用户名: 密码: 验证码:
赤泥质多孔陶瓷滤料表面改性及其在水处理中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
赤泥是我国有色金属行业产量最大的工业有害固体废物,每年产生1000万t以上。赤泥流失和碱渗漏对农田、河流、地下水等造成了严重污染。目前世界上还没有找到大规模利用赤泥的有效途径,赤泥问题已成为制约我国铝工业快速发展的瓶颈。当前油田采出水主要用于回注以提高油层压力,从而为驱油提供动力,而油田采出水中的油分、铁、悬浮物、微生物等污染物质将腐蚀输油管道、堵塞输油管道和地层孔隙,使得开采成本增加,而现有油田采出水处理工艺很难达到SY/T5329-94(《碎屑岩油藏注水水质推荐指标及分析方法》中A1类标准。纺织印染、造纸、塑料及皮革等工业每年都产生大量的染料废水,由于许多染料为含偶氮键、多聚芳香环的复杂有机物,可致畸、致癌、致突变,因此,这类废水中染料的去除非常重要。许多染料抗氧化、难降解,采用吸附剂去除废水中的染料具有较大优势。活性炭是一种有效的吸附剂,但价格昂贵,限制了它的广泛应用,因此制备低成本吸附剂显得尤为必要。然而,以赤泥来处理这两类废水的研究工作尚少,特别是采用便于反洗再生的赤泥质多孔陶瓷滤料来处理的研究更少,关于赤泥质多孔陶瓷滤料处理油田采出水、印染废水的工艺和理论等方面的研究都有待完善。
     本文基于将赤泥的安全处置与油田采出水、印染废水的处理结合起来,实现以废治废的目标。首先根据过滤工艺对滤料级配的要求,展开对赤泥质多孔陶瓷滤料的体积密度、气孔率及气孔率与滤料压碎强度平衡的调控研究;首次提出用含氢硅油、无苯生态漆和硝酸铁对赤泥质多孔陶瓷滤料进行表面改性,以分别提高滤料的亲油、疏油和吸附性能,并用FTIR、SEM、XRD等测试手段对相关性能进行了表征;在此基础上提出了用混凝-聚结过滤耦合工艺处理油田采出水和吸附工艺处理亚甲基蓝印染废水,并对影响处理效果的因素、工艺操作参数的优化、污染物去除机理、改性滤料再生展开了一系列研究。主要的研究成果如下:
     (1)以添加成孔剂工艺展开了成孔剂种类、加入量、骨料粒径、成孔剂粒径、烧成温度对赤泥质多孔陶瓷滤料的显气孔率、体积密度、压碎强度影响的研究,确定了煤粉为最佳成孔剂,煤粉加入量与赤泥质多孔陶瓷滤料的显气孔率、体积密度成线性关系,因此通过控制煤粉加入量便可实现对多孔陶瓷滤料显气孔率及体积密度的调控。陶瓷滤料显气孔率与压碎强度符合二次曲线关系。因此结合煤粉加入量和陶瓷滤料显气孔率的拟合直线方程便可通过调节煤粉加入量来平衡滤料的显气孔率与抗压强度之间的矛盾,从而获得使显气孔率高且压碎强度也大的多孔陶瓷滤料。
     (2)首次对赤泥质多孔陶瓷滤料进行亲油、疏油、涂铁改性。实验结果显示,对赤泥质多孔陶瓷滤料亲油、疏油改性后,其片状测试基体对水的接触角分别为138°、6°,而没有改性的为25°,因而改性滤料的亲油和疏油性得到提高。从而亲油滤料、疏油滤料对油田采出水中油分的湿润聚结和碰撞聚结的能力增强,使得改性滤料的除油率提高。赤泥质多孔陶瓷滤料经涂铁改性后,滤料表面含铁量最高达12.9016mg/g滤料,比表面积为4.987m~2/g,比改性前增加了3.28倍,总孔隙体积由0.005049cm~3/g增至0.01417 cm~3/g,因而改性滤料的吸附性能得到提高。
     (3)探讨并确定了新型一体化高效除油装置设计的方案,提出了处理油田采出水的混凝-聚结过滤耦合工艺,利用TS6六联烧杯搅拌机优化了混凝操作参数,通过小试、中试、生产性现场实验优化了新型一体化高效除油装置的设计及操作参数,从而使处理效果明显优于江汉油田采油22队的核桃壳过滤器,出水水质达到A1标准(含油量<5mg/L、悬浮物<1.0mg/L、总铁含量<0.50mg/L),并确定了滤料反洗的操作参数。除油机理主要包括混凝破乳悬浮沉降、亲油滤料表面湿润吸附去除(当亲油滤料表面的油滴长大到一定程度时,它在水力冲击下会从滤料表面脱落而被滤料拦截,而滤料表面得到一定程度更新又会湿润吸附小油滴)、疏油滤料的碰撞聚结去除(小油滴通过碰撞聚结成大油滴上浮或被滤料拦载)和悬浮物协同去除(粘附在SS上的油滴也随SS被滤料拦截去除);悬浮物(SS)去除的机理主要分为阻力截留、重力沉降、接触絮凝三个方面;铁去除的机理主要为沉降、过滤拦截、吸附。
     (4)通过静态试验和动态试验考察了涂铁改性滤料吸附去除模拟亚甲基蓝溶液的效果及各种因素对吸附效果的影响。在静态试验中,当pH=11时,涂铁滤料表面带负电荷而有利于带正电荷的MB离子的静电吸附,随着吸附时间增加、MB初始浓度增大,MB去除率增加;等温吸附试验表明,升高温度有利于MB去除,吸附等温线呈“S”型,符合Freundlich等温方程(R~2>0.89);热力学研究表明涂铁滤料吸附MB是自发的吸热反应,吸附活化能为16.1445kJ/mol,大于8kJ/mol,说明涂铁滤料吸附MB以化学吸附为主;吸附动力学研究表明可用准二级动力学方程和颗粒内扩散方程来描述吸附动力学,吸附速率限制步骤为膜扩散。在动态试验中,利用BDST模型计算和预测了吸附柱的穿透时间,预测值与实验值基本吻合;利用Thomas模型计算得到的平衡吸附量小于在静态下的平衡吸附量,这是由于在动态试验下的平衡时间短于静态试验下的平衡时间;应用pH=3的稀硝酸溶液可对吸附后涂铁滤料实现解吸,但不能全部解吸,静态试验下的解吸效果优于动态试验下的解吸。涂铁滤料吸附去除MB的机理包括物理吸附和化学吸附,以化学吸附为主;物理吸附主要包括静电吸附和范德华力吸附,化学吸附主要包括滤料表面配位络合反应和氢键的形成。
Red mud is the largest number of industrial hazardous waste in nonferrous metals industry of China and its output is more than 10 million ton every year.Red mud loss and lye leakage have brought severe pollution to farmland,river and groundwater.At present,effective ways of extensive utilization to red mud are not found and comprehensive utilization of red mud has become the bottleneck limiting the fast development of aluminum industry in China.Most oilfields adopt water reinjection process from oil field produced water to drive oil from strata in China. Pollutants in oil field produced water,such as oil,iron,suspend substance, microorganism,and so on,will lead to formation plugging,pipeline jam and corrosion and production cost rising.Effluent quality treated by available process can not meet with the Al quality standards of recommended indexes in SY/T5329-94 about the injection water quality for clastic rock oil fields in China.A huge quantity of dye wastewater is discharged by textile,paper,plastic and leather industries every year.As many dyes are complex organic contained azo and poly aromatic ring,which may cause people abnormal,cancerous and mutagenic,the removal of dyes from these wastewaters is a very important subject.Lots of dyes are resistant to oxidation and degradation,so adopting adsorbent to remove the dyes may be superior to other methods.The activated carbon is a very effective adsorbent, but its high price limits its extensive use.So,it is vital that lost-cost adsorbent should be prepared.However,researches on treatment of oil field produced water and dyes wasterwater by red mud are fewer and the studies on process and theory on treatment of oil field produced water and dyes wastewater by porous ceramics filter media based red mud are still expected to be carried out further.
