用户名: 密码: 验证码:
个旧鸡街农作物食品安全现状及整治技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随矿产资源的开采、选矿和冶炼,耕作土壤中重金属污染日趋严重并危及食品安全和人体健康。重金属污染土壤的治理周期长,难度大,探索低吸收植物种类或品种在污染土壤上种植,是一条在污染区发展农业生产的现实途径。
     本研究首先通过对云南个旧鸡街农作物食品安全现状进行野外调查,考察其重金属污染状况,筛选对重金属具不同吸收能力的植物种类或品种;之后进行室内盆栽实验,设计Pb、Zn、Cu、Cd复合污染正交实验研究低吸收种类[蚕豆(ViciafabaL.)、豌豆(Pisum sativum L.)]和高吸收种类[莴苣(Lactuca sativa L.)、薄荷(Mentha arvensis L.)]对重金属排斥或吸收的生理生化机理,并通过一系列改良措施[调节土壤pH值(8、8.5、9)、添加腐殖酸(2、5、10 g.kg-1)、添加硫化物(2、5、10 g·kg-1)和添加含Ca2+化合物(2、5、10 g·kg"1)处理]降低高吸收种类(莴苣、薄荷)可食部分对重金属的吸收,以达到安全合理利用污染农田的目的。此外,还考察了改良措施对高吸收种类(莴苣、薄荷)生理生化指标[株高、光合色素、过氧化氢酶(CAT)、过氧化物酶(POD)、超氧化物歧化酶(SOD)、可溶性糖、根系活力等]的影响以及改良措施对土壤环境质量的影响。结果表明:
     1.研究区土壤重金属Pb、Zn、Cu、Cd含量均值分别为1185.48±490.72、628.87±175.58、453.50±129.11、7.50±5.40 mg·kg-1,均超出《土壤环境质量标准》(GB15618-1995)二级标准;研究区土壤中重金属Pb、Cu、Cd的二乙三胺五乙酸(DTPA)提取态与总量呈极显著正相关(p<0.01),Zn的DTPA提取态与总量呈显著正相关(p<0.05);研究区土壤肥力情况较好。
     2.研究区采集的农作物中Pb含量均超出食品安全限量标准;Zn含量除豌豆、蚕豆、大米(Oryza.sativa L.)和玉米(Zea mays L.)外,其余作物均超标;莴苣、芥菜(Brassica juncea (L.) Czem. et Coss.)、薄荷、白菜(Brassica rapa L. glabra Regel)中Cu含量超标;Cd含量除豌豆、蚕豆、甘蓝(Brassica oleracea L. var. capitata L.)外均超标。比较而言,莴苣、薄荷、芥菜不适合在污染区继续种植,甘蔗(Saccharum officinarum Linn.)、大米(水稻)较为适合继续种植,豌豆、韭菜(A.schoenoprasum L.)、青花菜(B.oleracea L.var. italica Plench)、花椰菜(Brassica oleracea L. var. botrytis L.)、甘蓝、蚕豆、红萝卜(Raphanus sativus L.)、葱(A. fistulosum L.)、朝天椒(Capsicum annuum L.)、土豆(Solanum tuberosum L.)、玉米基本适合种植,厚皮菜(Beta vulgaris L. var. ciclaKoach)、白菜、青菜基本上不适合继续种植。
     3.正交复合污染条件下,重金属在高吸收种类薄荷和低吸收种类蚕豆叶片亚细胞结构中分布情况不同。蚕豆叶片亚细胞结构中除Cd的分布在各配方间有差异,Pb、Zn、Cu均主要集中在细胞壁及未破碎残渣(F1);Pb、Zn、Cu、Cd在薄荷亚细胞中的分布随正交设计配方浓度的不同而各有差异。对薄荷而言,不同Pb浓度对其叶片中Pb、Cu、Cd含量有极显著影响,但对Zn含量无显著影响;不同Zn、Cu浓度对其叶片中Pb、Zn、Cu、Cd含量均有极显著影响;不同Cd浓度对其叶片中Cd含量有极显著影响,对Pb、Zn含量有显著影响,对Cu含量无显著影响;对蚕豆而言,不同Pb浓度对其叶片Cd含量有极显著影响,对Pb、Zn含量有显著影响,对Cu含量无显著影响;不同Zn浓度对其叶片中Pb、Cu、Cd含量有极显著影响,对Zn含量有显著影响;不同Cu浓度对其叶片中Pb、Zn含量有极显著影响,对Cu、Cd含量无显著影响;不同Cd浓度对其叶片中Zn、Cd含量有极显著影响,对Pb、Cu含量无显著影响。
     4.对于高吸收种类薄荷而言,能使叶片中Zn、Cu和Cd含量均最低的重金属组合是配方2[对照Pb(不添加)、低等浓度Zn(200 mg·kg-1)、低等浓度Cu(100 mg-kg-1)、低等浓度Cd(5 mg·kg-1)],使Pb含量最低的是配方10[中等浓度Pb(800 mg·kg-1)、低等浓度Zn(200 mg·kg-1)、高等浓度Cu(800 mg·kg-1)、中等浓度Cd(10 mg·kg-1)]。对于低吸收种类蚕豆而言,能使叶片中Cu和Cd含量均最低的是配方6[低等浓度Pb(400mg·kg-1)、低等浓度Zn(200 mg·kg-1)、对照Cu(不添加)、高等浓度Cd(20mg·kg-1)],能使Pb含量最低的是配方4[对照Pb(不添加)、高等浓度Zn(1000 mg·kg-1)、高等浓度Cu(800 mg·kg-1)、高等浓度Cd(20 mg·kg-1)]、配方8[低等浓度Pb(400 mg·kg-1)、高等浓度Zn(1000 mg·kg-1)、中等浓度Cu(400 mg·kg-1)、低等浓度Cd(5 mg·kg-1)]和配方9[中等浓度Pb(800 mg·kg-1)、对照Zn(不添加)、中等浓度Cu(400 mg·kg-1)、高等浓度Cd(20 mg·kg-1)],能使Zn含量最低的是配方2。
     5.复合污染条件下,对于高吸收种类莴苣和薄荷而言,不同Pb、Cd浓度对其POD、SOD活性影响极显著,不同Zn浓度对其叶绿素含量、POD、SOD活性影响极显著,不同Cu低度对其株高影响极显著。对于低吸收种类豌豆和蚕豆而言,不同Pb浓度对其株高、叶绿素含量、SOD活性影响极显著,不同Zn浓度对其SOD活性影响显著。对于高吸收种类薄荷而言,不同Pb、Zn、Cu、Cd浓度均对其根系活力影响极显著,而对于低吸收种类蚕豆而言,只有不同Cu、Cd浓度对其根系活力影响极显著。
     6.对于高吸收种类薄荷和莴苣而言,改良措施下其叶片中Cu主要集中在细胞核、叶绿体为主的成分(F2),Pb、Zn、Cd均主要集中在细胞壁及未破碎残渣部分(F1)改良措施下,薄荷和莴苣在pH调节为9、腐殖酸添加量为5 g·kg-1条件下,植物叶片中Pb、Zn、Cu、Cd含量显著低于其他处理水平;含Ca2+化合物添加量为1 0 g·kg-1条件下植物叶片中Pb、Cd含量显著低于其他处理水平,添加量为5 g·kg-1。条件下植物叶片中Zn、Cu含量显著低于其他处理水平;含硫化合物添加量为5 g·kg-1条件下植物叶片中Pb、Zn、Cd含量显著低于其他处理水平。
