用户名: 密码: 验证码:
絮凝和氧化—絮凝耦合去除废水中As(Ⅲ)的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
砷的应用范围广、毒性大,尤其是三价砷。随着地表水砷标准的进一步严格,砷污染问题更加突出。
     针对水中三价砷(As(Ⅲ))的去除,探讨了铁盐絮凝和铁盐/H_2O_2氧化-絮凝除As(Ⅲ)的效果及相关的机理。
     以5mg/L的As(Ⅲ)模拟废水为处理对象,对比了FeSO_4和Fe_2(SO_4)_3絮凝除As(Ⅲ)的效果,结果表明:絮凝除砷时,Fe(Ⅱ)比Fe(Ⅲ)有更高的去除率。红外光谱和Zeta电位分析表明Fe(Ⅱ)和Fe(Ⅲ)水解时产物的结构及表面电位值基本相同,而比表面积和粒度分布测试结果显示Fe(Ⅱ)的水解产物比Fe(Ⅲ)水解产物有更大的比表面积和更小的粒度,因此,能将更多的As(Ⅲ)吸附及共沉淀到表面。
     采用Fe(Ⅱ)/H_2O_2(Fenton)及Fe(Ⅲ)/H_2O_2(类Fenton)氧化-絮凝去除水中的As(Ⅲ),结果表明:Fenton氧化-絮凝对As(Ⅲ)的去除率可以达到96%以上,而类Fenton法的去除率仅有70%左右。两种氧化-絮凝除As(Ⅲ)过程的开路电位-时间曲线、以及所形成絮体的红外光谱分析表明:Fenton氧化-絮凝过程中As(Ⅲ)被更有效的氧化为五价砷(As(Ⅴ)),且氧化与絮凝之间形成耦合作用。
     用聚合硫酸铁(PFS)替代部分FeSO_4,考察了FeSO_4/PFS、絮凝pH值、氧化剂和絮凝剂投加量,以及不同As(Ⅲ)初始浓度等因素对As(Ⅲ)去除效果的影响。结果表明:按摩尔比FeSO_4/PFS=6/9,絮凝pH=7,氧化剂和絮凝剂的投加量分别为20mg/L和15mg/L(以[Fe]_T计)时,对废水中浓度为0.5~10mg/L砷的去除率均为90%以上,FeSO_4/PFS/H_2O_2氧化-絮凝耦合工艺对水质变化有较强的抗冲击能力,可增强氧化-絮凝工艺絮体的沉降性能,并且对硫酸厂和有色金属冶炼厂的含砷废水的总砷去除率均可达97%以上,对工业含砷废水的去除具有一定使用参考价值。
The arsenic is applied abroad, and is a toxic trace element, especially arsenite. With the arsenic standard of ground water been further stricted, the problem of arsenic contamination is more prominent.
     The removal efficiency and mechanisms of As(Ⅲ) were investigated, which was removed by iron flocculation and H_2O_2 oxidation coupled with iron flocculation process.
     For the synthetic wastewater that simply contained 5mg/L As(Ⅲ), the removal efficiency of arsenic by FeSO_4 flocculation was higher than Fe_2(SO_4)_3 flocculation. The results of infrared absorption and zeta potential showed that the hydrolysis products forms and surface electric potential of Fe(Ⅱ) and Fe(Ⅲ) hydrolyzing were same, while the results of surface area and particle size distribution showed that the hydrolysis products of Fe(Ⅱ) had bigger surface area and smaller particle size than the hydrolysis products of Fe(Ⅲ), therefore, Fe(Ⅱ) flocculation could adsorb more As(Ⅲ).
     Fe(Ⅱ)/H_2O_2(Fenton) and Fe(Ⅲ)/H_2O_2(Fenton-like) oxidation coupled with flocculation were used in removing arsenic, and the removal efficiency of arsenic by Fenton oxidation coupled with flocculation reached more than 96%, while Fenton-like oxidation coupled with flocculation was only about 70%. The results of open circuit potential - time curve and infrared absorption indicated that As(Ⅲ) was oxidized to As(Ⅴ) more effectively by Fenton oxidation coupled with flocculation, and there was a coupled process between oxidation and flocculation.
     The part FeSO_4 was replaced by poly ferric sulfate(PFS), and then the influences of FeSO_4/PFS, pH value of flocculation, dosage of oxidant and flocculant, and the different initial concentration of As(Ⅲ) were investigated. The results showed that the mole rate of FeSO_4/PFS was 6/9, and pH value of flocculation was 7, and the dosage of oxidant and flocculant were 20 and 15mg/L, respectively, then the removal efficiency of As(Ⅲ) with 0.5~10mg/L was more than 90%. The FeSO_4/PFS/H_2O_2 oxidation coupled with flocculation process had a stronger capability to suit large concentration change of arsenic, and enhanced the sedimentation performance of flocs. The process could also reach excellent removal effect for arsenic in sulfuric acid plant and non-ferrous smelting plan wastewater, and the removal efficiency was more than 97%, which has a reference value to treat arsenic in the industrial wastewater.