     In this paper,safe disposal of red mud will be combined with treatment of oil field produced water and dyes waster water in order to implement the target based on waste control by waste.According to filter material gradation demand in the filtration process,regulation study on volume density,apparent porosity and the balance of apparent porosity with crushing strength is going to be evolved. Superficial modification to porous ceramics filter materials based on red mud was first put forward with hydrogen-containing silicone oil,benzeneless ecological paint and ferric nitrate and related properties were characterized by test measures such as FTIR,SEM and XRD.Based on these,coagulation-coalescence filtration coupling process for oil field produced water and adsorption process for methylene blue were brought forward.At the same time,a series of researches on influencing factors about treatment effect,optimization of process operation parameters,pollutant removal mechanism and regeneration of modified filter material were made.The main achievements are as follows:
     (1)Effect of pore-forming agent kinds,pore-forming agent addition,graded aggregate,graded pore-forming agent,firing temperature on apparent porosity, volume density and crush strength of filter material was studied.Coal was chosen as optimal pore-forming agent and the relation between coal addition with apparent porosity and volume density of filter material was linear.So,regulation to apparent porosity and volume density of filter media could be come true by coal addition.The relation between apparent porosity and crush strength of filter material accorded with quadratic curve.Thus,contradiction between apparent porosity and crush strength of filter material was conciliated by control to coal addition combining imitative straight line equation about coal addition and apparent porosity,which could make apparent porosity and crush strength a higher value.
     (2)Superficial modification to porous ceramics filter materials based on red mud was first put forward with hydrogen-containing silicone oil,benzeneless ecological paint and ferric nitrate.After oleophylic and oleophobic modification, contact angles for water of patch test matrixes were from 25°to 138°and 6°, suggesting that oleophylic and oleophobic performance of filter material increased, which lead to the capacity increase of wet and collision coalescence of filter material. At last,oil removal rate in the oil field produced water rose by use of modified filter material.After modification with iron oxide compound,special surface area and iron overlay quantity of filter material were 4.987m~2/g,12.9016mg/g,respectively and its total pore volume increased from 0.005049cm~3/g to 0.01417cm~3/g.So,the adsorption capability of filter material was improved.
     (3)The design was discussed on newly integrated and high efficiency oil removal equipment and coagulation-coalescence filtration coupling processes for oil field produced water were brought forward.Coagulation process parameters were optimized by parallel 6 beakers mixer.Design and operation parameters of newly integrated equipment were also optimized by small experiment,pilot test and productive field experiment.The results were that treatment efficiency was better integrated equipment than walnut shell filter of oil production team 22 of Jianhan Oilfield in China and effluent quality met with the Al quality standards(Oil content, SS,total iron content were less than 5mg/L,1mg/L,and 0.5mg/L,respectively). Mechanisms of oil removal included coagulation(which lead to demulsification of emulsified oil,and demulsifying oil was suspension or settlement),wetting adsorption coalescence of oleophylic filter material(when coalescing oil on filtration media arrived at some size and thickness,it would fall off from filtration media surface at water flow impact,at the same time,desquamated oil was intercepted between filtration media),collision coalescence of oleophobic filter material(Small size oil drop assembled to big size oil drop,which lead to oil floating upward or intercepted between filtration media)and synergistic effect of SS(Oil drop adhering to SS were intercepted between filtration media).SS removal mechanisms consisted of resistance interception,gravity sedimentation and contact flocculation.Major removal mechanisms of iron included settlement,interception based on filtration and adsorption.