     7.改良措施下,薄荷和莴苣在土壤pH调节为8.5条件下,其叶绿素含量均显著高于对照,在pH调节为8条件下,其根系活力均显著高于对照;在腐殖酸添加量为5、10g.kg-1条件下,其叶绿素含量均显著高于对照,在腐殖酸添加量为5 g·kg-1条件下,其SOD活性显著高于其他处理水平,在腐殖酸添加量为10 g·kg-1条件下,其根系活力均显著高于对照;在含Ca2+化合物添加量为10 g·kg-1条件下,其叶绿素和类胡萝卜素含量均显著高于对照,其POD活性、根系活力显著高于其他处理水平,在含Ca2+化合物添加量为5 g·kg-1条件下,其可溶性糖含量显著高于对照;在硫化物添加量为5 g·kg-1条件下,其CAT、SOD、POD可溶性糖含量、根系活力均显著高于其他处理水平。
     8.改良措施后土壤中Pb、Zn、Cu、Cd分级形态存在一定差异,Pb、Cd的形态主要为铁锰氧化态,Zn、Cu的形态主要为残渣态。通过改良措施后,种植莴苣和薄荷土壤中DTPA提取态Pb含量在添加腐殖酸和含Ca2+化合物处理条件下显著低于对照处理;DTPA提取态Zn含量在添加含Ca2+化合物10 g·kg-1条件下显著低于对照处理。腐殖酸添加量为2、10 g·kg-1条件下和硫化物添加量为10 g·kg-1条件下,土壤pH明显高于对照;调节pH为9或含Ca2+化合物添加量为2 g·kg-1条件下,两种作物种植土壤中全氮含量明显高于对照。
With the mineral resource mining, selecting and smelting, heavy metal pollution in cultivated soil is getting serious and endangers food security and human health. It is a realistic way to explore plant species or varieties with low metal uptake which can be planted at metal-contaminated sites, because of long period and high difficulties in control of metal-contaminated soil.
     In this research, firstly, a filed survey was conducted to investigate the present situation of crop food safety in Jijie, Gejiu City, Yunnan province. Heavy metal pollution in soil was assessed and plant species or varieties with different metal uptake abilities were selected. Secondly, mechanisms of metal exclusion and uptake in species with low absorption [the broad bean (Vicia faba L.), the pea(Pisum sativum L.)] and high absorption [the lettuce (Lactuca sativa L.), the peppermint (Mentha arvensis L.)] were researched by using orthogonal design under pot trial conditions. Thirdly, a series of remediation measures [adjusting soil pH value (8,8.5,9), increasing humic acid (2,5,10 g·kg-1), increasing sulfide (2,5,10 g·kg-1) and increasing Ca2+-contained compound (2,5,10·g kg-1)] were adopted to reduce metal uptake in the high absorption species (lettuce, peppermint) and to achieve the goal of food safe. In addition, the effects of remediation measures to physiological and biochemical parameters of high absorption species (lettuce and peppermint), such as plant height, photosynthetic pigments, catalase (CAT), peroxide enzyme (POD), superoxide mutase (SOD), soluble sugar, root system vigor etc., were evaluated. The soil qualities after adopting remediation measures were also researched. The results indicated as follows.
     1. Average concentrations of lead (Pb), zinc(Zn), copper(Cu) and cadmium(Cd) at study site were 1185.48±490.72,628.87±175.58,453.50±129.11 and 7.50±5.40 mg·kg-1, surpassing " Environment Quality Standard for Soils" (GB 15618-1995) (GradeⅡ). There was a significantly positive correlation between diethylenetriaminepentaacetic acid (DTPA) and total concentrations of soil Pb, Cu, Cd (p< 0.01) and Zn (p< 0.05), respectively. The soil fertility situation at study site was good.