引文
[1]宋天佑,程鹏,王杏乔.无机化学[M].北京:高等教育出版社,2009.
    [2]联合国环境规划署,国际劳工组织,世界卫生组织合编.砷的环境卫生标准[M].姚佩佩,牛胜,译.北京:人民卫生出版社,1985.
    [3]王华东,郝春曦,王建.环境中的砷——行为、影响、控制[M].北京:中国环境科学出版社,1992.
    [4]姚娟娟,高乃云,夏圣骥,等.饮用水除砷技术研究新进展[J].工业用水与废水,2007,38(4):1~5.
    [5]丁爱中,杨双喜,张宏达.地下水砷污染分析[J].吉林大学学报(地球科学版),2007,37(2):319~325.
    [6]季珊珊.氢氧化铁和双金属氧化物的合成及其对溶液中砷的吸附[D].杭州:浙江大学,2006.
    [7] GB 5749—2006,生活饮用水卫生标准[S].
    [8]郭华明,杨素珍,沈照理.富砷地下水研究进展[J].2007,22(11):1109~1117.
    [9]李晓波.混凝微滤工艺处理高砷水源水和低放废水的试验研究[D].天津:天津大学,2007.
    [10]庄金陵.砷对世界地下水源的污染[J].矿产与地质,2003,17(2):177~178.
    [11] Dawson J, Mehra V. Towards a more effective operational response-Arsenic contamination of groundwater in south and east Asian countries[R]. Volume I Policy Report, 2004, 44~48.
    [12] Zhu C S, Bai G L, Liu X L, et al. Screening high-fluoride and high-arsenic drinking waters and surveying endemic fluorosis and arsenism in Shanxi province in western China[J]. Water Research, 2006,40(16):30.
    [13] Xu P, Huang S B, Wang Z J, et al. Daily intakes of copper, zinc and arsenic in drinking water by population of Shanghai, China[J]. Science of the Total Environment, 2006, 362(1~3):50~55.
    [14] Simone D R, Xie Q L, Karsten L. Arsenic concentration and speciation in five freshwater fish species from Back Bay near Yellowknife, NT, CANADA[J]. Environ Monit Assess, 2008,147:199~210.
    [15]汤镇远.含重金属及砷废水处理研究[D].兰州:兰州大学,2010.
    [16]聂静.有色金属冶炼生产中含砷废水及废渣的治理研究[D].武汉:武汉理工大学,2006.
    [17]赵素莲,王玲芬,梁京辉.饮用水中砷的危害及除砷措施[J].现代预防医学,2002,29(5):651~652.
    [18]刘秉志,郑晓玉.砷与人体健康[J].内蒙古民族大学学报(自然科学版),2007,22(4):436~438.
    [19]张海燕.高铁酸钾强化氯化铁混凝去除水中三价砷[D].长沙:湖南大学,2008.
    [20]康家琦,金银龙.砷对健康危害的研究进展[J].卫生研究,2004,33(3):372~376.
    [21]庄明龙,柴立元,闽小波,等.含砷废水处理研究进展[J].工业水处理,2004,24(7):13~17.
    [22]马琳,涂书新.含砷废水修复技术的研究现状和展望[J].工业水处理,2009,29(7):1~6.
    [23]李晓波.饮用水除砷技术研究进展[J].环境工程学报,2009,3(5):777~781.
    [24]彭根怀,吴上达.电石渣-铁屑法去除硫酸废水中的氟和砷[J].化工环保,1995,15(5):281.
    [25]苑宝玲,李坤林,邢核,等.饮用水砷污染治理研究进展[J].环境保护科学,2006,32(1):17~19.
    [26]李晓波,吴水波,顾平.铁盐和铝盐混凝微滤工艺除As(V)的比较研究[J].环境科学,2007,28(10):2198~2202.
    [27]郭翠梨,张凤仙,杨新宇.石灰—聚合硫酸铁法处理含砷废水的试验研究[J].工业水处理,2000,20(9):27~29.
    [28]肖明尧,张欣,李义连,等.聚合硫酸铁去除水中砷的实验研究[J].安全与环境工程,2007,14(4):49~53.
    [29]刘桂秋,张鹤飞,赵振华.采用石灰-铁盐混凝沉淀法去除废水中的As(Ⅲ)[J].化工环保,2008,28(3):226~229.
    [30]巫瑞中.石灰-铁盐法处理含重金属及砷工业废水[J].江西理工大学学报,2006,27(3):58~61.