     (4)Effect of factors on adsorption removal of MB from aqueous solution using iron-oxide coated porous ceramics filter media(IOCPCFM)was investigated in batch mode and column mode.In batch mode,at pH=11,negative charge in IOCPCFM surface was favor of adsorption of MB which was positive ion;MB removal rate increased when adsorption time or initial concentration of MB increasing;isothermal adsorption experiment disclosed that temperature rise made for MB removal and adsorption isotherm presented S type fitted with Freundlich equation(R~2>0.89);Thermodynamic research suggested that the adsorption of MB onto IOCPCFM was spontaneous,endothermic and chemical reaction which was further proved by the adsorption activation energy value;the pseudo-second-order rate model and the intraparticle diffusion model well described adsorption kinetics of MB onto IOCPCFM and adsorption rate limiting step was film diffusion.In column mode,breakthrough time of adsorption column was calculated and forecasted by BDST mode,and a good agreement was found between model predictions and experimental data;because equilibrium time of column mode was shorter, equilibrium adsorption capacity from Thomas was lower than that of batch mode; some desorption of IOCPCFM after adsorption was achieved by dilute nitric acid(pH=3)and desorption effect was better in batch mode;adsorption removal mechanisms of MB included physics adsorption and chemical adsorption and chemical adsorption was major,while physics adsorption consisted of static adsorption and van der waals force adsorption,at the same time,chemical adsorption was composed of surface coordination-complex reaction and hydrogen bond formation.
引文
[1]侯晨霞.一种碱石灰烧结法赤泥的X射线衍射特征探讨.轻金属,2001,12(6):30-33
    [2]曲永新,关文章,张永双.炼铝工业固体废料(赤泥)的物质组成与工程特性及其防治利用研究.工程地质学报,2000,8(3):276-275
    [3]景英仁,景英勤,杨奇.赤泥的基本性质及其工程特性.山西建筑,2001,27(3):20-23
    [4]梁华.赤泥利用的近期研究动态.世界有色金属,1999,18(3):32-34
    [5]Claudia Brunori,Carlo Cremisini,Paolo Massanisso,et al.Reuse of a treated red mud bauxite waste:Studies on environmental compatibility.Journal of Hazardous Materials B,2005,117(1):55-63
    [6]Yongshuang Zhang,Yongxin Qu,Shuren Wu.Engineering geological properties and comprehensive utilization of the solid waste(red mud)in aluminum industry.Environmental Geology,2001,41(3-4):249-256
    [7]曹瑛,李卫东,刘艳改.工业废渣赤泥的特性及回收利用现状.硅酸盐通报,2007,26(1):143-145
    [8]戚焕岭.氧化铝赤泥处置方式浅谈.有色冶金设计与研究,2007,28(2):121-125
    [9]韩毅,王京刚,唐明述.用改性赤泥吸附废水中的六价铬.化工环保,2005,25(2):132-136
    [10]王林江,文小年,谢襄漓.赤泥处理含镉废水的影响因素.桂林工学院学报,2006,26(4):543-546
    [11]姜浩,廖立兵,郑红,等.赤泥吸附垃圾渗滤液中COD和氨氮的实验研究.安全与环境工程,2007,14(3):69-73
    [12]Hulya Genc-Fuhrman,Henrik Bregnhoj,David McConchie.Arsenate removal from water using sand-red mud columns.Water Research,2005,39(13):2944-2954
    [13]U.Dams.Chromate removal from water using red mud and cross flow microfiltration.Desalination,2005,181(1):135-143
    [14]Orescanin,V,Nad,K,Mikelic,L,et al.Utilization of bauxite slag for the purification of industrial wastewaters.Process Safety and environmental protection,2006,84(B4):265-269
    [15]吴建锋,丁培,徐晓虹,等.富赤泥陶瓷清水砖的研制.武汉理工大学学报,2007,29(7):22-25
    [16]吴建锋,王东斌,徐晓虹,等.利用工业废渣制备艺术型清水砖的研究.武汉理工大学学报,2005,27(5):46-49
    [17]杨家宽,侯健,姚昌仁,等.烧结法赤泥道路材料工程应用实例及经济性分析.轻金属,2007,(2):18-21
    [18]刘春,尹国勋.烧结法赤泥生产混凝土的研究探讨.中国资源综合利用,2007,125(3):17-19
    [19]卜天梅,李文化,杨金妮,等.利用烧结法赤泥生产水泥的研究.水泥技术,2005,(2):67-68
    [20]梁忠友.赤泥微晶玻璃的研究.玻璃与搪瓷,1997,25(6):50-52
    [21]Vincenzo M.Sglavo,Stefano aurina,Alexia Conci,et al.Bauxite 'red mud' in the ceramic industry.Part 2:Production of clay-based ceramics.Journal of the European Ceramics Society,2000,20(3):245-252
    [22]Kalkan,Ekrem.Utilization of red mud as a stabilization material for the preparation of clay liners.Engineering Geology,2006,87(3-4):220-229
    [23]韩毅.赤泥吸附材料的制备及应用研究:[硕士学位论文].北京:北京化工大学,2004
    [24]J.Alvarez,R.Rosal,H.Sastre,et al.Characterization and deactivation studies of an activated sulfided red mud as hydrogenation catalyst.Applied Catalysis A:General,1998,167(2):215-223
    [25]J.Alvarez,S.Ordonez,R.Rosal,et al.A new method for enhancing the performance of red mud as a hydrogenation catalyst Applied Catalysis A:General,1999,180(1-2):399-409
    [26]Salvador Ordonez,Herminio Sastre,Fernando Vdiez.Characterization and deactivation studies of sulfided red mud used as catalyst for the hydrodechlorination of tetrachloroethylene.Applied Catalysis B:Environmental,2001,29(4):263-273
    [27]S.Ordonez,H.Sastre,F.Vdiez.Catalytic hydrodechlorination of tetrachloroethylene over red mud.Journal of Hazardous Materials,2001,81(1-2),103-114
    [28]曹瑛,李卫东,刘艳改.工业废渣赤泥的特性及回收利用现状.硅酸盐通报,2007,26(1):143-145
    [29]Enes Sayan,Mahmut Bayramoglu.Statistical modeling and optimization of ultrasound-assisted sulfuric acid leaching of TiO_2 from red mud.Hydrometallurgy,2004,71(3-4):397-401
    [30]刘永康,梅贤功.高铁赤泥煤机直接还原的研究.烧结球团,1995,20(2):5-9
    [31]姜平国,王鸿振.从赤泥中回收铁工艺的研究进展.四川有色金属,2005,2:23-24
    [32]池汝安.钪的资源及提取.有色冶金设计与研究.1993,14(2):10-22
    [33]邵明望.从赤泥中提取稀土金属钪.资源节约和综合利用,1993,3:49-50
    [34]李国昌,王萍,张秀英,等.赤泥对聚氯乙烯软膜透光率的影响.非金属矿,2001,24(4),28-30.