     2. Concentrations of Pb in all crops sampled at the study site surpassed the limit standard for food safety. Concentrations of Zn in other crops surpassed this standard except the pea, broad bean, rice(Oryza.sativa L.) and corn (Zea mays L.). Concentrations of Cu in Lettuce, leaf mustard(Brassica juncea (L.) Czern. et Coss.), peppermint, and cabbage (Brassica rapa L. glabra Regel) also surpassed this standard. Concentrations of Cd in other crops surpassed this standard except the pea, broad bean and sea cabbage(Brassica oleracea L. var. capitata L.). Comparatively speaking, the lettuce, peppermint and leaf mustard were not suited for planting at the metal-contaminated site. Sugar cane (Saccharum officinarum Linn.) and rice (paddy rice) were more suitable to plant, and pea, fragrant-flowered garlic (A. schoenoprasum L.), blue cauliflower (B. oleracea L.var italica Plench), cauliflower(Brassica oleracea L. var. botrytis L.), sea cabbage, broad bean, carrot (Raphanus sativus L.), onion(A. fistulosum L.), pod pepper(Capsicum annuum L.), potato (Solarium tuberosum L.) and corn were reluctantly suited for planting. The chard(Beta vulgaris L. var. cicla Koach), cabbage and green vegetables were hardly suitable to plant.
     3. Under orthogonal design conditions, differences of metal subcellular distribution were observed in peppermint (high absorption species) and broad bean (low absorption species). Lead (Pb), Zn and Cu in broad bean were mainly concentrated in the cell wall and unbroken residual (F1) except for Cd. However, differences were appeared in subcellular distribution of Pb, Zn, Cu, Cd in peppermint along with the different group of orthogonal design. As for peppermint, leaf concentrations of Pb, Cu and Cd were significantly affected by soil Pb, but Zn concentrations in leaf were not significantly affected. Leaf concentrations of Pb, Zn, Cu and Cd were significantly affected by soil Zn and Cu. Leaf concentrations of Cd, Pb and Zn were significantly affected by soil Cd, but Cu concentrations of leaf were not significantly affected. As for broad bean, leaf concentrations of Cd, Pb and Zn were significantly affected by soil Pb, but Cu concentrations in leaf were not significantly affected.Leaf concentrations of Pb, Cu, Cd and Zn were significantly affected by soil Zn. Leaf concentrations of Pb and Zn were significantly affected by soil Cu, but Cu and Cd concentrations in leaf were not significantly affected. Leaf concentrations of Zn and Cd were significantly affected by soil Cd, but Pb and Cu concentrations in leaf were not significantly affected.
     4. As for peppermint (high absorption species), the heavy metal constitutes resulting in a minimum concentration of Zn, Cu and Cd was group 2 [control Pb (not added), low concentrations of Zn (200 mg·kg-1), low concentration of Cu (100 mg·kg-1), low concentration of Cd (5 mg·kg-1)]. The heavy metal constitutes resulting in a minimum concentration of Pb was group 10 [middle concentration of Pb (800 mg·kg-1), low concentration of Zn (200 mg·kg-1), high concentration of Cu (800 mg·kg-1), middle concentration of Cd (10 mg·kg-1)]. As for broad bean (low absorption variety), the heavy metal constitutes resulting in a minimum concentration of Cu and Cd was group 6 [low concentration of Pb (400 mg·kg-1), low concentration of Zn (200 mg·kg-1), control Cu (not added), high concentration of Cd (20 mg·kg-1)]. The heavy metal constitutes resulting in a minimum concentration of Pb was group 4 [control Pb (not added), high concentration of Zn (1000 mg·kg-1), high concentration of Cu (800 mg·kg-1), high concentration of Cd (20 mg·kg-1)], group 8 [low concentration of Pb (400 mg·kg-1), high concentration of Zn (1000 mg·kg-1), middle concentration of Cu (400 mg·kg-1), low concentration of Cd (5 mg·kg-1)] and group 9 [middle concentration of Pb (800 mg·kg-1), control Zn (not added), middle concentration of Cu (400 mg·kg-1), high concentration of Cd (20 mg·kg-1)]. Group 2 could lead to a minimum of Zn in leaves of this plant.
     5. Under metal compounded pollution conditions, as for lettuce and peppermint (high absorption species), POD and SOD activities in their leaves were significantly affected by soil Pb and Cd. Chlorophyll content, POD and SOD activities in leaves were significantly affected by soil Zn, and plant heights by soil Cu. As for pea and broad bean (low absorption species), plant heights, chlorophyll content and SOD activities were significantly affected by soil Pb, and SOD activities by soil Zn. Root activities were significantly affected by Pb, Zn, Cu and Cd in peppermint, as well as Cu and Cd in broad bean, respectively.
     6. As for peppermint and lettuce (high absorption species), leaf Cu was mainly concentrated in the parts containing cell nucleus and the chloroplast (F2) under remediation conditions. However, leaf Pb, Zn and Cu were mainly concentrated in the cell wall and unbroken residual (F1). Compared with other treatments, concentrations of Pb, Zn, Cu and Cd were significantly decreased in leaves of peppermint and lettuce under pH 9 or 5 g·kg-1 humic acid treatments. Concentrations of Pb, Cd and Zn, Cu were significantly decreased in leaves of these two plants by adding 10 and 5 g·kg-1 Ca2+, respectively. Concentrations of Pb, Zn and Cd were significantly decreased in leaves of these two plants by adding 5 g·kg-1 sulfide.