    [31]李亚林,黄羽,杜冬云.利用硫化亚铁从污酸废水中回收砷[J].化工学报,2008,59(5):1294~1298.
    [32]霍金仙,郭永,王志.含砷(Ⅲ)水处理技术的回顾及展望[J].环境科学与技术,2009,32(11):102~107.
    [33]李明玉,马培培,曹刚,等.强化混凝去除微污染饮用原水中的As(III)[J].中国环境科学,2010,30(3):345~348.
    [34]黄鑫,高乃云,刘成,等.饮用水除砷工艺研究进展[J].净水技术,2007,26(7):37~41.
    [35]陈敬军,蒋柏泉,王伟.除砷技术现状与进展[J].江西化工,2004,(2):1~4.
    [36]聂静.硫酸生产中含砷废水处理方法[J].水处理技术,2005,31(12):5~7.
    [37]陈方明.金属矿物材料在废水处理中的应用[J].矿产与地质,2004,18(101):55~58.
    [38]刘淑泉,刘传惠,许孙曲.重金属废水净化与有价金属回收试验[J].环境科学,1988,9(2):37~41.
    [39]冯彬,张利民.电镀重金属废水治理技术研究现状及展望[J].江苏环境科技,2004,(3):17.
    [40] Altundogan H S, Altundogan S, Tumen F, et al. Arsenic adsorption from aqueous solutions by activated red mud[J]. Waste Management, 2002,22(3):357~363.
    [41] Halter W E, Pfeifer H R. Arsenic(V) adsorption ontoα-Al2O3 between 25 and 70℃[J]. Applied Geochemistry, 2001,16(7~8):793~802.
    [42] Raichur A M, Panvekar V. Removal of As(V) by adsorption onto mixed rare earth oxides[J]. Separation Science and Technology, 2002,37(5):1095~1108.
    [43] Zhang Y, Yang M, Huang X. Arsenic(V) removal with a Ce(IV)-doped iron oxide adsorbent[J]. Chemosphere, 2003,51(9):945~952.
    [44] Ayoob S, Gupta A K, Bhakat P B. Performance evaluation of modified calcined bauxite in the sorptive removal of arsenic(III) from aqueous environment[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2007,293(1~3):247~254.
    [45]梁慧锋,马子川,刘占牛.新生态二氧化锰的性质及pH值影响除砷效果的研究[J].无机化学学报,2006,22(4):743~747.
    [46]梁美娜,朱义年,牛凤奇.二氧化锰对水中As(V)的吸附作用研究[J].环保科技,2008,14(2):27~31.
    [47] Bang S, Johnson M D, Korfiatis G P, et al. Chemical reactions between arsenic and zero-valent iron in water[J]. Water Research, 2005,39(5):763~770.
    [48] Leupin O X, Hug S J. Oxidation and removal of arsenic(Ⅲ) from aerated groundwater by filtration through sand and zero-valentiron[J]. Water Research, 2005,39(9):1729~1740.
    [49]陈春宁,石林,刘金香,等.水中竞争性阴离子对Fe0除砷效率的影响研究[J].南华大学学报(自然科学版),2006,20(4):51~54.
    [50] Vaughan R L, Reed B E, Smith E H. Modeling As(V) removal in iron oxide impregnated activated carbon columns[J]. Journal of Environmental Engineering, 2007,133(1):121~ 124.
    [51] Chang Y Y, Kim K S, Jung J H, et al. Application of iron-coated sand and manganese - coated on the treatment of both As(Ⅲ) and As(V)[J]. Water Science and Technology, 2007,55(1~2):69~75.
    [52]赵安珍,徐仁扣.包铁黄砂去除水中砷的研究[J].环境科学与管理,2006,31(1):116~117.
    [53] Daus B, Wennrich R, Weiss H. Sorption materials for arsenic removal from water:A comparative study[J]. Water Research, 2004,38(12):2948~2954.
    [54] Liu R X, Guo J L, Tang H X. Adsorption of fluoride, phosphate, and arsenate ions on a new type of ion exchange fiber[J]. Journal of Colloid and Interface Science, 2002, 248(2): 268~274.
    [55] Korngold E, Belayev N, Aronov L. Removal of arsenic from drinking water by anion exchangers[J]. Desalination, 2001,141(1):81~84.
    [56] Anirudhan T S, Unnithan M R. Arsenic(V) removal from aqueous solutions using ananion exchanger derived from coconut coir pith and its recovery[J]. Chemosphere, 2007, 66(1): 60~66.
    [57] Gomes A G, Daida P, Kesmez M, et a1. Arsenic removal by electrocoagulation using combined Al-Fe electrode system and characterization of products[J]. Journal of Hazardous Materials, 2007, 139(2):220~231.