    [35]王勇,陈光莲,周田君,等.赤泥聚氯乙烯材料耐热老化性能影响因素的探索.粉煤灰,2000,(4),12-13
    [36]江培清,段予忠.联合法赤泥在建筑用PVC管中的应用.粉煤灰,1998,(3):30-31
    [37]吴建锋.一种环保陶瓷滤料的制造方法.中国专利,200310111209.7,2004-09-25
    [38]徐晓虹,邸永江,吴建锋,等.利用工业废渣研制环保陶瓷滤料.武汉理工大学学报,2004,25(5),12-15
    [39]徐晓虹,邸永江,吴建锋,等.利用固体废弃物制备多孔陶瓷滤料的研究.陶瓷学报,2003,(04),197-200
    [40]邸永江.利用工业固体废弃物制备环保陶瓷的研究[硕士学位论文].武汉:武汉理工大学,2004
    [41]吴声彪,肖波,冯君,等.赤泥制备多孔陶粒及其除油性能的初步研究.矿产综合利用,2004,(3),46-48
    [42]王平升.山东铝厂赤泥制备水处理用多孔陶粒滤料.有色金属,2005,(2),142-144+149
    [43]王萍,李国昌,刘曙光.赤泥等工业固体废物制备陶粒的研究.中国矿业,74-77
    [44]Han SW,Kim DK,Hwang IG.Development of pellet-type adsorbents for removal of heavy metal ions from aqueous solutions using red mud.Journal of Industrial and Engineering Chemistry,2002,8(2):120-125
    [45]张后鹏,刘迪梅.水厂使用环保陶瓷滤料的可行性分析.长江工程职业技术学院学报,2005,12(4):52-54
    [46]池波.新型一体化装置处理油田采出水的试验研究[硕士学位论文].武汉:武汉理工大学,2006
    [47]Mehmet Cakmakce,Necati Kayaalp,Ismail Koyuncu.Desalination of produced water from oil production fields by membrane processes.Desalination,2008,222(1-3):176-186
    [48]赵立合,李柏林,陈忠喜,等.油田采出水的特性及其影响因素分析.辽宁化工,2007,36(10):714-717
    [49]樊萍,王学军,王晓玉,等.大庆油田采出水中矿化度的处理方法研究.环境科学与管理,2007,32(1):90-93
    [50]佟玉衡·实用废水处理技术.北京:化学工业出版社,1999.72-78
    [51]张希衡主编.水污染控制工程.北京:冶金工业出版社(修订版),1993.86-87
    [52]Al-Kandari All Hussain,Rochford David B.Enhancing produced water quality in Kuwait Oil Company.Proceedings of the 1997 SPE Annual Technical Conference and Exhibition.Pi,Oct 5-8 1997,San Antonio,TX,USA,471-480
    [53]贺杰,蒋明虎.水力旋流器.北京:石油工业出版社,1996.23-29
    [54]Jiang Minghu,Zhao Lixin,et al.Study of Separating Oil-water Fluid with High Oil-cut by Hydro-cyclone.OMAE 1997.Vol 1-B
    [55]Jiang Minghu,Zhao Lixin,et al.Pressure Drop Ratio-An Important Performance Parameter in Liquid-liquid Hydrocyclone Separation.ISOPE-98,1998 Vol I
    [56]夏福军,邓述波,张宝良.水力旋流器处理聚合物驱含油污水的研究..工业水处理,2002,22(2):14-16
    [57]王艺,陈雷.聚结除油反应机理及其动力学分析.环境污染治理技术与设备,2006,7(1):59-63
    [58]Jinquan Li,Yongan Gu.Coalescence of oil-in-water emulsion in fibrous and granular beds.Separation and purification Technology,2005,42(1):1-13
    [59]邓波,丁慧,耿伏龙.油田采出水的精细过滤技术.水处理技术,2006,32(1):73-75
    [60]张万忠,张竹青,李绵贵,等.阳离子聚丙烯酰胺处理油田含油污水的实验.工业水处理,2003,23(8):33-35
    [61]郦和生,陈新芳,刘伟,等.Fenton试剂处理含油废水的实验研究.北京化工大学学报(自然科学版),2007,34(3):238-240
    [62]E.Bessa,G.L.Sant Anna,M.Dezotti.Photocatalytic/H_2O_2 treatment of oil field produced waters.Applied Catalysis B:Environmental,2001,29(2):125-134
    [63]K.Chigusa,T.Hasegawa,N.Yamamoto.Treatment of wastewater from oil manufacturing plant by yeasts.Wat.Sci.Tech.1996,34(11):51-58
    [64]S.H.Lin,W.J.Lan.Waste oil/water emulsion treatment by membrane process.Journal of Hazardous Materials,1998,59(2-3):189-199
    [65]Toraj Mohammadi,Afshin Park,Methrdad Karbassian,et al.Effect of operating conditions on Microfiltration of an oil-water emulsion by a kaolin membrane.Desalination,2004,168(1-3):201-205
    [66]Delin SU,Jianlong WANG,Kalwen LIU,at al.Kinetic Performance of Oil-field Produced Water Treatment by Biological Aerated Filter.Chinese Journal of Chemical Engineering,2007,15(4):591-594
    [67]高斌,王晓蓉,章敏等.改性土壤对模拟含油废水中油的吸附.环境科学,2000,20(3)89-92
    [68]Carlo Solisio,Alessandra Lodi,Attilio Converti,et al.Removal of exhausted oils by adsorption on mixed Ca and Mg oxides.Water Research,2002,36(4):899-904
    [69]籍国东,孙铁晰,常士俊,等.人工潜流湿地处理稠油采出水的实验研究.环境科学学报,2001,21(5):619-621
    [70]Cynthia Murray-Guide,John E.Heatley,Tanju Karanfil,et al.Performance of a hybrid reverse osmosis-constructed wetland treatment system for brackish oil field produced water.Water Research,2003,37(3):705-713
    [71]简小捷.厌氧--PAC--SMBR组合工艺处理印染废水的实验研究:[硕士学位论文].镇江:江苏大学环境工程系,2007
    [72]光建新.微电解处理高浓度印染废水的试验研究:[硕士学位论文].镇江:江苏大学环境工程系,2D07
    [73]王菊生.染整工艺原理.北京:中国纺织出版社,1997.56-60
    [74]林俊雄.硅藻土基吸附剂的制备、表征及其染料吸附特性研究:[博士学位论文].杭州:浙江大学,2007
    [75]Vera Golob,Aleksandra Vinder,Marjana Simonic.Efficiency of the coagulation/flocculation method for the treatment of dyebath effluents.Dyes and Pigments,2005,67(2):93-97
    [76]Joonghwan Mo,Jeong-Eun Hwang,Jonggeon Jegal,et al.Pretreatment of a dyeing wastewater using chemical coagulants.Dyes and Pigments,2007,72(2):240-245
    [77]Xiang Zheng,Junxin Liu.Dyeing and printing wastewater treatment using a membrane bioreactor with a gravity drain.Desalination,2006,190(1-3):277-286
    [78]Ciardelli,Gianluca;Ranieri,Nicola.The treatment and Reuse of Wastewater in the Textile Industry by Means of Ozonation and Electroflocculation.Water Research,2001,35(2):567-572.