     7. Under remediation conditions, chlorophyll contents in leaves of peppermint and lettuce were significantly higher than those of controls when soil pH was adjusted to 8.5. Root activities were also higher than control when soil pH was adjusted to 8. Chlorophyll contents in leaves of the two plants significantly increase by adding 5 or 10 g·kg-1 humic acid. SOD activities were also significantly higher than other treatments by adding 5 g kg-1 humic acid. Root activities were higher than the controls when 10 g kg-1 humic acid was added. Contents of chlorophylls and carotenoids were significantly higher than the controls under 10 g·kg-1 Ca2+ treatments, and POD and root activities were significantly higher than other treatments. Soluble sugar contents were significantly higher than the controls under 5 g·kg-1 Ca2+ treatment. CAT, SOD and POD activities, soluble sugar contents and root activities were significantly higher than other treatments.
     8. Difference was observed in Pb, Zn, Cu and Cd speciation of soils after adopting remediation measures. Ferro-maganese oxidation and residuals were the major speciation of Pb, Cd, and Zn, Cu, respectively. Concentrations of DTPA-extractable Pb were significantly lower than the controls by adding humic acid and Ca2+. Concentrations of DTPA-extractable Zn were significantly lower than the controls by adding 10 g·kg-1 Ca2+. Soil pH was significant higher than the controls by adding 2, humic acid or 10 g·kg-1 sulfide. Concentrations of soil total nitrogen were also significantly higher than the controls by adjusting pH to 9 or adding 2 g·kg-1 Ca2+.
引文
[1]Baker A J M. Metal Tolerance[J]. New Phytologist,1987,106:93-111.
    [2]陈怀满.环境土壤学[M].北京:科学出版社,2006.
    [3]王海娟,宁平,曾向东,等.某有色金属矿区农作物食品安全初步研究[J].云南环境科学,2004,23(S 1):36-38.
    [4]许牡丹,毛跟年.食品安全性与分析检测[M].北京:化学工业出版社,2003.
    [5]王焕校.污染生态学[M].北京:高等教育出版社,2002.
    [6]张从,夏立江.污染土壤生物修复技术[M].北京:中国环境科学出版社,2000.
    [7]孙波.基于空间变异分析的土壤重金属复合污染研究[J].农业环境科学学报,2003,22(2):248-251.
    [8]韦朝阳,陈同斌.重金属超富集植物及植物修复技术研究进展[J].生态学报,2001,21(7):1197-1203.
    [9]中国科学院南京土壤研究所.土壤理化分析[M].上海:上海科学技术出版社,1978.
    [10]鲍士旦.土壤农化分析(第三版)[M].北京:中国农业出版社,2000.
    [11]Tessier A, Campbell P G C, Blsson M. Sequential Extraction Procedure for the Speciation of Particulate Trace Metals[J]. Analytical Chemistry,1979,51 (7):844-851.
    [12]程建勋,王晓峰.植物生理学实验指导[M].广州:华南理工大学出版社,2006.
    [13]李合生,孙群,赵世杰,等.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000.
    [14]郑国漳.农业土壤重金属污染研究的理论与实践[M].北京:中国环境科学出版社,2007.5.
    [15]刘洪莲,李恋卿,潘根兴.苏南某些水稻土中Cu Pb Hg As的剖面分布及其影响因素[J].农业环境科学学报,2006,25(5):1221-1227.
    [16]张志杰,吕秋芳,方芳.汞对小麦幼苗生长发育和生理功能的影响[J].环境科学,1989,10(4):10-13.
    [17]张祖锡,白瑛.改良城市污水农灌的作物与土壤效应[J].农业环境保护,1988,7(2): 23-24.
    [18]周青,张辉.铜对Cd胁迫下菜豆幼苗生长的影响[J].环境科学,2003,24(4):48-52.
    [19]秦天才,吴玉树.镉铅及相互作用对小白菜生理生化特性的影响[J].生态学报,1994,14(1):46-49.
    [20]Kale H. Response of roots of trees to heavy metals [J]. Environ Experi Bot,1993,33: 99-119.
    [21]Bernai M P, Grath S P. Effects of pH and heavy metals concentrations in solution culture on the Proton release, growth and elemental composition of alyssum murale and raphanus sativus[J]. Plant Soil,1994,166:83-92.
    [22]Wickiff C, Evans H J, Carter K R, et al. Cadmiumeffects onthe nitrogen fixation systemof redalde[J]. Erviron Qual,1980, (9):180-184.
    [23]Acar Y B, Alshawabkeh A N. Principles of electrokinetic remediation [J]. Environ Sci Technol,1993,27(13):2638-2647.
    [24]吴燕玉,王新,梁仁禄.重金属复合污染对土壤-植物系统的生态效应Ⅱ[J].应用生态学报,1997,8(5):545-552.
    [25]游植麟.土壤受镉铬铅复合污染的生物效应研究[J].农业环境保护,1997,16(3):131-132,137.
    [26]Verkleij J A C, Koevoets P. Poly (y-glutamylcysteinyl) glucines or phytochelatins and their role in cadmium tolerance of Silene vulgalis[J]. Plant cell enviornment,1990,13: 913-921.
    [27]何勇强,陶勤南,广濑和久,等.镉胁迫下大豆中镉与几种微量元素的分布状况[J].浙江大学学报(农业与生命科学版),2000,26(2):155-156.
