李俊建,沈保丰,李双保,等.辽北-吉南地区太古宙绿岩带[J].华北地质矿产杂志,1999,14(1):27-34.
    [76]李俊建,沈保丰.辽吉地区早前寒武纪大陆壳的地质年代学[J].前寒武纪研究进展,2000,23(4):244-249.
    [77]李三忠.营口地区辽河群盖县岩组的构造样式[J].长春地质学院学报,1994,24(4):390-396.
    [78]李三忠,刘永江,杨振升.辽吉地区古元古代造山作用的大陆动力学过程及其壳内响应[J].地球物理学报,1998,41(增刊):142-152.
    [79]李三忠,刘永江,杨振升,马瑞.辽河群变质泥质岩中变质重结晶作用和变形作用的关系[J].岩石学报,1998,14(3):352-366.
    [80]李三忠,韩宗珠,刘永江,杨振升,马瑞.辽河群区域变质特征及其大陆动力学意义[J].地质论评2001,47(1):9-18.
    [81]李三忠,韩宗珠,刘永江,杨振升.胶辽地块古元古代前造山期深部过程的地质与地球化学制约[J].地质科学,36(2):184-194.
    [82]李三忠,郝德峰,韩宗珠,等.胶辽地块古元古代构造-热演化与深部过程[J].地质学报,2003,77(3):328-340.
    [83]李上森.前寒武纪富电气石岩石的成因和意义[J].国外前寒武纪地质,1994,(2): 60-73.
    [84]李守义.辽吉古裂谷中的双峰式火山岩及岩浆演化[J].长春地质学院学报,1994,24(2):143-147.
    [85]李守义,朱永正,王义.论辽吉古裂谷中的辽吉型铅锌矿床[A].长春地质学院建院40周年科学研究论文集[M]. 1992,111-119.
    [86]李雪梅,孙丰月,李碧乐,王力.辽东地区后仙峪及翁泉沟硼矿床流体包裹体特征研究[J]..现代地质,2007,21(4):645-653.
    [87]李雪梅,孙丰月,李碧乐,霍亮,李延军.辽东后仙峪硼矿床含硼岩系中电英岩的地球化学特征及其成[J].因.世界地质,2008,27(3):260-266.
    [88]李扬鉴,王培君.论辽东-吉南地区硼矿床控矿构造及找矿方向[J].化工地质,1993,15(2):69-79.
    [89]辽宁省地质矿床调查院.辽宁宽甸地区硼矿评价成果报告,2004:1-60.
    [90]辽宁省地质矿产局第七地质大队.辽东地区硼矿典型矿床研究报告,1985:1-186.
    [91]林强,吴福元,刘树文,等.华北地台东部太古宙花岗岩[M].科学出版社,1-25.
    [92]刘斌,沈昆.流体包裹体热力学[M].北京:地质出版社, 1999:1-290.
    [93]刘敦一,万渝生,伍家善,等.华北克拉通太古宙地壳演化和最古老的岩石[J].地质通报,2007,26(9):1131-1138.
    [94]刘敬党,孙淑华.辽东-吉南早元古宙硼矿地质特征及矿床成因――以砖庙矿区为例[J].辽宁地质,1995,1:47-57.
    [95]刘敬党.辽吉地区早元古代遂安石-硼镁石型硼矿床的矿床模型[J].化工矿产地质,1995,17(1):37-41.
    [96]刘敬党.辽宁大石桥花岗质岩石成因分析及其在硼矿勘查中的意义[J].吉林大学学报(地球科学版),2005,35(6):714-719.
    [97]刘敬党.辽东-吉南地区早元古代硼镁石型硼矿床地质特征及矿床成因[J].化工矿产地质,1996,18(3):207-212.
    [98]刘敬党,肖荣阁,王文武,等.辽东硼矿区域成矿模型[M].北京:地质出版社,207,1-426.
    [99]刘俊来,关会梅,崔迎春.辽吉古元古宙褶皱带构造分区与构造演化[J].前寒武纪研究进展,2002,25(3-4):214-220.
    [100]刘永达,邴志波,董景超.辽东半岛早元古宙海相拉斑玄武岩特征及其意义[J].辽宁地质, 1989, 4: 289-297.