    [79]Chen Guohua,Lei Lecheng,Hu Xijun,et al.Kinetic study into the wet air oxidation of printing and dyeing wastewater.Separation and Purification Technology,2003,(31):71-76
    [80]陈芳艳,唐玉斌,佟惠娟,等.Fenton试剂氧化处理印染废水.抚顺石油学院学报,2002,22(3):30-34
    [81]Alaton,Idil Arslan,Balcioglu Isil Akmehmet,et al.Advanced oxidation of a reactive dye bath effluent:comparison of O_3,H_2O_2/UV-C and TiO_2/UV-A processes.Water Research,2002,36(5):1143-1154.
    [82]A.Akyol,M.Bayramoglu.Photocatalytic degradation of Remazol Red F3B using ZnO catalyst.Journal of Hazardous Materials,2005,124(1-3):241-246
    [83]D.Rajkumar,Jong Guk Kim.Oxidation of various reactive dyes with in situ electro-generated active chlorine for textile dyeing industry wastewater treatment.Journal of Hazardous Materials B1,2006,136(2):203-212
    [84]A.Alinsafi,F.Evenou,E.M.Abdulkarim et al.Treatment of textile industry wastewater by supported photocatalysis.Dyes and Pigments,2007,74(2):439-445
    [85]Pantelis A.Pekakis,Nikolaos P.Xekoukoulotakis,Dionissios Mantzavinos.Treatment of textile dyehouse wastewater by TiO_2 photocatalysis.Water Research,2006,40(6):1276-1286
    [86]Robinson T.,McMullan G.,Marchant R.,et al.Remediation of dyes in textile effluent:a critical review on current treatment technologies with a proposed alternative.Bioresource Technology,2001,77(3):247-255
    [87]Walker G M,et al.Adsorption of dyes from aqueous solution-the effect of adsorbent pore size distribution and dye aggregation.Chemical Engineering Journal,2001,83(3):201-206
    [88]Tamai H.Dye adsorption on mesoporous activated carbon fiber obtained from pitch containing yttrium complex.Carbon,1999,37(6):983-989
    [89]赵大传,战立伟,朱艳秋,等.膨润土的改性及处理印染废水的研究.净水技术,2006,25(4):47-50
    [90]杨宇翔,张亚匡,吴介达,等.硅藻土脱色机理及其在印染废水中应用的研究,工业水处理,1999,19(1):15-17
    [91]弓晓峰,曹群.海泡石处理纺织印染废水.环境与开发,2000,15(3):12-13
    [92]Baskaralingam P.,Pulikesi M.,Ramamurthi V.,et al.Adsorption of acid dye onto organobentonite.Journal of Hazardous Materials,2006,128(2-3):138-144
    [93]Alkan M.,Celikcapa S.,Demirbas O.et al.Removal of reactive blue 221 and acid blue 62anionic dyes from aqueous solutions by sepiolite.Dyes Pigments 2005,65(3):251-259
    [94]Wang C.C.,Juang L.C.,Hsu T.C.,et al.Adsorption of basic dyes onto montmorillonite.J.Colloid Int.Sci.2004,273(1):80-86
    [95]Gurses A.,Karaca S.,Dogar C.,et al.Determination of adsorptive properties of clay/water system:methylene blue sorption.J.Colloid Int.Sci.2004,269(2):310-314
    [96]AI-Ghouti M.A.,Khraisheh M.A.M.,Allen S.J.,et al.The removal of dyes from textile wastewater:a study of the physical characteristics and adsorption mechanisms of diatomaceous earth.J.Environ.Manage.2003,69(3):229-238
    [97]刘春萍,刘军深,孙琳,等.胺修饰酚醛树脂对酸性橙Ⅱ的吸附性能研究.离子交换与吸附,2006,22(2):161-167
    [98]李志平,欧阳玉祝,麻成金,等.大孔树脂吸附法处理印染废水的研究,广西民族学院学报(自然科学版),2005,11(2):94-97
    [99]Ramakrishna,Konduru R.,Viraraghavan,T.Dye Removal Using Low Cost Adsorbents[J].Water Science and Technology,1997,36(2-3):189-196
    [100]Renmin Gong,Youbin Jin,Jin Sun,et al.Preparation and utilization of rice straw bearing carboxyl groups for removal of basic dyes from aqueous solution.Dyes and Pigments,2008,76(2):519-524
    [101]V.K.Garg,Moirangthem Amita,Rakesh Kumar,et al.Basic dye(methylene blue)removal from simulaled wastewater by adsorption using Indian Rosewood sawdust:a timber industry waste.Dyes and Pigments,2004,63(3):243-250
    [102]V.Vadivelan,K.Vasanth Kumar.Equilibrium,kinetics,mechanism,and process design for the sorption of methylene blue onto rice husk.Journal of Colloid and Interface Science,2005,286(1):90-100
    [103]Runping Han,Yuanfeng Wang,Weihong Yu,et al.Biosorption of methylene blue from aqueous solution by rice husk in a fixed-bed column.Journal of Hazardous Materials,2007,141(3):713-718
    [104]Runping Han,Yuanfeng Wang,Weihong Yu,et al.Removal of methylene blue from aqueous solution by chaff in batch mode.Journal of Hazardous Materials B,2006,137(1):550-557
    [105]Runping Han,Yi Wang,Weihua Zou,et al.Comparison of linear and nonlinear analysis in estimating the Thomas model parameters for methylene blue adsorption onto natural zeolite in a fixed-bed column.Journal of Hazardous Materials,2007,145(1-2):331-335
    [106]李方文,吴建锋,徐晓虹,等.应用多孔陶瓷滤料治理环境污染.中国安全科学学报,2006,16(07):112-116
    [107]罗固源.水污染物化控制原理与技术.北京:化学工业出版社,2003.155-156
    [108]谢洪勇.粉体力学与工程.北京:化学工业出版社,2003.102-105
    [109]吴建锋,王东斌,徐晓虹,等.利用淤泥研制环保陶瓷滤球.佛山陶瓷,2005,98(2):54-56
    [110]李清涛,吴清,,缪松兰,等.利用建陶工业污泥烧制多孔陶瓷材料试验研究.材料科学与工艺,2007,15(4):531-533
    [111]徐溢,王楠,张小风,等.直接用用金属表面新型防护涂层的硅烷偶联剂水解效果分析.腐蚀与防护,2000,21(4):157-159.