    [28]Nishzono H. The role of the root cell wall in the heavymetal tolerance of Athyrinm yokoscense[J]. Plant and Siol,1987,101:15-20.
    [29]杨志敏,郑绍建,胡霭堂.不同磷水平和介质pH对玉米和小麦Cd积累的影响[J].南京农业大学学报,1999,22(1):46-50.
    [30]Grill E, Winnacker R L, Zenk M H. Phytochelatins:the principal heavy metal complexing peptides of higher plants[J]. Science,1985,230:674-676.
    [31]Huang B, Hatch E, Goldsbrough P B. Selection and characterization of cadmium tolerance cells in tomato[J]. Plants Science,1987.52:211-221.
    [32]Strasdeit H, Duhme A K, Kneer R, et al. Evidence for discrete Cd (Scys) 4 units in cadmium phytochelatin complexes from EXAFS spectroscopy[J]. Journal of Chemistry Society and Chemistry Communication,1991,16:1129-1130.
    [33]Gekeler W, Grill E. Survey of plant kingdom for the ability to bind heavy metals through phytochelatins[J]. Zanuforsch,1989,44:361-369.
    [34]Grill E, Winnacker E L, Zenk M H. Phytochelatins, a class of heavy metal-binding peptides from plants, are functionally analogous to metallothioneins[J]. Proc Natl acad Sci USA,1987,84:439-443.
    [35]Klapheck S, Fliegner W, Zimmer I. Hydroxylmethyl-phytochelatins[γ-(Gin—Cys)n— Ser] are metal induced peptides of the Poacea[J]. Plant Physiology,1994,104: 1325-1332.
    [36]Gupta M, Tripathi R C, Rai U N, Chandra P. Role of glutathione and phytochelatin in Hydrilla verticillata (l.f.) Royle and Vallisneria spiralis L. Under mercury stress[J]. Chemosphere,1998,37(4):785-800.
    [37]Casterlin J L, Barnett N M. Isolation and characterization of cadmium-binding components in soybean plant [J]. Plant Physiol,1977,59(suppl):124.
    [38]李文学,陈同斌.超富集植物吸收富集重金属的生理和分子生物学机制[J].应用生态学报,2003,14(4):627-631.
    [39]张乃明.环境污染与食品安全[M].北京:化学工业出版社,2007.
    [40]徐应明,李军幸.新型功能膜材料对污染土壤铅汞镉钝化作用研究[J].农业环境科学学报,2003,22(1):86-89.
    [41]刘峰.土壤中重金属对农作物及人体的危害[J].河北农业,2005,15.
    [42]南忠仁,程国栋.干旱区污灌农田作物系统重金属·Cd Pb生态行为研究[J].农业环境保护,2001,20(4):210-213.
    [43]张勇.沈阳郊区土壤及农产品重金属污染的现状评价[J].土壤通报,2001,32(4):182-186.
    [44]庞奖励,黄春长,孙根年.西安污灌区土壤重金属含量及对西红柿影响研究[J].土壤与环境,2001,10(2):94-97.
    [45]李秀兰,胡雪峰.上海郊区蔬菜重金属污染现状及累积规律研究[J].化学工程师,2005,(5):37.
    [46]陆引罡,王巩.贵州贵阳市郊区菜园土壤重金属污染的初步调查[J].土壤通报,2001,32(5):234-237.
    [47]李其林,赵中金,黄昀.重庆市近郊蔬菜基地土壤和蔬菜中重金属的质量现状[J].重庆环境科学,2000,22(6):33-37.
    [48]丁爱芳,潘根兴.南京城郊零散菜地土壤与蔬菜重金属含量及健康风险分析[J].生态环境,2003,12(4):409-410.
    [49]陈桂芬,黄克芬,黄武杰等.南宁市菜地土壤及蔬菜重金属污染状况调查与评价[J].广西农业科学,2004,35(5):390-391.
    [50]魏秀国,何江华,陈俊坚等.广州市蔬菜地土壤重金属污染状况调查及评价[J].土壤与环境,2002,11(3):252-254.
    [51]何江华,柳勇,王少毅等.广州市菜园土主要蔬菜重金属背景含量的研究[J].生态环境,2003,12(3):269-272.
    [52]胡斌,段昌群,刘醒华.云南寻甸几种农作物籽粒中重金属的比较研究[J].重庆环境科学,1999,21(6):45-47.
    [53]王海娟,宁平,曾向东等.某有色金属矿区农作物食品安全初步研究[J].云南环境科学,2004,23(S 1):36-38.
    [54]王新,周启星.外源镉铜锌在土壤中形态分布特性及改良剂的影响[J].农业环境科学学报,2003,22(5):541-545.
    [55]郑喜坤,鲁安怀.土壤重金属污染现状与防治方法[J].土壤与环境,2002,11(1):79-84.
    [56]Hanson A, David T, Sabatin A. Transport and Remediation of Subsurface Contaminants[J]. Washington D C:American Chemical Socicty,1992,108-120.
    [57]David C H, Janick F A, Raina MM. Removal of cadmium, lead, and zinc from soil by a rhamnolipid biosurfactant[J]. Environ Sci Technol,1995,29(9):2280-2285.
    [58]Wei Y, Yang Y, Cheng N. Study of thermally immobilized Cu in analogue minerals of contaminated soils [J]. Environ Sci Technol,2001,35(2):416-421.
    [59]Spalding B P. Fixation of radionuclides in soil and minerals by heating[J]. Environ Sci Technol,2001,35(21):4327-4333.
    [60]Naidu R, Kookana R S, Sumner M E. Cadmium sorption and transport in variable charge soils[J]. Environ Qual,1997,26:602-617.