    [101]刘永达,邴志波,董景超,等.辽东早元古宙构造环境及岩石圈结构[J].辽宁地质, 1992, 3: 193-240.
    [102]刘永江,李三忠.辽宁海城-大石桥-吉洞地区早元古代花岗岩[J].辽宁地质, 1996, 1: 10-18.
    [103]刘志远.辽东中部辽河群区域成矿作用与金属矿产资源评价,吉林大学博士后研究工作报告. 2008:1-141.
    [104]卢焕章,范宏瑞,倪培,等.流体包裹体[M].北京:科学出版社,2004,201-208.
    [105]陆松年,杨春亮,蒋明媚,等.前寒武纪大陆地壳演化示踪[M].北京:地质出版社,1996, 1-156.
    [106]路孝平.通化地区古元古代构造岩浆事件[D].博士学位论文,吉林大学,2004:1-143.
    [107]路孝平,吴福元,林景仟,等.辽东半岛南部早前寒武纪花岗质岩浆作用的年代学格架.地质科学,2004,39(1):123-138.
    [108]路孝平,吴福元,张艳斌,等.吉林南部通化地区古元古代辽吉花岗岩的侵位年龄与形成构造背景[J].岩石学报,2004,20(3):381-138.
    [109]路孝平,吴福元,郭敬辉,等.通化地区古元古代晚期花岗质岩浆作用与地壳演化.岩石学报[J]. 2005,21(3):721-736.
    [110]路远发等.辽东古元古代裂谷中硼矿床成矿年代学研究[J].地质学报英文版,2005,79(2),论文摘要
    [111]吕贻峰,秦松贤.辽南地区构造演化与构造控矿[J].辽宁地质,1998,3:161-168.
    [112]吕宗凯.吉林省集安县高台沟硼矿地质特征及其成因[J].吉林地质,1984(3):14-22.
    [113]吕宗凯,张承泽.再谈高台沟硼矿地质特征及其成因[J].吉林地质,1985(3):62-66.
    [114]马文耀.辽东-吉南硼矿成矿区构造概述[J].吉林地质,1984,4:54-56.
    [115]毛德宝等.辽北清原地区太古宙地质演化及其对成矿的控制作用[J].前寒武纪研究进展,1997,20(3):1-10.
    [116]倪培,徐克勤.辽东半岛地质演化及金矿床的成因J].矿床地质,1993,12(3):231-244.
    [117]裴福萍,许文良,于洋,等.吉林南部晚三叠世蚂蚁河岩体的成因:锆石U-Pb年代学和地球化学证据[J].吉林大学学报(地球科学版),2008,38(3):351-362.
    [118]彭齐鸣,许虹.辽东-吉南地区早元古宙变质蒸发岩系及硼矿床[M].长春:东北师范大学出版社,1994,1-120.
    [119]彭齐鸣,许虹.硼同位素地球化学及其示踪意义[J].地质地球化学, 1994,(5):
    [120]彭齐鸣,冯本智,刘敬党.辽东半岛早元古宙海底喷气成矿作用与硼矿床――以砖庙硼矿床为例[A].长春地质学院建院40周年科学研究论文集[M]. 1992,103-110.
    [121]彭少梅.粤北大沟谷碎裂钠长石岩型金矿床的构造—热液成矿机理[D].广州:中国科学院广州地球化学研究所图书馆. 1993.
    [122]戚长谋,邹祖荣,李鹤年.地球化学通论[M].北京:地质出版社, 1987,1-210.
    [123]祁思敬,李英,曾章仁,等.秦岭热水沉积型铅锌(铜)矿床[M].北京:地质出版社, 1993, 88-89, 133-147.
    [124]祁思敬,李英等,秦岭泥盆系铅锌成矿带[M].北京:地质出版社,1993,47:66-82.
    [125]覃小锋,夏斌,黎春泉,等.阿尔金构造带西段前寒武纪花岗质片麻岩的地球化学特征及其构造背景[J].现代地质,2008,22(1):34-44.
    [126]吴福元等.华北地台太古宙地壳生长机制与构造体制转换[J].长春地质学院学报,1995,25(3):262-267.
    [127]邵洁涟.金矿找矿矿物学[M].北京:中国地质大学出版社,1998:39-42.