    [112]MAN SUNG LEE.Coating of methyltriethoxy silane-modified colloidal silica on polymer substrates for abrasion resistance.Journal of Sol-Gel Science and Technology,2002,24(2):175-180.
    [113]Marie-Christine Brochier Salon,Makki Abdelmouleh,Sami Boufi,et al.Silane adsorption onto cellulose fibers:Hydrolysis and condensation reactions.Journal of Colloid and Interface Science,2005,289(1):249-261.
    [114]Cunliffe A V.Evans S,Tod D A.,et al.Optimum preparation of silanes for steel pre-treatment.International Journal of Adhesion & Adhesives,2001,21(4):287-296.
    [115]Valadez-Gonzalez A,Cervantes-Uc J M,Olayo R.Chemical modification of henequen fibers with an organosilane coupling agent.Composite:Part B,1999,30(2):321-331.
    [116]杜作栋,陈剑华.有机硅化学..北京:高等教育出版社,1990.5-15
    [117]谭京亮.有机硅防水剂整理织物的研究.有机硅材料及应用,1996,(5):7-9
    [118]胡福增,陈国荣,杜永娟.材料表界面(第二版).上海:华东理工大学出版社,2007.50-52
    [119]李方文,吴建锋,徐晓虹,等.成型压力对基体体积密度、吸水率和显气孔率影响的探讨.中国陶瓷,2007,43(04):25-27
    [120]周剑平.精通Origin 7.0.北京:北京航空航天大学出版社,2004.50-105
    [121]梁文,程继健,陈国荣.玻璃表面的防潮处理.玻璃与搪瓷,2000,28(5):11-15
    [122]高乃云,徐迪民,范瑾初,等.氧化铁涂层砂改性滤料除氟性能研究.中国给水排水,2000,16(1):1-4
    [123]高乃云,徐迪民,范瑾初,等.氧化铝涂层改性石英砂过滤性能研究.中国给水排水,1999,15(3):8-10
    [124]邓慧萍,易小萍,徐迪民,等.涂铁砂过滤去除有机物的研究.中国给水排水,2000,16(7):1-4
    [125]易小萍,邓慧萍,徐迪民,等.改性滤料在水处理中的应用及机理探讨.净水技术,2000,18(1):25-27
    [126]高乃云,李富生,汤浅晶.氧化物涂层砂对天然水中有机物的去除[J].上海环境科学,2002,21(4):32-36
    [127]邓慧萍.改性滤料过滤除铁过程中水头损失的增长规律.同济大学学报(自然科学版),2004,32(2):221-225
    [128]马军,盛力,王立宁.改性石英砂滤料强化过滤处理含藻水.中国给水排水,2002,18(10):9-11
    [129]盛力,马军.金属氧化物改性滤料去除微量苯酚研究.中国给水排水,2003,19(9):16-18
    [130]盛力,马军.滤料表面电位对滤床过滤效果的影响.工业水处理,2002,22(12):34-36
    [131]C.H.Lai,S.L.Lo,H.L.Chiang.Adsorption/desorption properties of copper ions on the surface of iron-coated sand using BET and EDAX analyses.Chemosphere,2000,41(8):1249-1255
    [132]Shang-Lien Lo,Hung-Te Jeng,Chin-Hsing Lai.Characteristics and adsorption properties of iron-coated sand.Wat.Sci.Tech,1997,35(7):63-70
    [133]S.E.Truesdail,J.Lukasik,S.R.Farrah,et al.Analysis of bacterial deposition on metal(Hydr)oxide-coated sand filter media.Journal of Colloid and Interface Science,1998,203(2):369-378
    [134]Mark M.Benjamin,Ronald S.Sletten,Robert P.Bailey,et al.Sorption and filtration of metals using iron-oxide-coated sand.Wat.Res.,1996,30(11):2609-2620
    [135]Jienan Chen,Steve Truesdail,Fuhua Lu,et al.Long-term evaluation of aluminum hydroxide-coated sand for removal of bacteria from wasterwater.Wat.Res.,1998,32(7):2171-22179
    [136]V.K.Gupta,V.K.Saini,Neerai Jain.Adsorption of As(Ⅲ)from aqueous solutions by iron-coated sand.Journal of Colloid and Interface Science,2005,288(1):55-60
    [137]J.C.Liu,J.G.Huang.Using iron-coated spent catalyst as an alternative adsorbent to remove Cr(Ⅵ)from water.Wat.Res.,1998,38(4):155-162
    [138]Ying Xu,Lisa Axe.Synthesis and characterization of iron-coated silica and its effect on metal adsorption.Journal of Colloid and Interface Science,2005,282(1):11-19
    [139]M.S.Al-Sewailem,E.M.Khaled,A.S.Mashhady.Retention of copper by desert sands coated with ferric hydroxides.Geoderma,1999,89(3-4):249-258
    [140]C.H.Lai,C.Y.Chen.Removal of metal ions and humic acid from water by iron-coated filter media.Chemosphere,2001,44(5):1177-1184
    [141]O.S.Thirunavukkarasu,T.Viraraghavan,K.S.Subramanian.Arsenic removal from drinking water using iron oxide-coated sand.Water,Air,and Soil Pollution,2003,142(3):95-111
    [142]李云雁,胡传荣.试验设计与数据处理.北京:化学工业出版社,2005,114-120.