    [61]赵英铭,李震坤.工业区土壤重金属污染的防治对策[J].内蒙古科技与经济,2001,3:33-34.
    [62]张秋芳.土壤重金属污染治理方法概述[J].福建农业学报,2000,15:200-203.
    [63]张亚丽,其荣,姜洋.有机肥料对镉污染土壤的改良效应[J].土壤学报,2001,38(2):212-218.
    [64]熊礼明.施肥与植物的重金属吸收[J].农业环境保护,1993,12(5):217-222.
    [65]周启星,吴燕玉,熊先哲.重金属Cd Zn对水稻的复合污染和生态效应[J].应用生态学报,1994,5(4):438-441.
    [66]万云兵,仇荣亮.重金属污染土壤中提高植物提取、修复功效的探讨[J].环境污染治理技术与设备,2002,3(4):56-59.
    [67]Knight B, Zhao F J, McGrath S P, et al. Zinc and cadmium uptake by the hyperaccumulator Thlaspi caerulescens in contaminated soils and its effects on the concentrtion and chemical speciation of mettals in soils solution[J]. Plant and Soil, 1997,197:71-78.
    [68]Shen Z G, zhao F J, McGrath S P. Uptake and transport of zinc in the hyperaccumulator Thlaspi caerulescens and the nonhyperaccumulator Thlaspi ochroleucum[J]. Plant Cell and Environment,1997,20:898-906.
    [69]Paul R, Lucas B, Japenga J, et al. Potentials and drawback of chelateenhanced phytoremediation of soils[J]. Environmental Pollution,2002,116:109-121.
    [70]肖鹏飞,李法云,付宝荣,等.土壤重金属污染及其植物修复研究[J].辽宁大学学报,2004,31(3):279-283.
    [71]汤叶涛,仇荣亮,曾晓雯,等.一种新的多金属超富集植物——圆锥南芥(Arabis Paniculata L.)[J].中山大学学报(自然科学版),2005,44(4):135-136.
    [72]Zu Y Q, Li Y, Chen J J, et al. Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead-zinc mining area in Yunnan, China[J]. Environment International,2005,31:755-762.
    [73]祖艳群,李元等.蔬菜中铅镉铜锌含量的影响因素研究[J].农业环境科学学报,2003,22(3):290-292.
    [74]陈宏,陈玉成等.石灰对土壤中Hg,Cd,Pb的植物可利用性的调控研究[J].农业环境科学学报,2003,22(5):549-552.
    [75]Ruttens A, Mench M, Colpaert J V, et. al. Phytostabilization of a metal contaminated sandy soil. I[J]:Influence of compost and/or inorganic metal immobilizing soil amendments on phytotoxicity and plant availability of metals. Environmental Pollution,2006,144:524-532.
    [76]Ruttens A, Mench M, Colpaert J V, et. al. Phytostabilization of a metal contaminated sandy soil.Ⅱ [J]:Influence of compost and/or inorganic metal immobilizing soil amendments on metal leaching. Environmental Pollution,2006,144:533-539.
    [77]Kumpiene J,.Guerri G, Landi L, Pietramellara G, et. al. Microbial biomass, respiration and enzyme activities after in situ aided phytostabilization of a Pb-and Cu-contaminated soil[J]. Ecotoxicology and Environmental Safety,2009,72:115-119.
    [78]陈朝明,龚惠群,王凯荣.Cd对桑叶品质、生理生化特性的影响及其机理研究[J].应用生态学报,1996,7(4):417-423.
    [79]李秋霞,黄玉源,赵玉环等.几种蔬菜及其土壤吸收灌溉污水污染物的研究[J].生态科学,2006,25(3):216-221.
    [80]柴世伟,温琰茂,张云霓等.广州市郊区农业土壤重金属含量特征[J].中国环境科学,2003,23(6):592-596.
    [81]国家环境保护局自然保护局.中国生态问题报告[M].北京:中国环境科学出版社,2000.
    [82]王庆仁,刘秀梅,崔岩山,等.我国几个工矿与污灌区土壤重金属污染状况及原因探讨[J].环境科学学报,2002,22(3):354-358.
    [83]叶玉瑶,张虹鸥,谈树成.个旧城区土壤中重金属潜在生态危害评价[J].热带地理,2004,24(1):14-17.
    [84]南忠仁,李吉均,张建明,等.白银市区土壤作物系统重金属污染分析与防治对策研究[J].环境污染与防治,2002,24(3):170-173.
    [85]凌其聪,严森,鲍征宇.大型冶炼厂重金属环境污染特征及其生态效应[J].中国环境科学,2006,26(5):603-608.
    [86]宋波,陈同斌,郑袁明,等.北京市菜地土壤和蔬菜镉含量及其健康风险分析[J].环境科学学报,2006,26(8):1343-1353.
    [87]马成玲,王火焰,周健民,等.长江三角洲典型县级市农田土壤重金属污染状况调查与评价[J].农业环境科学学报,2006,25(3):751-755.
    [88]中国环境监测总站.中国土壤元素背景值[M].北京:中国环境科学出版社,1990.
    [89]Marschnar H. Mineral nutrition of higher plants [M].2nd ed. London:Academic Press, 1995.
    [90]Kabata-pendias A, Pendias H. Trace Elements in Soils and Plants[M]. Florida:CRC Press,1984.
    [91]束文圣,叶志鸿,张志权,等.华南铅锌尾矿生态恢复的理论和实践.生态学报,2003,23(8):1630-1636.