    [128]沈其韩,钱祥麟.中国太古宙地质体的组成、阶段划分和演化[J].地球学报,1995,2:113-120.
    [129]孙丰月.太古代脉状金矿研究的某些新进展[J].地质科技情报,1995,14(3):61-66.
    [130]孙丰月,金巍,李碧乐,等.关于热液脉状金矿床成矿深度的思考[J].长春科技大学学报,2000,30(增刊):27-30.
    [131]孙厚江,吴春林.辽河群镁质碳酸盐建造及其非金属矿产[J].矿产与地质,1996,10(1):60-65.
    [132]孙敏,张立飞,吴家泓.早元古代宽甸杂岩的成因:地球化学证据[J].地质学报,1996,70(3):207-222.
    [133]涂光炽.中国层控矿床地球化学[M].北京:科学出版社,1989:1-208.
    [134]王成文,刘永江等.辽河岩群南北区域对比的新证据[J].长春地质学院学报,1997,27(1):17-24.
    [135]王翠芝,肖荣阁,刘敬党.辽宁营口后仙峪硼矿区超镁橄榄岩的控矿作用[J].矿床地质,2006,25(6):683-692.
    [136]王翠芝,肖荣阁,刘敬党.辽东硼矿的成矿机制及成矿模式[J].地球科学――中国地质大学学报,2008,33(6):813-824.
    [137]王翠芝,肖荣阁,刘敬党.辽东-吉南硼矿的控矿因素及成矿作用研究[J].矿床地质,2008,27(6):727-741.
    [138]王殿忠.辽宁营口东部白硼矿床特征及找矿方向[J].辽宁地质,2000,17(4):249-258.
    [139]王殿忠等.营口东部含硼蚀变岩带特征及找矿方向[J].辽宁地质,1998,4:251-260.
    [140]王东方.辽东地块的构造分解[J].辽宁地质,1992,2:138-148.
    [141]王福君,王鹏.辽东半岛南部太古宙地壳变质作用[J].辽宁地质,2001,18(1):62-66.
    [142]王福润.吉林省南部下元古界集安群地质特征与沉积期古环境分析[J].吉林地质,1991,2:31-41.
    [143]王惠初等.华北克拉通古元古代地质记录及其构造意义[J].地质调查与研究,2005,28(3):129-143.
    [144]王培君.辽东-吉南地区硼矿床控矿构造研究[J].化工地质矿产,1986,17(5):54-60.
    [145]王培君.硼矿床含硼地层的二元结构模式[J].化工矿产地质,1996,18(3):201-206.
    [146]王培君,林慧心,杨兆基.辽东地区硼矿床成矿预测[J].化工地质矿产,1986,17(2):32-47.
    [147]王显武,韩雪.吉林省集安地区硼矿床成矿规律研究[J].吉林地质,1989(1):73-75.
    [148]王秀璋,徐学炎.板状硼镁石夕卡岩型矿床的形成条件[J].地质科学,1964(3):295-298.
    [149]王秀璋等.东北内生硼矿床的矿物组成和成矿成因研究[M].北京:科学出版社,1974:1-218.
    [150]王艺芬,徐贵忠,余宏全.辽东地区早元古代火山岩特征及其形成的动力学背景[J].现代地质,2005,19(3):315-324.
    [151]王中刚,于学元,赵振华.稀土元素地球化学[M].北京:科学出版社,1989. 76-88.
    [152]吴福元,葛文春,孙德有,等.华北地台太古宙地壳生长机制与构造体制转换[J].长存地质学院学报,1995,25(3):262-267.
    [153]夏学惠,袁家忠.辽宁翁泉沟含铀硼铁矿床矿石特征及热液分解作用[J]..化工矿产地质,2002,24(2):65-71.
    [154]夏学惠.辽东地区硫化物矿床中电气石岩热水沉积结构序列[J].岩石学报,1997,13(2):215-225.
    [155]夏学惠.辽东裂谷带硫化物矿床内电气石系列矿物学与找矿关系[J].矿物岩石, 1995, 15 (4) : 62-71.
    [156]夏学惠.辽东裂谷电气石岩的氢氧和硅同位素地球化学[J].地球学报,1997,18(增刊):214-216.
    [157]夏学惠.辽东早元古代裂谷多金属硫铁矿床地质及成矿规律[J].化工矿产地质,1997,19(2):85-92.