    [143]方开泰,马长兴.正交与均匀试验设计..北京:科学出版社,2001,83-92.
    [144]Lo S L.Adsorption of Se(Ⅳ)and Se(Ⅵ)on an iron-coated from water.Chemosphere,1997,35(5):919-930
    [145]Russell J D.Infrared spectroscopy of ferrihydrite:evidence for the presence of structural hydroxyl groups.Clay Miner,1979,14(2):109-114
    [146]H.C.Thomas.Heterogeneous ion exchange in a flowing system.J.Am.Chem.Soc,1944,66:1664-1666
    [147]Yoon YH,Nelson JH.Application of gas adsorption kinetics.1.A theoretical model for respirator cartridge service time.Am Ind Hyg A ssoc J,1984,45:509-516
    [148]Texier AC,Andres Y,Faur-Brasquet C,et al.Fixed-bed study for lanthanide(La,Eu,YB)ions removal from aqueous solutions by immobilized Pseudomonas aeruginosa:experimental data and modelization.Chemosphere,2002,47(3):333-342
    [149]Tran H.H,Roddick FA.Comparison of chromatography and desiccant silica gels for the adsorption of metal ions-I,adsorption and kinetics.Water Res,1999,33(13):3001-3011
    [150]Guibal E,Lorenzelli R,Vincent T,Le Cloirec P.Application of silica gel to metal ion sorption:static and dynamic removal of uranyl ions.Environ Technol,1995,16:101-114
    [151]Clark RM.Evaluating the cost and performance of field-scale granular activated carbon systems.Environ Sci Techno,1987,21:573-580
    [152]G.M.Walker,L.R.Weatherley.Fixed bed adsorption of acid dyes onto activated carbon.Environmental Pollution,1998,99(1):133-136
    [153]Shuguang Wang,Wenxin Gong,Xianwei Liu,et al.Removal of fulvic acids using the surfactant modified zeolite in a fixed-bed reactor.Separation and Purification Technology,2006,51(3):367-373
    [154]H.Moazed,T.Viraraghavan.Coalescence/filtration of an oil-in-water emulsion in a granular organo-clay/anthracite mixture bed.Water,Air,and Soil Pollution,2002,138:253-270
    [155]Lu Lv,Kean Wang,X.S.Zhao.Effect of operating conditions on the removal of Pb~(2+)by microporous titanosilicate ETS-10 in a fixed-bed column.Journal of Colloid and Interface Science,2007,305(2):218-225
    [156]刘建勇.对自然氧化法除铁工艺的强化.净水技术,1999,17(4):18-20
    [157]郑尊宏,成伟平,刘晓军.接触氧化法除铁及工艺改进效果.中氮肥,2004,(3):39-40.
    [158]Donald Ellis,Christian Bouchard,Gaetan Lantagne.Removal of iron and manganese from groundwater by oxidation and microfiltration.Desalination,2000,130(3):255-264.
    [159]Ioannis A.Katsoyiannis,Anastasios I.Zouboulis.Biological treatment of Mn(Ⅱ)and Fe(Ⅱ)containing groundwater:kinetic considerations and product characterization.Water Research,2004,38(7):1922-1932
    [160]金熙,项成林,齐冬子.工业水处理技术问答.北京:化学工业出版社,2003:28-30
    [161]吴馥萍.SPM-Ⅲ絮凝剂处理炼油污水研究.石油化工高等学校学报,1995,8(2):1-6
    [162]李志林,钟华文.两类复合絮凝剂处理炼油污水的多元方差分析.石油化工高等学校学报,2000,13(3):54-56
    [163]李圭白,徐超.地下水除铁除锰.北京:中国建筑工业出版社,1987:253
    [164]唐受印,戴友芝.水处理工程师手册.北京:化学工业出版社,2000,232-233
    [165]Drew M著,吴大成,朱谱新等译.表面界面和胶体原理及应用.北京:化学工业出版社,2005,141-147
    [166]P.K.Malik.Dye removal from wastewater using activated carbon developed from sawdust:adsorption equilibrium and kinetics.Journal of Hazardous Materials,2004,113(1-3):81-88
    [167]F.A.Batziuas,D.K.Sidiras.Simulation of methylene blue adsorption by salts-treated beech sawdust in batch and fixed-bed systems.Journal of Hazardous Materials,2007,149(1):8-17
    [168]Y.S Ho.C.T.Huang,H.W.Huang.Equilibrium sorption isotherm for metal ions on tree fern.Process Biochemistry.2002,37(12):1421-1430
    [169]Freundlieh,H.M.F.uberdieadsorptioninlosungen(adsorptioninsolution).Zeitsehrift fur Physikalische Chemic(LeiPzig),1906,57A:384-470
    [170]Lagergren,S.About the theory of so-called adsorption of soluble substances.Kungliga Svenska Vetenskapsakademiens Handlingar 1898,24(4),1-9
    [171]Ho Y.S.Adsorption of heavy metals from waste streams by peat.Ph.D.thesis,University of Birmingham,Birmingham,UK,1995
    [172]Ho Y.S.,McKay G.Comparative sorption kinetic studies of dye and aromatic compounds onto fly ash.J.Environ.Sci.Health,1999,A34:1179-1204
    [173]Ho Y.S.,Comment on “Adsorption of naphthalene on zeolite from aqueoussolution” by C:.F.Chang,C.Y.Chang,K.H.Chen,W.T.Tsai,J.L.Shie,Y.H.Chen,Journal of Colloid and Interface Science 2005(283):274-277
    [174]Weber W.J.,Morris J.C.,Kinetics of adsorption on carbon from solution,J.Sanitary Eng.I)Ⅳ.Am.Soc.Civ.Eng.1963,89:31-60
    [175]M.Al-Ghouti,M.A.M.Khraisheh,M.N.M.Ahmad.Thermodynamic behaviour and the effect of temperature on the removal of dyes from aqueous solution using modified diatomite:A kinetic study.Journal of Colloid and Interface Science,2005,287(1):6-13