    [92]黄俊友,胡晓东,俞青荣.污水灌溉条件下作物对土壤重金属吸收特征比较[J].节水灌溉,2005,5:5-7.
    [93]谢正苗,李静,陈建军,等.中国蔬菜地土壤重金属健康风险基准的研究[J].生态毒理学报,2006,1(2):172-179.
    [94]刘钰钗,陈婷,周金森,等.广州市黄埔区蔬菜重金属污染调查研究[J].中国卫生检验杂志,2007,17(6):1085-1087.
    [95]张志权,束文圣,蓝崇钰,等.定居植物对重金属的吸收和再分配[J].植物生态学报,2001,8(3):306-311.
    [96]陈英旭.土壤重金属的植物污染化学[M].北京:科学出版社,2008.
    [97]李彩霞,张芬琴,王光忠.铅对绿豆幼苗生长的影响[J].植物资源和环境学报,2003,12(2):60-61.
    [98]王春春,沈振国.镉在植物体内的积累及其对绿豆幼苗生长的影响[J].南京农业大学学报,2001,24(4):9-13.
    [99]杨居荣,鲍子平,张素芹.Cd/Pb在植物体内的分布及其可溶性结合形态[J].中国环境科学,1993,13:263-268.
    [100]薛艳,沈振国,周东美.蔬菜对土壤重金属吸收的差异与机理[J].土壤,2005,37(1):32-36.
    [101]韩润平,李建军,杨贯羽,等.结合重金属前后浮萍的红外光谱比较[J].光谱学与光谱分析,2000,20:489-491.
    [102]Brooks RR, Shaw S, Marfil AA. The chemical form and physiological function of nickel in some Iberian Alyssum species[J]. Physiol, Plant,1981,292:335-337.
    [103]Zhang Y X. Toxicity of heavy metals to hordeum vulgare[J]. Acta Sci Circumstantiae, 1997,17:199-201.
    [104]徐向华.超积累植物商路吸收累积锰机理研究.杭州:浙江大学博士学位论文,2006.
    [105]葛才林,蔡新华,孙锦荷,等.重金属胁迫对小麦光合产物输配影响的示踪动力学研究[J].核农学报,2002,16:16-173.
    [106]王泽港,骆剑峰,刘冲.单一重金属污染对水稻叶片光合特性的影响[J].上海环境科学,2004,23:237-240.
    [107]杜秀敏,殷文璇,张慧.超氧化物歧化酶研究进展[J].中国生物工程杂志,2002,23(1):77-79.
    [108]Srivastava M, Ma LQ, Singh N,et al. Antioxidant response of hyper-accumulator and sensitive fern species to arsenic[J]. Journal of Experimental Botany,2005,56: 1335-1342.
    [109]Van Assche, Clijsters HF. Effects of metals on enzyme activity in plants[J]. Plant, Cell and Environment,1990,13:195-206.
    [110]周希琴,莫灿坤.植物重金属胁迫及其抗氧化系统[J].新疆教育学院学报,2003,19:103-108.
    [111]Haag-Kerwer A, Schafer HJ, Heiss S, et al. Cadmium exposure in Brassica juncea causes a decline in transpiration rate and leaf expansion without effect on photosynthesis[J]. J. Exp. Bot.1999,341:1827-1835.
    [112]刘素纯,萧浪涛,廖柏寒,等.铅胁迫对黄瓜幼苗抗氧化酶活性及同工酶的影响[J].应用生态学报,2006,17(2):300-304.
    [113]张福锁.环境胁迫与植物营养[M].北京:北京农业大学出版社,1993:79-91.
    [114]庞欣,王东红,彭安.铅胁迫对小麦幼苗抗氧化酶活性的影响[J].环境科学,2001,22(5):108-111.
    [115]王友保,刘登义,张莉,等.铜、砷及其复合污染对黄豆(Glycine max)影响的初步研究[J].应用生态学报,2001,12(1):117-120.
    [116]李合生.现代植物生理学[M].北京:高等教育出版社,2001:430-436.
    [117]蔡保松,陈同斌,廖小勇.土壤砷污染对蔬菜砷含量及食用安全性的影响[J].生态学报,2004,24:711-717.
    [118]Spiers J M. Influence of lime and sulfur soil addition on growth, yield and leaf nutrient content of rabbiteye blueberry[J]. Journal for American Society Horiticuhure Science,1984,109(5):559-562.
    [119]李静,陈宏,陈玉成等.腐殖酸对土壤汞、镉、铅植物可利用性的影响[J].四川农业大学学报,2003,3:234-236,240.
    [120]陈怀满,陈能场,陈英旭,等.土壤植物系统中的重金属污染[M].北京:科学出版社,1996.
    [121]南方红壤退化机制与防治措施专题组.中国红壤退化机制与防治[M].北京:中国农业出版社,1999.
    [122]Fytianos K, Katsianis G, et al. Accumulation of heavy metals in vegetables grown in an industrial arean in relation to soil[J]. Bull Environ Contarn Toxicol,2001,67: 423-430.
    [123]Athur E, Crews I J, Morgan C. Optimizing plant genetic strategies for minimizing environmental contamination in the food chain [J]. Internal Journal of Phytoremediation,2000,2(1):1-21.
    [124]李博文,谢建治.蔬菜对潮褐士镉铅复合污染的吸收效应研究[J].农业环境科学学报,2003,22(3):286-288.
    [125]林君锋,高树芳,陈伟平等.蔬菜对土壤镉铜锌富集能力的研究[J].土壤与环境,2002,11(3):248-251.