    [158]夏学惠.辽宁营口后仙峪硼矿深部找矿预测[J].化工矿产地质,2006,28(1):27-32.
    [159]夏学惠.热水沉积电气石岩稀土元素地球化学特征[J].地质地球化学,1995,(6):56-59.
    [160]夏学惠等.辽东裂谷硼铁矿床地质及成矿作用[J].矿床地质,2006,25(1):84-88.
    [161]夏学惠,赵玉海,闫飞.辽东-吉南地区硼矿床地质特征及成矿远景[J].化工矿产地质,2007,29(3):169-177.
    [162]肖荣阁,大井隆夫,费红彩,等.辽东地区沉积变质硼矿床及硼同位素研究[J].现代地质,2003,17(2): 137-142.
    [163]肖荣阁,大井隆夫,蔡克勤,木川田喜一.硼及硼同位素地球化学的地质研究中的应用[J].地学前缘, 1999, 6(2) : 361-368.
    [164]肖荣阁,刘敬党,费红彩等.岩石矿床地球化学[M].北京:地震出版社,2008:1-414.
    [165]谢宏远,冯本智,邹日,琚宜太.辽宁杨木杆硼矿床地质地球化学特征[J].矿床地质, 1998,17(4): 355-362.
    [166]杨晓明.后仙峪硼矿区金云母蚀变岩与硼矿化之关系初探[J].化工矿产地质,1998,20(1):38-40.
    [167]杨晓明等.辽宁后仙峪硼矿区混合花岗岩成因探讨与成矿特征.[J].地质与资源, 2004, 13(2):96-102.
    [168]杨言辰.吉林老岭大横路式热水沉积叠加改造型钴矿床[J].长春科技大学学报,2001,31(1):40-45.
    [169]姚凤良,孙丰月.矿床学教程[M].北京:地质出版社,2006:139-162.
    [170]翟安民,沈保丰,杨春亮,等.辽吉古裂谷地质演化与成矿[J].地质调查与研究,2005,28(4):213-220.
    [171]翟裕生.古陆边缘成矿系统[M].北京:地质出版社,2002:244-278.[172]张奋生,彭少梅,伍广宇.粤北新州地区乐昌峡群的层序和特征[J].广东地质, 1991, (3) :47-60.
    [173]张景山.辽东硼镁石型硼矿床地质特征及成矿作用[J].辽宁地质,1994(4):289-303.
    [174]张景山.辽宁省宽甸县杨木杆硼矿典型矿床研究报告,1986:1-147.
    [175]张景枝,张永焕.吉林省早前寒武纪地质研究[J].吉林地质,1998,17(3):22-31.
    [176]张秋生.中国前寒武纪地质及成矿作用[M].长春:吉林人民出版社,1984:1-536.
    [177]张秋生,李守义.辽吉岩套――早元古宙的一种特殊优地槽相杂岩[J].长春地质学院学报,1985,1:1-12.
    [178]张秋生等著.辽东半岛早期地壳与矿床[M].北京:地质出版社,1988,1-574.
    [179]赵国春,孙敏.华北克拉通基底构造单元特征及早元古代拼合[J].中国科学(D辑), 2002, 32 (7):538-549.
    [180]周红英等.辽宁鞍山地区东山杂岩带3.3~3.1Ga期间的岩浆作用――锆石SHRIMP U-Pb定年[J].地质通报,2008,27(12):2122-2126.
    [181]周永章.丹池盆地热水沉成因硅质岩地球化学特征[J].沉积学报, 1990, 8 (3) : 75-83.
    [182]朱大岗.粤北大沟谷式金矿床地质特征及成因探讨[J].贵金属地质, 1994, 13 (3) : 231-241.
    [183]邹日,冯本智.营口后仙峪硼矿容矿火山-热水沉积岩系特征[J].地球化学,1995,24(增刊):46-55.
    [184]邹日.辽吉地区早元古代含硼岩系中电英岩的特征及成因[J].长春地质学院学报,1993, 23 (4) :373-329.
    [185]邹日.营口虎皮峪地区早元古代含硼岩系中热水沉积建造特征及硼矿床成因[D].博士学位论文,长春地质学院,1993:1-78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700