    [176]M.S.Gasser,GH.A.Morad,GH.A.Morad,H.F.Aly.Batch kinetics and thermodynamics of chromium ions removal from waste solutions using synthetic adsorbents.Journal of Hazards Materials,2007,142(1-2):118-129
    [177]Thomas W.J.,Crittenden B.Adsorption technology and design,Reed Education and Professional Publishing,Oxford;1998
    [178]A.A.M.Daifulah,S.M.Yakout,S.A.Elreefy.Adsorption of fluoride in aqueous solutions using KMnO_4-modified activated carbon derived from steam pyroysis of rice straw.Journal of Hazards Materials,2007,147(1-2):633-643
    [179]Abhijit Maiti,Sunando DasGupat,Jayant Kumar Basu,et al.Adsorption of arsenite using natural laterite as adsorbent.Separation and Purification Technology,2007,55(3):350-359
    [180]El-Shahawi M.S,Nassif H.A.Retention and thermodynamic characteristics of mercury(Ⅱ)complexes onto polyurethane foams.Anal.Chim.Acta,2003,481(1):29-39
    [181]许光眉.石英砂负载氧化铁(IOCS)吸附去除锑、磷研究:[博士学位论文].长沙:湖南大学,2006
    [182]I.-Hsien Lee,Yu-Chung Kuan,Jia-Ming Chern.Prediction of ion-exchange column breakthrough curves by constant-pattern wave approach.Journal of Hazardous Materials,2008,152(1):241-249
    [183]D.Pokhrel,T.Viraraghavan.Arsenic removal in an iron oxide-coated fungal biomass column:Analysis of breakthrough curves.Bioresource Technology,2008,99(6):2067-2071
    [184]M.Streat,K.Hellgardt and N.L.R.Newton.Hydrous ferric oxide as an adsorbent in water treatment:Part 3:Batch and mini-column adsorption of arsenic,phosphorus,fluorine and cadmium ions.Process Safety and Environmental Protection,2008,86(1):21-30
    [185]Diwakar Tiwari,Hyoung-Uk Kim,Seung-Mok Lee.Removal behavior of sericite for Cu(Ⅱ)and Pb(Ⅱ)from aqueous solutions:Batch and column studies.Separation and Purification Technology,2007,57(1):11-16
    [186]P.B.Bhakat,A.K.Gupta,S.Ayoob.Feasibility analysis of As(Ⅲ)removal in a continuous flow fixed bed system by modified calcined bauxite(MCB).Journal of Hazards Materials,2007,139(2):286-292
    [187]Emine Malkoc,Yasar Nuhoglu.Removal of Ni(Ⅱ)ions from aqueous solutions using waste of tea factory:Adsorption on a fixed-bed column.Journal of Hazards Materials,2006,135(1-3):328-336
    [188]Sanjoy Kumar Maji,Anjali Pal,Tarasankar Pal,et al.Modeling and fixed bed column adsorption of As(Ⅲ)on laterte soil.Separation and Purification Technology,2007,56(3):284-290
    [189]M.F.F.Sze,V.K.C.Lee,G.McKay.Simplified fixed bed column model for adsorption of organic pollutants using tapered activated carbon columns.Desalination,2008,218(1-3):323-333
    [190]邹家庆.工业废水处理技术.北京:化学工业出版社,2003:138-140
    [191]赵振国.吸附作用应用原理.北京:化学工业出版社,2005:111-123
    [192]Nadezhda L F.Adsorption and desorption kinetics with systems having a concentration dependent coefficient of diffusion.Journal of colloid and interface science,1998,203(6):464-476
    [193]丁恒如.工业用水处理工程.北京:化学工业出版社,58-69
    [194]Mitali S,Pradip K A,Bhaskar B.Modeling the adsorption kinetics of some priority organic pollutants in water from diffusion and activation energy parameters.Journal of colloid and interface science,2003,266(4):28-32
    [195]Tamura H,Katayama N,Furrich R.The Co~(2+)adsorption properties of Al_2O_3,Fe_2O_3,Fe_3O_4,TiO_2 and MnO_2 evaluated by modeling with the Frumkin isotherm.J.Colloid Interface Sci.,1997,195(1):192-202
    [196]Smith J M.Chemical engineering kinetics.New York:McGraw Hill,1981.
    [197]D.Pokhrel,T.Viraraaghavan.Arsenic removal in an iron oxide-coated fungal biomass column:Analysis of breakthrough curves.Bioresource Technology,2008,99(6):2067-2071
    [198]B.C.Pan,F.W.Meng,X.Q.Chen,et al.Application of an effective method in predicting breakthrough curves of fixed-bed adsorption onto resin adsorbent.Journal of Hazards Materials,2005,124(1-3):74-80
    [199]J.Goel,K.Kadirvelu,C.C.Wang,et al.Removal of lead(Ⅱ)by adsorption using treated granular activated carbon:batch and column studies.Journal of Hazards Materials,2005,125(1-3):211-220
    [200] M.Z.Othman, F.A.Roddick, R.Snow. Removal of dissolved organic compounds in fixed-bed columns: evaluation of low-rank coal adsorbents. Water Research, 2001, 35(12):2943~2949
    [201] Ewa Lorenc-Grabowska, Grazyna Gryglewicz. Adsorption characteristics of Congo Red on coal-based mesoporous activated carbon. Dyes and Pigments, 2007, 74(1):34~40
    [202] Pelekani C, Snoeyink VL. Competitive adsorption in natural water: role of activated carbon pore size. Water Research, 1999, 33(5): 1209—1219

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700