    [126]李永涛,吴启堂.土壤污染治理方法研究[J].农业环境保护,1997,16(3):118-122.
    [127]吴启堂,陈卢,王广涛.水稻不同品种对Cd吸收积累的差异和机理研究[J].生态学报,1999,19(1):104-107.
    [128]朱芳,方炜,杨中艺.番茄吸收和积累Cd能力的品种间差异[J].生态学报,2006(12):157-167.
    [129]柳勇,何江华,王少毅等.广州市蔬菜地重金属剂量对蔬菜富集重金属的影响以菜心为例[J].生态环境,2003,12(3):273-276.
    [130]Zheljazkov V D, Nielsen N E. Effect of heavy metals on pepper mint and commint[J]. Plant and Soil,1996,178:59-66.
    [131]黄雅琴,杨在中.蔬菜对重金属的吸收积累特点[J].内蒙古大学学报,1995,26(5):608-615.
    [132]迟爱民,徐忠林.呼和浩特市蔬菜中重金属污染的研究[J].干早区资源与环境, 1995,9(1):86-94.
    [133]邱莉萍,张兴吕.Cu Zn Cd和EDTA土壤酶活性影响的研究[J].农业环境科学学报,2006,25(1):30-33.
    [134]张敬锁,李花粉,衣纯真:有机酸水稻镉吸收的影响[J].农业环境保护,1999,18(6):278-280.
    [135]张敬锁,李花粉,衣纯真,等.有机酸对活化土壤中的镉和小麦吸收镉的影响[J].土壤学报,1999,36(1):61-66.
    [136]Mohan D, Chander S. Single component and multi-component adsorption of metal ions by activated carbon[J]. Colloids Surf,2001,177(9):183-190.
    [137]Panday K K, Prasad G, Singh V N. Copper(Ⅱ)removal from aquesous solutions by flyash[J]. Water Research,1985,19(2):869-873.
    [138]Knocke W R, Hemphill L H. Mercury sorption by waste rubber[J]. Water Research, 1981,15(6):275-282.
    [139]Gangam H, Garym P, Micheld R. In situ stabilization of soil lead using phosphorus and manganese oxide[J]. Environ Sci Tech,2000,34(21):3614-3619.
    [140]王新,吴燕玉,梁仁禄.各种改良剂对重金属迁移、积累影响的研究[J].应用生态学报,1994,5:89-94.
    [141]Zhou L X, Wong J W C. Behavior of heavy metals in soil:Efect of dissolved organic matter. In M. Selim and W.L. Kingery (eds.) Geochemical and hydrological reactivity of heavy metals in soils[M]. USA:LEWIS PUB USHERS,2003:245-270.
    [142]杨秀红,胡振琪,张迎春.利用工业矿物治理重金属污染土壤的探讨[J].金属矿山,2003(3):52-55.
    [143]胡振琪,杨秀红,高爱林.粘士矿物对重金属镉的吸附研究[J].金属矿山,2004,6:53-55.
    [144]李支援.镉污染土壤的改良研究[J].工程设计与建设,2003,35(3):42-46.
    [145]李明德.海泡石对镉污染土壤改良效果的研究[J].土壤肥料,2005,(1):42-44.
    [146]O'Dell R, Silk W, Green P, et al. Compost amendment of Cu-Zn minespoil reduces toxic bioavailable heavy metal concentrations and promotes establishment and biomass production ofBromus carinatus(Hook andAm.)[J]. Environ Polut doi: 10.1016/j.envpol,2006,10,037:115-124.
    [147]McLaughlin M J, Singh B R. Cadmium in soils and plants[M]. Kluwer Academic Publishers, Dordreeht, The Netherlands,1999.
    [148]周利民,刘峙嵘,许文苑.麦麸对重金属离子的吸附性能研究[J].离子交换与吸附,2005,21(4):370-375.
    [149]石碧,狄莹.植物多酚[M].北京:科学出版社,2000.
    [150]邓文靖,周立祥.植物多酚物质原位钝化污染土壤重金属的研究——Ⅰ对土壤Cu吸持与溶出的影响[J].环境科学学报,2003,23(4):458-462.
    [151]周建伟.巯基泥炭吸附重金属离了机理研究[J].化学世界,2002,2:59-61.
    [152]Zhang S Z, Lu A X, Han F, et al. Preconeentration and determination of trace metals in seawater using a thiol cotton fiber minicolunm coupled with inductively coupled plasma mass spectrometry[J].Anal Sci,2005,21(6):651-654.
    [153]Laura S, Paola C, Pietro M. Evaluation of the interaction mechanisms between red muds and heavy metals[J]. Journal of Hazardous Materials,2006,136(2):324-329.
    [154]Lombi E, Zhao F J, Wieshammer G, et al. In situ fixation of metals in soils using bauxite residue:biological effects[J]. Environmental Polution,2002,118:445-452.
    [155]Waychunas G A, Kim C S, Banfield J F. Nanoparticulate iron oxide minerals in soils and sediments:unique properties and contaminant scavenging mechanisms [J]. Journal of Nanoparticle Research,2005,7:409-433.
    [156]Brown S L, Henry C L, Chancy R L, et al. Using municipal biosolids in combination with other residuals to restore metal-contaminated mining areas[J]. Plant and Soil, 2003,249:203-215.
    [157]Ruttens A, Mench M, Colpaert J V, et al. Phytostabilization of a metal contaminated sandy soil. I:Influence of compost and/or inorganic metal immobilizing soil amendments on phytotoxicity and plant availability of metals[J]. Environmental Pollution,2006,144:524-532.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700