    [58] Hansen H K, Nunez P, Raboy D, et al. Electrocoagulation in wastewater containing arsenic: Comparing different process designs[J]. Electrochimica Acta, 2007,52(10):3464 ~3470.
    [59] Parga J R, Cocke D L, Valenzuela J L, et al. Arsenic removal via electrocoagulation from heavy metal contaminated groundwater in La Comarca Lagunera Mexico[J]. Journal of Hazardous Materials, 2005,124(1~3):247~254.
    [60]王薇.生物氧化与吸附相结合处理高浓度含砷废水[D].南京:南京工业大学,2006.
    [61] Deng S, Ting Y P. Removal of As(V) and As(Ⅲ) from water with a PEI-modified fungal biomass[J]. Water Science and Technology, 2007,55(1~2):177~185.
    [62] Pokhrel D, Viraraghavan T. Arsenic removal from an aqueous solution by a modified fungal biomass[J]. Water Research, 2006,40(3):549~552.
    [63] Murugesan G S, Sathishkumar M, Swaminathan K. Arsenic removal from groundwater by pretreated waste tea fungal biomass[J]. Bioresour Technology, 2006, 97(3): 483~487.
    [64] Katsoyiannis I A, Zouboulis A I. Application of biological processes for the removal of arsenic from groundwaters[J]. Water Research, 2004,38(1):17~26.
    [65] Takeuchi M, Kawahata H, Gupta L P, et al. Arsenic resistance and removal by marine and non-marine bacteria[J]. Journal of Biotechnology, 2007,127(3):434~442.
    [66]郑风英,李顺兴,韩爱琴,等.超富集植物蜈蚣草对水中As(Ⅲ)吸附的研究[J].分析科学学报,2006,22(4):401~405.
    [67] Elless M P, Poynton C Y, Willms C A, el al. Pilot-scale demonstra of phytofiltration for treatment of arsenic in New Mexico drinking water[J]. Water Research, 2005,39(16): 3863~3872.
    [68] Kamala C T, Chu K H, Chary N S, et al. Removal of arsenic(Ⅲ) aqueous solutions using fresh and immobilized plant biomass[J]. Water Research, 2005,9(13):2815~2826.
    [69]丁爱中,陈海英,程莉蓉,等.地下水除砷技术的研究进展[J].安徽农业科学,2008,36(27):11979~11982.
    [70]郑文飞.发展中国家饮用水除砷技术探讨[J].化学工程与装备,2009,(10):182~185
    [71]金广哲,梁成华,杜立宇,等.pH和磷酸根对砷( V)在棕壤上吸附解吸的影响[J].河南农业科学,2009,(6):71~76.
    [72] Jain A, Loeppert R H. Effect of competing anions on the adsorption of arsenate and arsenite by ferrihydrite[J]. Soil Science Society of America Journal, 2000, 64(5):1422~ 1429.
    [73]翁诗甫.傅里叶变换红外光谱仪[M].北京:化学工业出版社,2005:239~287.
    [74]梁美娜,刘芳,刘海玲,等.氢氧化铁胶体对砷吸附行为的初步研究[J].工业用水与废水,2005,36(6):35~38.
    [75]汪海东.金属配合物和硼酸盐的合成、表征、热分解机理及非等温反应动力学研究[D].成都:四川大学,2002.
    [76]梁碧燕,李书渊,孙素琴.昆明山海棠与南蛇藤红外宏观指纹图谱研究[J].光谱学与光谱分析,2009,29(2):313~317.
    [77]汤鸿霄.无机高分子絮凝理论与絮凝剂[M].中国工业建筑出版社,2006.
    [78]郭慧.氢氧化铁和羟基氧化铁的催化相转化机理研究[D].石家庄:河北师范大学,2004.
    [79] Bossmann S H, Oliveros E, G?b S, et al. New evidence against hydroxyl radicals as reactive intermediates in the thermal and photochemically enhanced Fenton Reaction[J]. J Phys Chem A, 1998, 102(28):5542~5550.
    [80] Kang C, Sobkowiak A, Sawyer D T. Iron(Ⅱ)-induced generation of hydrogen peroxide from dioxygen: induction of Fenton chemistry and ketonization of hydrocar bons[J]. Inorg Chem, 1994, 33(1):79~82.
    [81] Gallard H, Laat J D. Kinetic modelling of Fe(Ⅲ)/H2O2 oxidation reactions indilute aqueous solution using atrazine asamodel organic compound[J]. Water Research, 2000, 34(12):3007~3017.
    [82]陈胜兵,何少华,娄金生,等.Fenton试剂的氧化作用机理及其应用[J].环境科学与技术,2004,27(3):105~107.
    [83]熊慧欣,周立祥.不同晶型羟基氧化铁(FeOOH)的形成及其去除Cr(Ⅵ)上的作用[J].岩石矿物学杂志,2008,27(6):559~566.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700